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Abstract

The following learning problem is considered, for continuous-time recurrent neural networks having sigmoidal activation
functions. Given a “black box” representing an unknown system, measurements of output derivatives are collected, for a set
of randomly generated inputs, and a network is used to approximate the observed behavior. It is shown that the number of
inputs needed for reliable generalization (the sample complexity of the learning problem) is upper bounded by an expression
that grows polynomially with the dimension of the network and logarithmically with the number of output derivatives being
matched. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper is concerned with systems de�ned by
equations of the following type:

ẋ(t)= �(n)(Ax(t) + Bu(t)); y(t)=Cx(t); (1)

where A∈Rn×n; B∈Rn×m; C ∈Rp×n, and �(n) :Rn

→Rn is the diagonal map

�(n) :




x1
...
xn


 7→




�(x1)
...

�(xn)


 ; (2)

and � :R→R is a Lipschitz continuous mapping
(soon to be specialized to � = tanh, the function that
most often appears in neural network theory and prac-
tice). The dot indicates time derivative; for simplicity,
we later omit the arguments t and the superscript (n),
writing just ẋ= �(Ax+ Bu) and y=Cx. We call any
system of this general form an n-dimensional,m-input,
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p-output recurrent net with activation �, or, some-
times, just a “net”. The spaces Rm, Rn, and Rp are
called respectively the input-value, state, and output-
value spaces. In system-theoretic terms, we may rep-
resent a net by means of a block diagram as in Fig. 1.
Recurrent nets – sometimes in their discrete-

time variant in which one has a di�erence equation
x(t + 1)= �(Ax(t) + Bu(t)) instead of a di�erential
equation, or with extra linear terms such as in an
equation of the form ẋ=Fx+�(Ax+Bu) – have been
proposed as models for control, computation, and
signal processing by many researchers, see e.g. [11–
13, 15, 3–5, 20, 21] as well as in optimization and as-
sociative memory design (“Hop�eld nets”), language
inference, and sequence extrapolation for time series
prediction. In neural network studies, each coordinate

Fig. 1. Block diagram of net.
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Fig. 2. “Black box” or “plant”.

xi of x is thought of as the internal state of the ith
“neuron” in a network. Partial mathematical justi�ca-
tion for the interest in the class of systems represented
by (1) lies in the fact that they can, in a certain sense,
approximate arbitrary nonlinear systems, they provide
universal models of digital as well as analog
computation, and their system-theoretic properties
(controllability, observability, minimality, parameter
identi�ability, etc) can be quite elegantly character-
ized (see e.g. [1, 2, 17, 16]).

1.1. The learning problem

We formulate the problem of identi�cation from
input=output data in the paradigm of uniform conver-
gence of empirical probabilities due to Vapnik and
Chervonenkis and, independently in the computer
science context (“probably approximately correct”
(PAC) learning) to Valiant. An excellent reference
is the recent monograph [19]; see also the original
source [18].
The question that we address can be described in

very intuitive terms as follows. Given is a “black box”
or “plant” as in Fig. 2. This represents a system (for
example, an object to be controlled) whose structure
is unknown, but on which it is possible to perform ex-
periments, by applying various inputs u and observing
the ensuing outputs y. Assume that we �rst collect
a �nite amount of experimental input=output data in
this manner, and we subsequently “�t” some net �0 as
well as possible to this data, through minimization of
a least-squares error criterion E(�) which penalizes
the lack of agreement between the outputs produced
by a candidate net � and the experimental (“training”)
data. The main question here is: how accurate is the
obtained �0 as a behavioral model of the plant? In
other words, how reliable is �0 as a predictor of the
output y that the plant would produce in response to a
randomly chosen future input u? We assume station-
arity: both the training samples and the data seen in
the future (testing data) are randomly drawn accord-
ing to the same probability distribution.
Since it may be impossible to model the plant be-

havior exactly by a net, the least-squares minimiza-
tion of E(�) will result in some minimal error value
E0 =E(�0). If the training data was su�ciently rich,

we may then expect the error on future inputs u to be,
on the average, close to E0 (by the law of large num-
bers applied to the error on each data point, seen as a
random variable). One of the main questions in PAC
learning is that of quantifying what is a “su�ciently
rich” set of training data so that the expected error is
indeed “close” (also in a precisely quanti�ed sense)
to the training error. Mathematically, the techniques
involve uniform laws of large numbers, providing an
elegant generalization of classical questions regarding
the uniform convergence of empirical probabilities of
sets, and in particular the Glivenko–Cantelli Lemma,
and more generally the uniform convergence of em-
pirical means of random variables.
Actually, rather than dealing only with the case

where the training data pairs (u(·); y(·)) are generated
by a (deterministic) plant, one allows as well a more
general setup in which it is only postulated that there is
a probability distribution P on the possible pairs which
may appear. If, as in the previous discussion, there is
a plant, let us call it H , which generates the data, and
inputs u are generated randomly according to a prob-
ability distribution P0, there is a natural probability P
induced on pairs (u; y): (u; y) has the same probabil-
ity as u if y=H (u), and has zero probability other-
wise (of course, we are being extremely informal right
here, and one must argue in terms of measures). The
framework allows, in addition, for stochastic plants as
well noisy measurements. These issues are discussed
at length in [19].
We will state and prove a precise result on learning

in the sense just described. The criterion we use pe-
nalizes the di�erences between the �rst k derivatives
of outputs at time t=0 (corresponding very roughly
to “�tting” a model to order O(Tk) on an interval of
length T ). The estimates of the amount of training data
required for reliable prediction grow with the state-
space dimension of the nets used as models as well as
with the number k of derivatives. (Intuitively, if we
use nets of larger dimension, we will be able to �t
the training data better, but prediction ability will de-
crease, as we are essentially memorizing all data, with
no “smoothing”. Likewise, if we want to accurately
predict more derivatives, we need more data.) For
simplicity of exposition, we take the input and output
dimensions m and p to be both equal to one, but the
statements and proofs can be easily generalized to ar-
bitrarym and p. Pick any in�nitely di�erentiable func-
tion � (soon we will specialize to the case �= tanh).
Let � be a net with activation � and let �∈Rn

be any state. For any input function u : [0; T ]→Rm
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and any initial state �∈Rn, there is a unique solu-
tion x : [0; T ]→Rn of ẋ= �(Ax + Bu) with x(0)= �;
this solution will be denoted as x(t; �; u). (By
“input function” we mean, as usual, cf. [14], a mea-
surable essentially bounded function, but for the
purposes of this paper, di�erentiable inputs would
su�ce.) We also consider the ensuing output function
y(t; �; u) :=Cx(t; �; u). Observe that the kth deriva-
tive of the output at time 0 is a function only of
the �rst k−1 derivatives of the input; for instance,
y′(0; �; u)=C�(n)(A� + Bu(0)). That is, there is for
each k a map

yk;�; � :Rk →R (3)

such that

y(k)(0; �; u)=yk;�; �(u(0); u′(0); : : : ; u(k−1)(0))

for every (k − 1)-times di�erentiable input u. (For
k =0; y0; �; �=C� is a constant.) We also introduce,
for each k, the vector of derivatives of order 6k,
writing

Yk;�; �(�0; : : : ; �k−1)

:= (y0; �; �; y1; �; �(�0); : : : ; yk;�; �(�0; : : : ; �k−1)):

For each k, we let Zk =Rk ×Rk+1 (if k =0, just R);
thus, if �∈Rk then (�; Yk;�; �(�))∈Zk . For each pair
(�; �)∈Zk , we denote

Loss�; �; k [�; �] :=
‖Yk;�; �(�)− �‖2

1 + ‖Yk;�; �(�)− �‖2 :

This penalizes the mismatch between the data point
(�; �) (which we may interpret as an input=output pair
associated to the plant in Fig. 2) and the output that the
net �, initialized at the state �, produces in response
to the input whose �rst k − 1 derivatives are speci�ed
by the vector �. (The error is normalized, for technical
reasons, to the range [0; 1].)
Two quantities are of special interest, still for any

�xed initialized net (�; �). The �rst is the “empirical
risk” or “average training error” obtained by averaging
over a �nite set of data: for each positive integer s and
each z=(z1; : : : ; zs)∈Zs

k :

EmpLoss�; �; k [z] :=
1
s

s∑
i=1

Loss�; �; k [zi]:

The second is de�ned once that a probability measure
P has been �xed on (Zk ;Bk), whereBk is the algebra

of Borel sets inZk : it is the P-expectation of the error
(viewing Loss�; �; k as a random variable on Zk):

ExpLoss�; �; k :=E(Loss�; �; k):

We let Sn denote the set of all n-dimensional initial-
ized nets with activation �= tanh (and m=p=1).
For any integers n¿ 5 and k and any two real num-
bers, �; �∈ (0; 1), we denote the “sample complexity”

S(n; k; �; �) :=
640
�2
(n6 + n3 log2 k)

(
4 + ln

(
1
��

))
:

For n¡5, we de�ne S(n; k; �; �) using “5” instead of n
in the expression above. This is proved later in the pa-
per (Ps means probability with respect to the product
measure Ps onZs

k , corresponding to independent iden-
tically distributed choices for the input=output pairs
z1; : : : ; zs):

Theorem 1. For each n; k; �; �¿0 and each s¿
S(n; k; �; �),

Ps(|EmpLoss�; �; k [z]− ExpLoss�; �; k |¡�;

∀(�; �)∈Sn)¿ 1− �:

One interpretation of this result is as follows. As-
sume that we are trying to obtain a simulation model
for the unknown plant in Fig. 2, assumed to be strictly
causal. We use as models n-dimensional nets, and
are able to experiment by applying polynomial in-
puts of degree ¡k, and collecting data on the �rst k
derivatives, at t=0, of the output. Let’s write H (�)
for the vector of output derivatives corresponding to
an input whose derivatives are given by �. A set of
s= S(n; k; �; �) i.i.d. inputs are generated at random,
according to some probability distribution P0 on Rk ,
and the derivatives �=H (�) are obtained for each in-
put in this set of s inputs. There results a vector of
observations, or “training set” z. Note that the distri-
bution P0 induces a probability measure P on the set
of derivatives of input=output pairs Zk in a natural
way: it is concentrated on those pairs (�; �) for which
�=H (�), and P({(�; H (�)); �∈U})=P0(U ). The
training set z is distributed according to P. Suppose
that we next minimize, over all n-dimensional nets and
all possible initial states, the quantity EmpLoss�; �; k [z],
obtaining a “best possible �t” (�; �), which produces
a minimal error E0. (Of course, this minimization is
itself a hard numerical problem, viz., methods for
so-called “recurrent backpropagation” in the neural
net literature.) Assume that we next generate a new
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input u, with derivatives �, again according to P0,
and calculate the error Loss�; �; k [�; H (�)], which pe-
nalizes the mismatch with the prediction that (�; �)
would make. With high con�dence (namely, better
than 1 − �), we can say that the expected value of
Loss�; �; k [�; �] is at most � + E0. In particular, if we
had managed to �t the data perfectly (E0 = 0), then we
are assured, with high con�dence, that the expected
value of the error is at most �.

2. Proof of theorem

Fix two positive integers n and k, to be used for di-
mension of nets and number of output derivatives to be
matched, respectively. We let �= tanh andm=p=1.

2.1. Formulas for output derivatives

We will be thinking of the kth derivative of the
output at time 0; y(k)(0; �; u), as a function of the �rst
k − 1 derivatives of the input at t=0 as well as those
parameters (entries of A; B, and C, and coordinates
of the initial state �) which characterize the particu-
lar n-dimensional initialized net (�; �) being consid-
ered. We next formalize this functional dependence.
As a �rst step, we consider the following question:
if x(·) satis�es Eq. (1), what di�erential equations do
the derivatives of x(·) satisfy? In order to answer this
question, we next de�ne certain polynomials Xi

j , in
terms of which the derivatives will be expressed.
We introduce indeterminates �r; r¿ 1; �r; r ∈

{1; : : : ; n}; �r ; r ∈{1; : : : ; n}, and �rs; (r; s)∈{1; : : : ;
n}2, and de�ne polynomials Xi

j , for j∈{1; : : : ; n} and
i¿ 0, as follows, inductively on i:

X1
j := �j (4)

and for i¿ 1,

Xi+1
j := �1 + · · ·+ �n + �1 + · · ·+ �i−1; (5)

where we will denote

�l=
@Xi

j

@�l
(1− �2l )

(
n∑

h=1

�lh�k + �l�1

)

and

�l=
@Xi

j

@�l
�l+1:

If A∈Rn×n; B∈Rn×1; �∈Rn, and v0; : : : ; vi−1 are
real numbers, we denote by

Xi
j (A; B; �; v0; v1; : : : ; vi−1)

the number obtained by substituting into the polyno-
mial Xi

j ,

�s 7→ �(As�+ bsv0); �rs 7→ ars; �s 7→ bs;

∀r; s∈{1; : : : ; n}; �s 7→ vs; ∀r¿ 1;

where ars; bs, and As denote, respectively, the (r; s)th
entry of A, the sth entry of the column vector B, and
the sth row of the matrix A. The following lemma
provides an interpretation of the polynomials Xi

j ; it is
easily veri�ed by induction, using the chain rule and
the fact that �′(a)= 1− (�(a))2 when �= tanh:

Lemma 2. If � is an n-dimensional net with m=1
and �= tanh, and x is a solution of ẋ(t)= �(Ax(t)+
Bu(t)), for some input u which is i − 1 times
di�erentiable, then the ith derivative of the coordinate
xj satis�es

x(i)j (t)=Xi
j (A; B; x(t); u(t); u

′(t); : : : ; u(i−1)(t))

for all t.

Now introduce additional indeterminates 1; : : : ; n
and let

Yi :=
n∑

j=1

jXi
j ; i¿ 1:

Finally, if C ∈R1×n and A; : : : are as earlier, we denote
by

Yi(A; B; C; �; v0; v1; : : : ; vi−1)

:=
n∑

j=1

cjXi
j (A; B; �; v0; v1; : : : ; vi−1)

the substitution into these variables. Clearly:

Corollary 3. If � is an n-dimensional net with
m=p=1 and �= tanh, and u is an input which
is k − 1 times di�erentiable, k¿ 1, then the kth
derivative of the output y at t=0 satis�es

y(k)(0; �; u)=Yk(A; B; C; �; u(0); u′(0); : : : ; u(k−1)(0))

for each initial state x(0)= �∈Rn.
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For example, Y2 =
∑n

j=1 j(1 − �2)(
∑n

h=1 �jh� +
�j�1), so

y′′(0; �; u) =
n∑

j=1

cj(1− (�(Aj�+ bju(0))2)

×
(

n∑
h=1

ajh�(Ah�+ bhu(0)) + bju′(0)

)
:

Observe that

Yk(A; B; C; �; u(0); u′(0); : : : ; u(k−1)(0))

is the same as what we earlier called

yk;�; �(u(0); u′(0); : : : ; u(k−1)(0));

if � is the net whose matrices are (A; B; C).
Since, from the recursive de�nition, the degree of

Xi+1
j equals (degXi

j −1)+4, the degree ofXi
j is 3i−2

for i¿1. Thus:

Lemma 4. The degree of Yk is 3k−1 for each k¿1.

Remark 5. Note that the degree of Yk with respect to
the “input” variables �l is k−1 for each k¿1 because,
inductively,

deg�1 ;:::;�iX
i+1
j =deg�1 ;:::;�iX

i
j + 1:

Also, the degree of Yk with respect to the “sigmoid”
variables �j is 2k − 1 because, inductively,
deg�1 ;:::; �n

Xi+1
j =(deg�1 ;:::; �n

Xi
j − 1) + 3:

We do not use these estimates in what follows, but it
is likely that the upper bounds to be given later could
be made less conservative when using this additional
information.

2.2. Pseudo-dimension estimates

We �rst recall the concepts of Vapnik–
Chervonenkis (VC) dimension and, more generally,
pseudo- (or Vapnik-subgraph, or Pollard) dimension.
Given a setU0 and a classF0 of functionsU0→{0; 1}
(which we think of as a family of binary classi�ers),
a dichotomy on a subset V of U0 is any function
� :V →{0; 1}, and the subset V ⊆U0 is shattered by
F0 if each dichotomy on V is the restriction to V of
some f∈F0. The Vapnik–Chervonenkis (VC) di-
mension VC(F0) is the supremum (possibly in�nite)
of the set of integers � for which there is some subset
V ⊆U0 of cardinality � which can be shattered byF0.

We let H be the Heaviside function: H (x)= 1 if x¿0
and 0 if x60. Given now a class of functionsF from
U to R, we introduce, for each f∈F, the function

qf :U0 =U×R→{0; 1} : (u; y) 7→H (f(u)− y)

as well as the class F0 consisting of all such qf. The
pseudo-dimension ofF is de�ned by

PD(F) := VC(F0):

(This de�nition is equivalent to the one in [8].)
We now review a basic pseudodimension estimate

from [9], specialized to a form useful for our purposes.
Let �= tanh. Assume given a function

’ :Rl ×Rh →R¿0
which can be expressed as

’(�; z)=P(�(R1(�; z)); : : : ; �(Rn(�; z)); �; z); (6)

where R1(�; z); : : : ; Rn(�; z) are polynomials each of
(total) degree at most r − 1 and P is a polynomial
of degree at most q − 1. We view vectors �∈Rl as
parameters, and for each � let

’� :Rh →R¿0 : z 7→’(�; z):

Lemma 6. Let

F :=
{

’�

1 + ’�
; �∈Rl

}
:

Then,

PD(F)6b+ 2(1 + log2 e)l; (7)

where

b6(ln)2 − ln + 2[l log2 q+ l log2 l

+ l log2 (q+ r) + ln log2 (l
2(q+ r))]: (8)

Proof. By de�nition, PD(F) equals the VC dimension
of the class of binary functions

(z; z0) 7→H (’�(z)=(1 + ’�(z))− z0); �∈Rl:

Since 1 + ’�(z) is always positive, we can write this
latter expression also as H ( (z; z0)), where

 (z; z0) :=’�(z)− z0(1 + ’�(z)):

Observe that  is a polynomial of total degree6(q−
1) + 1= q on �; z; z0 and the expressions �(Ri(�; z)).
On the other hand,

@�(Ri(�; z))
@�j

=(1− (�(Ri(�; z)))2)
@Ri(�; z)

@�j
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for each coordinate �j of �, and a similar expres-
sion holds for partial derivatives with respect to the
coordinates of z. Thus, each �(Ri(�; z)) is a Pfa�an
function of degree 62 + (r − 2)= r. The result then
follows from [19, Theorem 10.7 and Lemma 10.6],
which provide an upper bound for the VC dimen-
sion of binary function classes de�ned by polynomi-
als expressions involving Pfa�an functions, in terms
of the degree of the polynomials and the degree and
length of the Pfa�an chains involved. Precisely, we
apply Theorem 10.7 with “b” instead of “2 log2 B” and
Lemma 10.6 with q; d; D, respectively, equal to our
n; q; r, to obtain, respectively, Eqs. (7) and (8). (The
results cited from the book [19] are based on the paper
[9]; the only minor di�erence is in the slight improve-
ment in (7), which the original paper had given as
b+ 16l.)

Some algebraic manipulation gives:

Corollary 7. When r=3; l63n + n2; n¿5, and
q66k, PD(F)63n6 + 5n3 log2 k.

2.3. Uniform approximation of expected loss

The last ingredient is a theorem on approximation
of means by empirical means, which we quote from
[8] (see also [19] for an exposition).
Let (Z;A) be a set together with a �-algebra of

subsets of Z, and let ’ :Rl ×Z→ [0; 1], where l is
some positive integer, be a function measurable with
respect to B×A, where B is the Borel �-algebra
on Rl. Write F := {’(�; ·); �∈Rl}. Assume that
d=PD(F)¡∞.
Then, applying Corollary 2 in Section 4 of [8]:

Proposition 8. Let z be generated by s independent
draws according to any distribution P on (Z;A).
Pick any �; �∈ (0; 1). Then, provided

s¿
64
�2

(
2d ln

(
16e
�

)
+ ln

(
8
�

))
;

P(∀’∈F : |Êz(’)− E(’)|¡�)¿1− �;

where

Êz(’) :=
1
s

s∑
i=1

’(zi)

and E(’) denotes the expectation of ’∈F.

2.4. Proof of Theorem 1

Theorem 1 is an immediate consequence of
Proposition 8 and Corollary 7, as we discuss now.
The set of all nets of dimension n and activation

tanh, together with initial states, may be parameter-
ized by �∈Rl, where l := 3n+n2, after listing in some
speci�c order the entries of A; B; C, and �. Hence we
can write, if u is an input which is i − 1 times di�er-
entiable, and i¿1,

y(i)(0; �; u)=yi;�; �(u(0); u′(0); : : : ; u(i−1)(0))

as

’i(�; u(0); u′(0); : : : ; u(i−1)(0));

for some function ’i :Rl ×Ri →R. We introduce
’ :Rl ×Zk →R¿0 de�ned by:

’(�; ((�0; : : : ; �k−1); (�0; : : : ; �k)))

=
k∑

i=0

(’i(�; �0; : : : ; �i−1)− �i)2

and note that this equals ‖Yk;�; �(�)−�‖2 if (�; �) is the
initialized system corresponding to the parameter �.
Let, for each 1∈{1; : : : ; n},

Ri(�; z) :=
n∑

h=1

(�ih�h + �i�0):

Thus, we have the following situation in Eq. (6):

’(�; z)=P(�(R1(�; z)); : : : ; �(Rn(�; z)); �; z);

where P has degree 6k−2 (by Lemma 4), and each Ri

has degree 2. So, in the notations there, we may take
r=3, q=6k − 1. Corollary 7 then gives the estimate
d63n6+5n3 log2 k to be used in Proposition 8, and the
bound for s can then be estimated to give the simpler
expression in Theorem 1.

3. Some remarks

It should be possible to improve considerably on the
learning result, which should be only seen as a �rst step
in the development of a serious study of identi�cation
complexity using the computational learning theory
paradigm. It is too conservative not only in the numeric
constant (see other estimates in [19]) but also in the
fact that it is a “worst possible case” result, valid with
respect to all possible probability distributions, and
in its use of pseudodimension estimates, which are in
general conservative.
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3.1. More general models

A variant is that of systems of the form ẋ=Fx +
�(Ax + Bu); y=Cx, i.e. when there is an additional
linear term in the dynamics. (Such extra terms can be
used to insure global boundedness of solutions; for
instance, F =−I guarantees that each component of
ẋ(t) has negative derivative when the component is
¿1 and positive derivative when the component is
¡1, as done with “Hop�eld nets”.) The same learn-
ing results apply in this case. The only needed modi-
�cation in the proof is that in Eq. (4) we must add a
sum

∑n
k=1 �jk�k , where the �jk ’s and �k ’s are a new

set of variables (to be specialized later to entries of F
and coordinates of the initial state, respectively), and
in Eq. (5) one should add a sum

∑n
k=1(@X

i
j =@�k)X1

k .
The rest of the computations are the same.

3.2. Linear systems, and other activation functions

It is worth remarking that it is also possible to give a
simple sample complexity estimate for linear systems
identi�cation, i.e., the case when � is the identity,
as well as some other nonlinear situations (e.g., if �
is a piecewise-polynomial function). All these follow
from pseudodimension estimates. For example, for the
class of minimal linear systems of dimension n, we
obtain

PD(F)=O(n log k):

This follows from the estimates for VC dimen-
sion of algebraic concept classes given in [7] (see
[19, Theorem 10.5 or Corollary 10.2]), since  in the
proof of Lemma 6 has degree 2k + 5 and one may
take l=2n (because, by linear systems theory, reach-
able and observable systems can be parameterized
linearly using that many parameters).
In general, however, many other activations, even

with “sigmoidal” shape, may give rise to in�nite
pseudo-dimension. Note that y′(0; �; u)=C�(A� +
Bu(0)) is a “single-hidden layer neural net” as a func-
tion of the inputs at time zero. Examples leading to
in�nite VC dimension are well-known (see e.g. [19,
Section 10.3.2]).

3.3. Discrete time

We have avoided discussion of discrete-time net-
works. For discrete-time systems there exist lower
bounds on pseudodimension; see [6] for the case of lin-
ear systems and [10] for discrete time nonlinear nets.

Interestingly enough, for �= tanh, the lower bounds
are at least linear (rather than logarithmic) in k, for
discrete-time systems. This surprising di�erence is re-
lated to the fact that, in discrete-time, outputs at time
k require k compositions of sigmoids, while in con-
tinuous time, using derivatives of outputs as data, we
were able to avoid compositions.
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