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Abstract

The notion of controllability was identified by Kalman as one of the cen-
tral properties determining system behavior. His simple rank condition is
ubiquitous in linear systems analysis. This article presents an elementary
and expository overview of the generalizations of this test to a condition for
testing accessibility of discrete and continuous time nonlinear systems.

1 Introduction

The state-space approach to control systems analysis took center stage in the
late 50’s. Right from the beginning, it was recognized that certain nonde-
generacy assumptions were needed in establishing results on optimal control.
However, it was not until Kalman’s work ([9], [10]) that the property of con-
trollability was isolated as of interest in and of itself, as it characterizes the
degrees of freedom available when attempting to control a system.

The study of controllability for linear systems, first carried out in de-
tail by Kalman and his coworkers in [10], has spanned a great number of
research directions, and Kalman’s citation for the IEEE Medal of Honor in
1974 attests to this influence. Associated topics such as testing degrees of
controllability, and their numerical analysis aspects, are still the subject of
much research (see e.g. [12] and references there). This paper deals with the

∗To appear in Mathematical System Theory: The Influence of R. E. Kalman
†Research supported in part by US Air Force Grant AFOSR-88-0235

1



questions associated with testing controllability of nonlinear systems, both
those operating in continuous time, that is, systems of the type

ẋ(t) = f(x(t), u(t)) (CT)

described by differential equations, and discrete time systems described by
difference equations

x+(t) = f(x(t), u(t)) (DT)

where the superscript “+” is used to indicate time shift (x+(t) = x(t + 1)).
In principle, one wishes to study controllability from the origin. This is the
property that for each state x ∈ IRn there be some control driving 0 to x in
finite time. (The terminology “reachability” is also used for this concept.)
As shown below, in order to obtain elegant general results one has to weaken
the notion of controllability.

To simplify matters, it will be assumed that the states x(t) belong to an
Euclidean space IRn, controls u(t) take values in Euclidean space IRm, and
the dynamics function f is (real-)analytic on (x, u). Many generalizations,
such as allowing x to evolve on a differentiable manifold, or letting f have less
smoothness, are of great interest; however, in order to keep the discussion as
elementary as possible the above assumptions are made here. (Analyticity
allows stating certain results in necessary and sufficient, rather than merely
sufficient, manner.) The controls u(·) are allowed to be arbitrary measurable
essentially bounded functions. The origin is assumed to be an equilibrium
state, that is

f(0, 0) = 0 .

For controllability questions from non-equilibria related results hold, except
for some minor changes in definitions. An important and last restriction
is that in discrete time the system (DT) will be assumed to be invertible,
meaning that the map

f(·, u)

is a diffeomorphism for each fixed u; in other words, this map is bijective and
has a nonsingular differential at each point. Imposing invertibility simplifies
matters considerably, and is a natural condition for equations that arise from
the sampling of continuous time systems, which is one of the main ways in
which discrete time systems appear in practice.
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When the system is linear, that is,

f(x, u) = Ax+Bu

for suitable matrices A (of size n× n) and B (of size n×m), controllability
from the origin is equivalent to the property that the rank of the n × nm
Kalman block matrix (

B,AB,A2B, . . . , An−1B
)

(1)

must equal the dimension n of the state space. This is a useful and simple
test, and much effort has been spent on trying to generalize it to nonlinear
systems in various forms.

The systematic study of controllability questions for continuous time non-
linear systems was begun in the early 70’s. At that time, the papers [14],
[19], and [13], building on previous work ([2], [5]) on partial differential equa-
tions, gave a nonlinear analogue of the above Kalman controllability rank
condition. This analogue provides only a necessary test, not sufficient. It
becomes necessary and sufficient if one is interested instead in the accessibil-
ity property, a weaker form of controllability which will be discussed below
and which corresponds to being able to reach from the origin a set of full
dimension (not necessarily the entire space). Analogous results hold also in
discrete time. However, this work did not settle the question of characteriz-
ing controllability, a question which remains open and which is the subject
of a major current research effort, at least in so far as characterizations of
local analogues are concerned. (One does know that local controllability can
be checked in principle in terms of linear relations between the Lie brackets
of the vector fields defining the system ([20]), and isolating the explicit form
of these relations has been a major focus of research. It is impossible to even
attempt here to give a reasonably complete list of references to this very
active area of research. The reference [21] can be used as a source of further
bibliography.)

This brief overview article will discuss accessibility for discrete and contin-
uous time, as well as some results which exhibit examples where accessibility
and controllability coincide. Some ultimate limitations on the possibility of
effectively checking controllability will be also mentioned. For more details
on accessibility at an expository level, see for instance [6], [20], or [7] in
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continuous time, and [8] in discrete time. These references should also be
consulted for justifications of all statements given here without proof. The
level of the presentation will be kept as elementary as possible, in order to
explain the main ideas in very simple terms.

2 Accessibility

Let Σ be either (CT) or (DT). The reachable set R is by definition the set
of states reachable from the origin, that is, the set of states of the form

{φ(t, 0, 0, ω) | t ≥ 0, ω admissible control }

where φ(t, s, x, ω) denotes the value x(t) at time t of the solution of (CT)
or (DT) respectively, with initial condition x at time s and control function
ω = ω(·). The function ω is an arbitrary sequence in the discrete time case,
and is required to be measurable essentially bounded in the continuous case.
If the solution of (CT) is undefined for a certain ω, then φ is also undefined.

The system Σ will be said to be accessible (from the origin) if the reachable
set R has a nonempty interior in IRn.

Remark 1. Accessibility can be proved to be equivalent to the following
property: the set of states reachable from the origin using positive and neg-
ative time motions is a neighborhood of the origin. This equivalence, valid
under the blanket assumption of analyticity that was made earlier, is often
referred to as the “positive form of Chow’s lemma” and is due to Krener (see
[13]) for continuous time; the difference equation version is provided in [8].
It should be pointed out that for accessibility from initial states which are
not equilibria, the continuous version of the equivalence is still valid, but in
discrete time this equivalence does not follow any more; see for instance the
example in [8].

Remark 2. One may also define accessibility from arbitrary initial states
(rather than just from the origin). When the initial state is not an equilibrium
state, however, one must distinguish between accessibility, as defined here,
and “strong accessibility” which corresponds to the requirement that there
be a fixed time T > 0 such that the reachable set in time T , that is

RT (x0) := {φ(T, 0, x0, ω) |ω admissible control }
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has a nonempty interior. In the case treated here, starting at an equilibrium
state, both notions can be shown to coincide (see next remark for discrete
time, where it is trivial to establish).

Remark 3. In discrete-time, accessibility corresponds to the requirement
that the union of the images of the composed maps

fk(0, ·) : (IRm)k → IRn k ≥ 0

cover an open subset, where we are denoting

fk(x, (u1, . . . , uk)) := f(f(. . . f(f(x, u1), u2), . . . , uk−1), uk)

for every state x and sequence of controls u1, . . . uk. By Sard’s Theorem,
for each fixed k it is either the case that the map fk(0, ·) has at least one
point where its Jacobian has rank n, or its image has measure zero. Since a
countable union of negligible sets again has measure zero, accessibility implies
that there must exist some k and some sequence of controls u1, . . . uk so that
the Jacobian of fk(0, ·) evaluated at that input sequence,

fk(0, ·)∗[u1, . . . uk] ,

has rank n. Consequently, accessibility is equivalent to accessibility in time
exactly k (cf. above Remark). Moreover, accessibility is equivalent to some
such rank being full (the converse follows from the Implicit Mapping The-
orem). By the chain rule for derivatives, this Jacobian condition can be
restated as follows: Consider the linearization of the system (DT) along the
trajectory

x1 = 0, x2 = f(x1, u1), x3 = f(x2, u2), . . .

that is, the linear time-varying system

x(t+ 1) = Atx(t) +Btu(t)

with

At =
∂

∂x
f [xt, ut] Bt =

∂

∂u
f [xt, ut] .

Then accessibility is equivalent to the existence of some sequence of controls
u1, . . . uk for which this linearization is controllable as a linear system. By
analyticity, if this holds for some sequence of controls of length k then it
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holds for almost every such sequence. In continuous time, the same result
holds too (see for instance [17] for a proof).

Under certain circumstances, accessibility is equivalent to controllability.
Certainly this is the case for linear systems, as is easy to see. As another
example, if the system (CT) is “symmetric” meaning that

f(x,−u) = −f(x, u)

for each x and u, then accessibility from zero is equivalent to the reachable
set from the origin being a neighborhood of zero, and accessibility from every
point is equivalent to the reachable set being the entire space. A weaker type
of symmetry is given in [3], a condition which includes linear systems and
hence elegantly generalizes the equivalence of accessibility and controllability
for those. Another set of sufficient conditions for the equivalence of control-
lability and accessibility revolve around the concept of Poisson stability; see
for instance [15], [1].

3 Rank Condition – Continuous Time

For each control value u, fu denotes the function

fu : IRn → IRn : x 7→ f(x, u)

(the “vector field” determined by the control u). Given any two such vector
functions f and g, one can associate the new function

[f, g]

defined by the formula

[f, g] (x) := g∗[x]f(x)− f∗[x]g(x)

where in general h∗[x] is used to indicate the Jacobian of the vector function
h evaluated at the point x. This is called the Lie bracket of f and g, and it
represents the infinitesimal direction that results from following f and g in
positive time, followed by f and g in negative time.

The accessibility Lie algebra L associated to the system (CT) is the linear
span of the set of all vector functions that can be obtained starting with the
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fu’s and taking any number of Lie brackets of them and the resulting func-
tions. For instance, if u1, u2, u3, u4 are any four control values, the function

[[fu1 , [fu2 , fu3 ]], [fu3 , fu4 ]]

is in L.

For a linear system
ẋ = Ax+Bu

the functions fu are all affine, and the Lie brackets are again of the same
form. It is easy to show that all elements of L are generated by the elements
of the form

AkBv

where v is some vector in IRm, or Ax+Bu. Moreover, every possible vector
of this form does appear as some product.

The system (CT) satisfies the accessibility rank condition at the origin if
the set of vectors

L(0) := {g(0), g ∈ L}
is a vector space of dimension n. In view of the preceding discussion, for
linear systems this condition is the same as the Kalman controllability rank
condition. The main result is then (see for instance [7]):

Theorem. The system (CT) is accessible if and only if the accessibility
rank condition holds.

4 Rank Condition – Discrete Time

There is an analogue of the accessibility rank condition for discrete time
systems, and this is studied next. This work was started to a great extent
by the papers [4], [16]; see [8] for details.

The notation fu is as above, and in particular f0 is the map f(·, 0). Recall
that in the discrete case one assumes invertibility, so that the inverse maps
f−1
u are well-defined and again analytic. For each i = 1, . . . ,m and each
u ∈ IRm let

Xu,i(x) :=
∂

∂ε

∣∣∣∣∣
ε=0

fu ◦ f−1
u+εei

(x),
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where ei denotes the ith coordinate vector, and more generally for all u, i
and each integer k ≥ 0 let

(Adk0Xu,i)(x) :=
∂

∂ε

∣∣∣∣∣
ε=0

fk0 ◦ fu ◦ f−1
u+εei

◦ f−k0 (x) .

The accessibility Lie algebra is now defined in terms of iterated Lie brackets
of these vector functions, and the accessibility rank condition is defined in
terms of this, analogously to the continuous time case. The main fact is,
then, as follows.

Theorem. The system (DT) is accessible if and only if the accessibility
rank condition holds.

Again, for linear (discrete time) systems, the condition reduces to the
Kalman controllability test. The vectors Adk0Xu,i are in fact all of the type
AkBu, for vectors u ∈ IRm.

Remark. If the systems would only be assumed to be smooth as opposed
to analytic, the accessibility condition is only sufficient but not necessary,
both in discrete and continuous time. Consider for instance the system on
IR2, with IR2 also as control space, and equations

ẋ = u1

(
1
0

)
+ u2

(
0

α(x1)

)
where α is the function with

α(x) = e−1/x2

for x > 0 and α(x) ≡ 0 for x ≤ 0. This system is easily shown to be accessible
–in fact, it is completely controllable (any state can be steered to any other
state),– but the accessibility rank condition does not hold.

5 Controllability to the Origin

Often one is interested not in controllability from the origin but in control-
lability to zero. The corresponding accessibility property is that

C := {x |φ(t, 0, x, ω) = 0 for some t ≥ 0 and some admissible control ω}
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contain an open set. This might be called “accessibility to the origin”. It cor-
responds to plain accessibility (from the origin) for the time-reversed system,
that is,

ẋ = −f(x, u)

in continuous time, or
x+ = f−1

u (x)

in discrete time. Since the accessibility Lie algebra L is a vector space, the
same Lie algebra results for the time-reversed of a continuous time system,
proving the equivalence of both notions in that case. The same result turns
out to be true in the discrete case, though the proof is much less trivial. This
is summarized then by:

Proposition. A system is accessible from 0 if and only if it is accessible
to 0.

Remark. The proof in the discrete case relies roughly on the following
argument. Introduce a superscript − to the notation for the vectors Adk0Xu,i

introduced above, and use L− instead of L for the Lie algebra generated by
these. Consider also the vectors

(Adk0X
+
u,i)(x) :=

∂

∂ε

∣∣∣∣∣
ε=0

fk0 ◦ f−1
u ◦ fu+εei ◦ f−k0 (x) .

now with k ≤ 0, and let L+ be the algebra generated by these vectors. This
algebra is the same as the algebra L obtained for the time-reversed system.
One first proves that it is also possible to generate the same Lie algebra
using negative k in the definition of the vectors Adk0X

−
u,i (that is, the middle

term in the definition is fu ◦ f−1
u+εei

rather than f−1
u ◦ fu+εei). Thus the only

obstruction is due to the use of negative instead of positive k. But since the
operator

Ad0 : X 7→ Ad0(X), Ad0(X)(x) := (f−1
0 )∗[f0(x)](X(f0(x))

on the Lie algebra of all vector fields preserves the tangent space at 0, because
the origin is an equilibrium state, this induces an isomorphism between the
two linear subspaces L+(0) and L−(0), giving the desired equality of ranks.
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6 An Example

The following is a well-known (“folk”) example from differential geometry
illustrating the use of the accessibility rank condition in continuous time;
because the resulting system is “symmetric” in the sense that f(x,−u) =
−f(x, u), and accessibility holds from every state, it can be shown that this
example is completely controllable, but here we only concentrate on the local
aspect about zero.

Assume that we model an automobile in the following way, as an object
in the plane. The position of the center of the front axle has coordinates
(x, y), its orientation is specified by the angle φ, and θ is the angle its wheels
make relative to the orientation of the car.

We assume that the angle θ can take values on an interval (−θ0, θ0),
corresponding to the maximum allowed displacement of the steering wheel,
and that φ can take arbitrary values. As controls we take the steering wheel
moves (u1) and the engine speed (u2). Using elementary trigonometry, the
following model results:

ż = u1


0
0
0
1

+ u2


cos(φ+ θ)
sin(φ+ θ)

sin θ
0

 , (2)

where z = (x, y, φ, θ)′ can be thought of as belonging to the state space

IR× IR× IR× (−θ0, θ0) ⊆ IR4.

(In fact, it is more natural to identify φ and φ+2π and take as state space the
manifold IR× IR× S1 × (−θ0, θ0); this leads to control systems on manifolds
different from Euclidean spaces.) We take the controls as having values
on IR2; a more realistic model of course incorporates constraints on their
magnitude.

A control with u2 ≡ 0 corresponds to a pure steering move, while one
with u1 ≡ 0 models a pure driving move in which the steering wheel is fixed
in one position. We let g1 = steer be the vector field (0, 0, 0, 1)′ and g2 =
drive the vector field (cos(φ + θ), sin(φ + θ), sin θ, 0)′. It is intuitively clear
that the system is completely controllable, but one can check accessibility
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using the rank condition. Indeed, computing

wriggle := [steer, drive]

and
slide := [wriggle, drive]

it is easy to see that the determinant of the matrix consisting of the columns
(steer, drive, wriggle, slide) is nonzero everywhere, and in particular at the
origin.

For φ = θ = 0 and any (x, y), wriggle is the vector (0, 1, 1, 0), a mix of
sliding in the y direction and a rotation, and slide is the vector (0, 1, 0, 0) cor-
responding to sliding in the y direction. This means that one can in principle
implement infinitesimally both of the above motions. The “wriggling” mo-
tion corresponding to wriggle is, from the definition of Lie bracket, basically
that corresponding to many fast iterations of the actions:

steer - drive - reverse steer - reverse drive, repeat

which one often performs in order to get out of a tight parking space. Inter-
estingly enough, one could also approximate the pure sliding motion: wriggle,
drive, reverse wriggle, reverse drive, repeat, corresponding to the last vector
field.

7 Remarks on Computational Complexity

It is worth looking also at Kalman’s condition for linear systems from the
viewpoint of a polynomial time test, in the sense of Theoretical Computer
Science. One can prove that, in general, for a large class of nonlinear (“poly-
nomial”) continuous-time systems, accessibility is decidable. For a restricted
class which has often appeared in applications, that of bilinear subsystems,
accessibility can even be checked in polynomial time, just as with Kalman’s
test for controllability of linear systems, but the problem of true control-
lability is NP-hard. This last result provides a rigorous statement of the
fact that accessibility is easier to characterize than controllability, and it can
be interpreted as an ultimate limitation on the possibility of ever finding a
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characterizing condition for controllability (as opposed to accessibility) for
nonlinear systems that will be as easy to check as Kalman’s.

See [18] and references there for precise details on the setup as well as for
proofs, as well as the more recent work [11] which extends the above.
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