
Chapter 1 

Recurrent Neural Networks: Some Systems
Theoretic Aspects 

1 Introduction 

Recurrent nets have been introduced in control, computation, signal processing, 
optimization, and associate memory applications. Given matrices A E JR n x n, 

B E JRnxm, C E JRPxn, as well as a fixed Lipschitz scalar function a : JR -+ JR, 
the continuous time recurrent network ~ with activation function a and weight 
matrices (A, B, C) is given by: 

~; (t) = a(n) (Ax(t) + Bu(t)) , y(t) = Cx(t) , 

where a(n) : JRn -+ JRn is the diagonal map 

a(n) : (7) 1--+ (a(~l)) 
Xn a(xn ) 

(1) 

(2) 

The terminology of neural networks arises when one thinks of each coordi
nate Xi of the composite state x as a representation of the internal state of the 
ith neuron in a set of n interconnected "neurons" or processors. The rate of 
change of the ith dynamic element is determined by the current state of each 
other neuron j, either in an inhibitory or excitatory fashion (depending on the 
sign of the respective "synaptic strength" aij) as well as by the current val
ues of the coordinates Ui, i = 1, ... , m of the external input signal u (similarly 
weighed by the bi/S). 
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The role of the activation or response function (J' is to saturate the total rate 
of change, and is motivated by the simplistic binary "fire or not fire" model 
of biological neurons. Typically, the function (J' is of a "sigmoidal" type as 
illustrated in Figure 1. Most often in experimental practice as well as theory, 

one takes 

Figure 1: Sigmoidal activation 

eX _ e- X 
(J'( x) = tanh x = 

eX + e- X 

or equivalently, up to translations and change of coordinates, the "standard 
sigmoid" or "logistic" function (J'(x) = 1/(1 + e- X ). Finally, the coordinates of 
y(t) represent the output of p probes, or measurement devices, each of which 
provides a weighted average of the current values Xi(t) of the states of the 
vanous neurons. 

As an illustration, take the system shown in Figure 2. 
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Figure 2: Example of a two-dimensional, two-input, one-output net 

The equations for this example are 

dx dx 
-d = (J'(2X1 + X2 - U1 + 5U2) , -d = (J'( -7X2 + 3U2), y = Xl, 

t 1 tz 

or the matrix form in (1) with 

A- (2 - 0 1 ) (-1 5) -7 ,B = 0 3 ,C = (1 0) . 

There are many variants of the basic model presented above. First of all, 
one may consider discrete time models, in which the time evolution is described 
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by a difference instead of a differential equation: 

x(t + 1) = a(n) (Ax(t) + Bu(t)) , y(t) = Cx(t) 

or an Euler approximation 

x(t + 1) = x(t) + a(n)(Ax(t) + Bu(t)). 

Second, one may consider systems in continuous time in which the right-hand 
side of the differential equation has a slightly different form, such as 

~; (t) = Dx(t) + a(n) (Ax(t) + Bu(t)) , 

or 

~; (t) = Aa(n) (x(t)) + Bu(t). 

For instance, Hopfield nets have D a diagonal matrix with negative entries (and 
A symmetric). The paper [2] showed how, at least for certain problems, it is 
possible to transform among the different models, in such a way that once that 
results are obtained for (1), corollaries for the variants are easily obtained. For 
instance, the transformation z = Ax + Bu takes a recurrent net as studied in 
this paper into the second model: ~: (t) = Aa(n) (z(t)) + Bv(t), where the new 
. t . du mpu IS v = dt. 

In this paper we restrict attention to the form (1). One advantage of this 
form is that the linear systems customarily studied in control theory are pre
cisely those nets for which the activation (j is the identity function. This sug
gests that the above model may be amenable to a theoretical development 
parallel to linear systems theory (for which see e.g. [11]). Indeed, there are 
complete characterizations of basic systems theoretic properties such as con
trollability, observability, minimality, and parameter identifiability. This paper 
presents a brief survey of some such results. We also review the fact that recur
rent nets can approximate arbitrary nonlinear systems (albeit in a restricted 
fashion). Finally, we discuss the role of recurrent nets as universal models of 
digital as well as analog computation. 

2 System-Theory Results: Statements 

We next state several results, which are discussed later in the paper in some 
more detail (for those results for which a proof is already available in the 
literature, appropriate citations will be given). For simplicity of exposition, 
and because that is the most often-used case in applications, we restrict all 
statements here to the case (j = tanh; the later discussion will be done in 
somewhat more generality. 
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Approximation Capabilities 

Recurrent nets provide universal identification models, in the restricted sense 
that any system can be simulated by a net, on compact subsets of the state 
and input-value spaces and finite time intervals. We consider systems f; (cf. 
[11]) 

dx 
dt = f(x,u), y = h(x) (3) 

~ 

with input space ~m, output space ~p and state }pace ~n (the integer n is 
called~ the dimension of the system) where h : ~n -+ ~p is continuous, and 

f : ~n X ~m -+ ~n is continuously differentiable on x for each u E ~m, with 
f and fx jointly continuous on x and u. We assume that solutions x(t, [, u), 
t E [0, TJ, exist for the initial value problem ~~ = f(x, u), x(O) = [, for each 
possible input (i.e.,locally essentially bounded map u: [0, T]-+ ~m) an~ each 

initial state [ E ~n. Suppose we are given compact subsets Kl ~ ~n and 
K2 ~ ~m, as well as an c > 0 and aT> O. We say that the net ~, with input 
and output spaces also ~m and ~p respectively, simulates f; on the sets Kl, K2 
in time T and up to accuracy c if there exist two differentiable mappings 

~ ~ 

0: : ~n -+ ~n and f3: ~n -+ ~n 

so that the following property holds: For each Xo E Kl and each u(·) : [0, T]-+ 
K 2 , 

II x(t, f, u) - o:(x(t, f3([), u)) II < c, II h(x(t,[, u)) - C(x(t, f3([), u)) II < c 

for all t E [0, TJ, where x(t,~, u) denotes, in general, the unique solution x 
[0, T] -+ ~n of ~~ = 5(n)(Ax + Bu) with x(O) = ~, given the (measurable 
essentially bounded) input function u : [0, T] -+ ~m, and similarly for the 
second system. From [9] we have: 

Theorem 1 For each system f; and for each K l , K 2 , c, T as above, there is 
a net ~, with (J' = tanh, which simulates f; on the sets Kl, K2 in time T and 
up to accuracy c. 

Controllability and Observability 

Several results from now on assume a certain generic property for the input 
matrix B, namely that all its rows are nonzero and they are pairwise distinct 
even after a sign reversal. More precisely, letting rowi(Q) denote the ith row 
of a matrix Q, we define, for each pair of positive integers nand m: 

Bn,m := {B E ~nxm, (Vi) rowi(B) I- 0 and (Vi I- j) rowi(B) I- ±rowj(B)} . 

(Observe that, for the special but most important case m = 1, a vector b E Bn,l 
if and only if all its entries are nonzero and have different absolute values.) 
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We omit the subscripts 'n, m if they are clear from the context. Since the 
complement of Bn,m is an algebraic subset, the complement of Bn,m has zero 
Lebesgue measure and is an open dense subset of ~nxm. 

The net (1) is (completely) controllable if any state can be steered to any 
other state, i.e., for each pair of states ~,( E ~n, there is some T ~ 0 and 
some input u on [0, T] such that x(T, ~, u) = (. (The output y is irrelevant to 
this definition.) When 0'( x) = x, that is, for linear systems, controllability is 
equivalent to the requirement that the matrix pair (A, B) be a reachable pair, 
i.e. the rank of the n x nm matrix (B, AB, ... , An-lB) must be n. For nets 
with activation tanh, we have the following from [12]: 

Theorem 2 Assume that B E Band 0' = tanh. Then the net (1) is control
lable. 

The net (1) is observable if any two states can be distinguished by in
put/output experiments, i.e., for each pair of states ~,( E ~n, there is some 
T ~ 0 and some input u on [0, T] such that Cx(T,~, u) :f Cx(T, (, u). For lin
ear systems, observability is equivalent to the requirement that the transposed 
pair (A', C/) be a reachable matrix pair. For nets, we have as follows, from [4]. 
Consider the directed graph G, with node set {l, ... ,n}, in which there is an 
edge from ito j whenever aij :f O. Let N be the set consisting of those nodes i 
for which the ith column of C is nonzero. If every node can be reached from N 
by some path in the graph G, we say that every variable influences the output. 

Theorem 3 Assume that BE Band 0' = tanh. Then the net (1) is observable 
if and only if every variable influences the output and rank (A', C /) = n. 

Identifiability of Parameters and Minimality 

A natural question is as follows. Assume that we do manage to find a net E 
which matches exactly the complete i/o behavior of an observed input/output 
behavior. Can we then say something regarding the relation between the in
ternal structure of the object generating the behavior (in control theoretic 
terminology, the "plant") and the equations defining E? We now state two re
sults which address this question. The first one says that if the plant happened 
to be itself a net i:, and if both nets satisfy the generic observability condition 
just given, then E and i: must be identical (up to a possible relabeling and 
sign change of variables). The second deals with the general case in which the 
plant is a more arbitrary dynamical system i:. In this case, again provided 
E is observable, we can conclude that i: must be larger than E, in the sense 
that there is a natural map from a subset of the state space of i: onto that 
of our model E, compatible with the dynamics of both systems; this means in 
particular that E is a minimal model. 

For any net E, any input function u : [0, T] -+ ~m, and any initial state 
~ E ~n, we consider the ensuing output function y(t,~,u) := Cx(t,~,u). Two 
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initialized nets (E, e) and (53, e) with same input and output spaces are i/o 
equivalent if y(., e, u) = y(.,f, u) for all inputs u, where y indicates the output 
function associated to 53. 

A particular change of variables possible for nets is as follows. Take any 
sequence 

C = (c1. ... ,cn) E {-I, l}n 

and any permutation 7r: {I, ... ,n} -+ {I, ... ,n}. Consider the new state 
x whose coordinates X"'(i) := CiXi are obtained by exchanging the Xi'S and 
possibly (if Ci = -1) inverting signs. This means that x = Tx, with 

T = diag(cl, ... , cn)(e"'(l), ... , e,..(n») , 

where ei is the ith canonical basis vector. If (j is an odd function, then 
Ta(n)(v) = a(n)(Tv) for all v E JRn. Thus, the new state x satisfies the equa
tions 

with 
- -1 - . - -1 A = TAT ,B = T B, C = CT . (4) 

If e E JRn, let e := Te. Any initialized net (53, e) obtained in this fashion is 
said to be sign-permutation equivalent to (E, e). It is easy to see that sign
permutation equivalent nets are also i/o equivalent. We have the following 
converse from [3]: 

Theorem 4 Assume that E and 53 are two observable nets with (j = tanh and 
B, B E B. Then, E and 53 are sign-permutation equivalent if and only if they 
are i/o equivalent. 

For the next result, we consider systems 53 as in (3), except that we now 
also ask that hand f : JRn X JRm -+ JRn be (real-)analytic on x. More generally, 
we allow the state space X to be any paracompact (real- ) analytic connected 
manifold, with h : X -+ JRP analytic, and a continuous mapping f : X x JRm -+ 

TX such that 7r(J(x, u)) = X, where 7r : TX -+ X is the tangent bundle 
projection, so that f(x, u) is analytic on X and fx continuous on X x JRm. For 
technical reasons, we assume completeness: for each function u : [a, b] -+ JRm 
with 0 E [a, b], and each e E X, there is a solution of ~~ = f(x, u), x(O) = e, 

defined for all t E [a,b]. As before, we may consider the outputs y(t,e,u) = 
h(x(t, e, u)), and we call two initialized systems i/o equivalent if these the 
outputs coincide for all possible inputs. 

Theorem 5 Assume that the initialized analytic (53, €) and the observable ini
tialized net (E, e) with (j = tanh and B E B are i/o equivalent. Then, there is 
an analytic submanifold Xo of X and an analytic onto mapping II : Xo -+ JR n , 

such that h(q) = CII(q) for all q E Xo and, for each input u : [0, T]-+ JRm and 
each t E [O,T], x(t,e,u) E Xo and II(x(t,f,u)) = x(t,e,u). In particular, the 
dimension of E is minimal among all systems i/o equivalent to it. 
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3 System-Theory Results: Discussion 

Theorems 1, 2, 3, and 4 hold for activations a- more general than tanh, as we 
discuss next. (In every case, in addition to the conditions stated, one assumes 
that a- : JR. --+ JR. is locally Lipschitz, so that solutions of the evolution equations 
are defined at least locally.) 

Approximation 

Theorem 1 is from [9]. It is proved for any a- that has the following spanning 
property: the linear span of the functions a-(as + b), with a, bE JR., that is, the 
set of all finite linear combinations 

L cia-(ai s + bi ), 

restricted to any finite interval [a,f3] c JR., constitute a dense subset of CO[a, 13]' 
the set of continuous functions on [a,f3] endowed with the metric of uniform 
convergence. 

Not every function has the spanning property. For instance, if a- is a poly
nomial of degree k then the above span is the set of all polynomials of degree 
::; k, hence it forms a closed subspace and cannot be dense. This turns out to 
be the only exception: [6] shows that any locally Riemann integrable a- (i.e., 
any function which is continuous except at most in a set of measure zero, and 
bounded on each compact) has the spanning property if and only if it is not a 
polynomial. 

Controllability 

Theorem 2 is from [12]. It is proved for a- odd and with the properties that 
there exists lim, .... +oo a-( s) = a-00 > 0, a-( s) < a-00 for all s E JR., and, for each 
a,b E JR. with a> 1, 

lim a-oo - a-(as + b) = o. 
' .... +00 a-00 - a-( s) 

This latter asymptotic property is essential; for instance, the sigmoid arctan 
does not satisfy it, and in fact the Theorem is false for a- = arctan. 

The proof of the Theorem is based on establishing that the positive cone 
generated by the vector fields 

equals the tangent space at each point x of the state space, which provides 
local controllability at each state. 

Observe that there are no assumptions on A. In fact, the condition that 
B E B is necessary in the following sense: if B E JR.nxm is so that for all 
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A E ]R n X n the system (1) is controllable, then B E B; however, for a specific 
A it may very well happen that the net is controllable even if B tf- B. 

A related fact is that "forward accessibility" (the reachable set from each 
state has nonempty interior) holds for every net as in Theorem 2, provided 
that a has the "IP property" to be discussed below. This result had been 
earlier shown in the paper [1] (which dealt mainly with accessibility for the 
much harder discrete-time case). It is an immediate consequence of the fact 
that, when the IP property holds, the linear span of {a(n)(Ax + Bu), u E ]Rm} 

equals the tangent space at each point x. 

Observability 

Theorem 3 is from [4]. It is proved for every a that satisfies the independence 
property (IP). This property is basically a dual to the spanning property. For 
odd a, it states that translates and dilations of a must be linearly independent: 
for any positive integer I, any I-tuple of distinct pairs (aj, bj) with aj > 0, the 
functions 1, a(a1s + h), ... , a(a/s + bI) are linearly independent, i.e., 

1 

Co + 2.:cja(ajs + bj) == 0 => Co = C1 = ... = C! = o. 
j=l 

(A variation of the property, more interesting for non-odd a, asks linear inde
pendence of pairs (aj, bj) with aj # 0 but now requiring also (aj, bj) # - (aj , bj ) 
for all i # j.) 

A simple sufficient condition can be used to show that many maps, including 
tanh and arctan, satisfy the IP property (cf. [4]): it is enough that a admit an 
extension as a complex analytic function a : C -+ C defined on a subset of the 
form 

{IImzl::; A} \ {zo,io} 

for some A > 0, where Imzo = A and Zo and io are singularities. Another 
way of establishing the IP property is by an asymptotic analysis of a, in the 
spirit as in the statement given above for the controllability property; this was 
the approach taken in [14]. For instance, cf. [5], a has the IP property if it is 
continuously differentiable, a( s) / a' (s) is ddined and has constant sign for all 
s large, and: 

lim a(s) = o . 
...... +00 a'(s) 

As remarked in [5], this establishes the IP property whenever a(s) = q(s)eP(s), 
and p, q are polynomials with deg p ~ 2. Even weaker conditions from [5] are 
to require that for each b > 0, a(s + b)/a(s) be defined and bounded for all 
sufficiently large s, and 

a(s + b)/a(s) -+ 0 as s -+ +00, 

or that the same property hold for 1/ a. 
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The condition that every variable affects the output can be equivalently 
stated in terms of invariant subspaces. This provides an elegant connection to 
the case of linear systems, since for the latter observability means that there is 
no nonzero A-invariant subspace of the kernel of C. To be precise, the condition 
means that there cannot exist any nonzero subspace of ker C which is invariant 
under A and also under all (}i, i E {l, ... ,n}, where 

is the projection on the ith axis, i.e., (}iej = Dijei. (We let Dij be the Kronecker 
delta and ei the ith canonical basis vector.) 

Parameter Identifiability 

Theorem 4 is from [3]. It is proved there for every (J" that is odd and satisfies 
the IP property. Thus it holds as well for any (J" for which any of the sufficient 
conditions stated above are verified. 

Minimality 

Theorem 5 does not appear to have been mentioned in the literature. It is 
an easy consequence of the uniqueness theorem for minimal realizations, as we 
describe next. 

The restriction of the dynamics of E to the orbit Xo passing through the 
initial state [ provides an initialized system (Eo, fa) which is orbit-minimal in 
the sense of [13] and is again i/o equivalent to (~, e). One may then apply 
Theorem 1 in [13] to conclude that there is also an initialized analytic system 
(E'l') with state space X', i/o equivalent to (~,e) and minimal in the sense 
of [13], and an analytic onto mapping 

ITo: Xo -+ X' 

such that h(q) = h'(ITo(q)) for all q E Xo and, for each input u : [0, T] -+]Rm 

and each t E [0, T], x(t, [, u) E Xo and (with the obvious notations) 

ITo(x(t,e,u)) = x'(t,e,u). 

(The statement of Theorem 1 in [13] is somewhat weaker than this, but the 
proof actually shows the claimed facts.) Next, Theorem 5 in [13], applied to 
the two minimal systems (E', [,) and (~, e) provides an isomorphism IT l , which 
composed with ITo provides the mapping desired for Theorem 5 in this paper. 

In fact, a stronger result holds as well, namely, if the orbit Xo equals the 
whole space X and if E is observable, then IT is a diffeomorphism. 
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4 Computational Power 

We close with a mention of results regarding computational capabilities of re
current networks, seen from the point of view of classical formal language the
ory. The papers [7, 8] considered discrete-time networks with the "semilinear" 
or "saturated linearity" activation 

{ 
-1 

7r(x) = ~ 
if x < -1 
if x> 1 
otherwise. 

It is assumed, for simplicity (but not changing the results in any substantial 
way) that there are just one input and one output channel (m = p = 1). 
The cited papers established that with rational weights recurrent networks are 
computationally equivalent, up to polynomial time, to Turing machines, and 
with with real weights to a large class of "analog computers". (With no time 
constraints, all possible binary functions, recursive or not, are "computable" 
in exponential time by real-weight machines.) 

Formally, we say that a pair consisting of a recurrent network ~ and an 
initial state e E IR n is admissible if, for every input of the special form 

(5) 

where each ():; = ±1 and 1 :S k < 00, the output that results with x(o) = e is 
either y == ° or y is a sequence of the form 

y(.) = 0,0, ... ,0,{31, ... ,{3/,0,0, ... , ------ (6) 

where each {3; = ±1 and 1 :S I < 00. A rational (~, e) is one for which the 
matrices defining ~, and e, all have rational entries. (In that case, for rational 
inputs all ensuing states and outputs remain rational.) Given an admissible 
(~, 0, there is an associated partial function 

1jJ: {-1, 1}+ -+ {-1, 1}+, 

where {-1, 1}+ is the free semi group in the two symbols ±1, given as follows: 
for each sequence 

consider the input in Equation (5) and its corresponding output, which is either 
identically zero or has the form in Equation (6). If y == 0, then ljJ(w) is un
defined; otherwise, if Equation (6) holds, then ljJ(w) is defined as the sequence 
{31, ... , (3/. In the latter case, we say that the response to the input sequence w 
was computed in time s + l. If IjJ is obtained in this form, the (partial) function 
IjJ is said to be realized by the initialized network p:::, e). It is shown in [7] 
that any partial function IjJ : {-1, 1} + -+ {-1, 1} + can be realized by some 
admissible pair, and IjJ can be realized by some rational admissible pair if and 
only if IjJ is a partial recursive function. 
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Constraints in computational time are of course more interesting. Restrict
ing for simplicity to language recognition, the results can be summarized as 
follows. If ¢( w) is defined for all inputs and if there is a function on positive 
integers T : N -+ N so that the response to each sequence w is computed in 
time at most T(lwj), where la1, ... , akl = k, then (~, e) is said to compute in 
time T. If ¢ is everywhere defined and 

¢: {-I, 1}+ -+ {-I, I}, 

that is, the length of the output is always one, one can think of ¢ as the 
characteristic function of a subset L of {-I, I} +, that is, a language over the 
alphabet {-I, I}. Given T : N -+ N, the language L is recognizable in time 
T if the corresponding characteristic function is, for some admissible pair that 
computes in time T. It can be proved that languages recognizable in polynomial 
time by rational admissible pairs are exactly those in the class P of polynomial
time recursive languages. Using real weights, a new class, "analog P," arises. 
This class can be characterized as the class of all languages recognizable by 
arbitrary nonlinear (but Lipschitz-continuous) dynamical systems, see [7] for 
details. The class analog P strictly contains P, and it turns out to coincide with 
a class already studied in computer science, namely the languages recognized in 
polynomial time by Turing machines which consult oracles, where the oracles 
are sparse sets. This gives a precise characterization of the power of recurrent 
nets in terms of a known complexity class. The following table summarizes the 
results just discussed: 

Weights Capability Poly time 
integer regular regular 
rational recurSIve (usual) P 

real arbitrary analog P 

5 Some Remarks 

It would be quite interesting to have complete characterizations of controlla
bility in the case when the matrix B does not belong to B. It is easy to see 
that the block matrix [A, B] must be in B (defined for sizes n by n + m), but 
useful necessary and sufficient conditions are unknown. 

We have avoided discussion of system-theoretic issues for discrete-time net
works. Approximation, observability, and identifiability results are known for 
the discrete time case, and most are similar to those for continuous time (see 
the respective references). The controllability case is still open, though partial 
characterizations are known (see [1]). 
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