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a b s t r a c t

In this paper, we analyse the stability of large-scale nonlinear stochastic systems, represented as an
interconnection of lower-order stochastic subsystems. Stochastic stability in probability and noise-to-
state stability are addressed, and sufficient conditions for the latter are provided. The method proposed
proves network stability by using appropriate stochastic passivity properties of its subsystems, and
the structure of its interactions. Stability properties are established by the diagonal stability of a
dissipativity matrix, which incorporates information about the passivity properties of the systems and
their interconnection. Next, we derive equilibrium-independent conditions for the verification of the
relevant passivity properties of the subsystems. Finally, we illustrate the proposed approach on a class
of biological reaction networks.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of nonlinear systems becomes intractable as the
dimension of the state space increases. It is imperative to develop
approaches that decompose this analysis into smaller subprob-
lems. In this paper, we represent large-scale nonlinear stochastic
systems as an interconnection of lower-order stochastic dynam-
ical subsystems. We then certify stability based on appropriate
stochastic passivity properties of the subsystems and the structure
of their interactions.

Previous studies have shown the effectiveness of this approach
for deterministic models of biological networks, Arcak and Sontag
(2006, 2008). In Arcak and Sontag (2006), global asymptotic
stability of a cyclic interconnection structure is established from
the diagonal stability of a dissipativity matrix that incorporates
information about the passivity properties of the subsystems
and the interconnection structure of the network. The results
are extended in Arcak and Sontag (2008) to a more general
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interconnection structure. Both Arcak and Sontag (2006, 2008)
exploit output strict passivity (OSP) properties and corresponding
storage functions of the subsystems, and construct a composite
Lyapunov function for the interconnection using these storage
functions.

In biochemical reactions, deterministic models may be inade-
quate, particularlywhen the copy numbers of the species are small.
Stochasticity appears as external noise (due to cell-to-cell variabil-
ity of external signals) and as intrinsic noise (since chemical re-
actions depend on random motion). While external noise can be
incorporated in noise-driven deterministic models, i.e. stochastic
differential equations (SDEs), internal noise is accounted for by a
Chemical Master Equation models (CME). Under appropriate as-
sumptions, Gillespie (2000), it is common to perform a diffusion
approximation of the CME, leading to the Chemical Langevin Equa-
tion (CLE), which is a particular type of SDE. Thus, both internal and
external noise can be treated jointly with SDEs.

We study large-scale nonlinear stochastic models described by
SDEs.We extend the passivity approach in Arcak and Sontag (2006,
2008) to the stochastic framework, by using the expansion of the
definitions of passivity introduced in Florchinger (1999).We prove
stability in probability for an interconnection of stochastic OSP
(sOSP) subsystems, if an appropriate diagonal stability condition
holds for a dissipativity matrix similar to the one in Arcak and
Sontag (2006). Early references, such as Michel (1975), Michel and
Rasmussen (1976), constructed composite Lyapunov functions for
stochastic stability. However, as is common in the classical large-
scale systems literature, these references restrict the magnitude
of the coupling terms without regard to their sign structure. The
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passivity-based approach in the present paper takes advantage of
thenegative feedback loops in thenetwork to obtain less restrictive
stability criteria.

We next investigate the notion of Noise-to-State stability (NSS),
defined inKrstic andDeng (1998),which is a stochastic counterpart
of deterministic input-to-state stability, Sontag (1989). NSS implies
that if there exists a bound in the noise variance, the state of a NSS
system is also bounded in probability. This notion is less restrictive
than stochastic stability in the sense that it accommodates systems
with nonvanishing noise at the equilibrium, and unknown noise
intensity. First, we provide a new sufficient condition for NSS that
is easy to verify. We then introduce a new input–output definition
that combinesNSS andOSPproperties, referred to asNSS⊕OSP.We
show that the interconnected system is NSS if the diagonal stability
of a similar dissipativity matrix is ascertained.

Since passivity properties are defined in reference to the equi-
librium, which depends on the full network, the verification of the
sOSP and NSS⊕OSP properties of the subsystems is a difficulty
encountered in the methodology presented. In Arcak and Sontag
(2006), equilibrium-independent results for the verification of OSP
properties are provided. In this paper, we provide an extension for
stochastic systems. We derive equilibrium-independent verifica-
tion of stochastic passivity properties, which are not considered in
the classical literature.

In Section 2, we provide the necessary notation and definitions,
and derive sufficient conditions for NSS. The main results for
stochastic stability of interconnected systems are presented in
Section 3, where stability in probability and noise-to-state stability
are achieved. In Section 4, we focus on the input/output passivity
properties of the systems, by deriving equilibrium-independent
conditions that guarantee sOSP and NSS⊕OSP. Finally, in Section 5,
we illustrate the application of the results obtained to classes of
biological reaction networks.

2. Preliminaries

Consider the following nonlinear stochastic system

dx = f (x)dt + l(x)Σdw (1)

where x(t) ∈ Rn is the state vector, w(t) is an r-dimensional inde-
pendent standardWiener process, Σ = {σij} is an r × r non-nega-
tive-definitematrix, andσij represents the intensitywithwhich the
jth source of uncertainty influences the ith state. Assume that the
vector field and matrix function f : Rn

→ Rn and l : Rn
→ Rn×r

are locally Lipschitz continuous.
For the notions of stochastic stability and passivity, defined

in Sections 2.1 and 2.2, we assume Σ = I because l(x) can
be redefined to incorporate the constant Σ . Moreover, we also
assume f (0) = 0 and l(0) = 0, so that x(t) ≡ 0 is a solution for the
system. However, for the notion of noise-to-state stability, defined
in Section 2.3, where Σ is treated as an unknown, the assumption
Σ = I is dropped, and also l(x) is not necessarily required to be
vanishing at the origin (l(0) ≠ 0).
Notation and definitions. For a matrix A ∈ Rp×q, the Frobenius
Norm, | · |F : Rp×q

→ R≥0, is defined as |A|F =

Tr{ATA} =p

i=1
q

j=1 |aij|2. A scalar continuous function α : R≥0 → R≥0

is said to be class K if it is strictly increasing and α(0) = 0. It is
class K∞ if, in addition, lims→∞ α(s) = ∞. A scalar continuous
function β : R≥0 × R≥0 → R≥0 is class KL if, for each fixed t ,
function β(·, t) is class K and, for each fixed s, function β(s, ·) is
decreasing and limt→∞ β(s, t) = 0. Given functions a : R → R
and b : R → R, the expression a(s) = O(b(s)) as s → ∞ means
that ∃M > 0 ∈ R and ∃x0 ∈ R such that |a(x)| ≤ M|b(x)| ∀x > x0.
Analogously, the expression a(s) = o(b(s)) as s → ∞ means that
∀M > 0 ∈ R, ∃x0 ∈ R such that |a(x)| ≤ M|b(x)| ∀x > x0, or
equivalently, lims→∞ |a(s)/b(s)| = 0. Given a continuous function
f : R → R≥0, we denote by:

f (x) = sup
|s|≤|x|

f (s) and f (x) = inf
|s|≥|x|

f (s). (2)

Clearly, f and f are nondecreasing functions. Note that, f 2(x) : x →

f (x)f (x), and so f 2(x) : x → f (x)f (x).

2.1. Stochastic stability

An extensive coverage of stochastic stability and stochastic
Lyapunov theorems exists in the literature, Hasminskii (1980);
Kushner (1967). In what follows, we refer to Deng, Krstic, and
Williams (2001) where a notation based on class K functions is
used, instead of the classical ϵ − δ.

Definition 2.1. The equilibrium x = 0 of system (1) is:

(i) Globally Stable in Probability if ∀ϵ > 0, ∃γ ∈ K s.t.

P{|x(t)| ≤ γ (|x0|)} ≥ 1 − ϵ, ∀t ≥ 0, ∀x0 ∈ Rn. (3)

(ii) Globally Asymptotically Stable in Probability if it is globally
stable in probability and

P

lim
t→∞

|x(t)| = 0


= 1, ∀x0 ∈ Rn. (4)

Proposition 2.2. For system (1), with Σ = I , suppose there exists a
C2 function V : Rn

→ R≥0, class K∞ functions α1, α2, and a contin-
uous nonnegative function S : Rn

→ R≥0, such that for all x ∈ Rn,

α1(|x|) ≤ V (x) ≤ α2(|x|) (5)

LV (x) =
∂V
∂x

f (x) +
1
2
Tr

l(x)T

∂2V
∂x2

l(x)


≤ −S(x). (6)

Then, the equilibrium x = 0 is globally stable in probability. If S is a
positive definite function, the equilibrium x = 0 is globally asymptot-
ically stable in probability.

2.2. Stochastic passivity and output strict passivity

Consider now the controlled stochastic nonlinear system
dx = (f (x) + g(x)u)dt + l(x)Σdw
y = h(x) (7)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, and
y(t) ∈ Rm is the output.2

Definition 2.3. The system (7), withΣ = I , is said to be stochastic
passive, Florchinger (1999), if there exists a C2 positive definite
function V : Rn

→ R≥0, such that ∀x ∈ Rn, and ∀u ∈ Rm,

LV (x) =
∂V
∂x

(f (x) + g(x)u) +
1
2
Tr

l(x)T

∂2V
∂x2

l(x)


≤ h(x)Tu − S(x) (8)

2 The control input u may be seen as a function of t that satisfies appropriate
regularity poperties so as to obtain existence and uniqueness of solutions. However,
we do not need to specify these regularity properties in this paper, since the only
place where inputs are used is in defining passivity and other stability properties.
These properties are defined in terms of algebraic inequalities involving Lyapunov-
like functions and only pointwise values of x and u, so that regularity of u(t) as
a function of t is not relevant. On the other hand, when interconnecting several
systems, u(t) becomes a function of the subsystems’ state variables, and the closed-
loop system is assumed to satisfy the conditions assumed for (1).
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where S : Rn
→ R≥0 is a positive semidefinite function. It is said

to be stochastic strictly passive, Lin and Lin (2009), if the function
S can be picked positive definite, and stochastic output strictly
passive (sOSP) if S(x) =

1
γ
h(x)Th(x), for some constant γ > 0,

which we refer to as a ‘‘gain’’.

When l(x) ≡ 0, Definition 2.3 recovers the deterministic notions
of passivity, strict passivity, and output strict passivity (OSP). From
Dynkin’s formula, Dynkin (1965), we conclude that the notion of
sOSP is similar, in terms of expectation, to the notion of OSP, since

E
 t

0
y(s)Tu(s)ds ≥ E

 t

0
LV(x(s))ds

= E(V (x(t))) − V (x(0)) ≥ −V (x(0)). (9)

Note that with u ≡ 0, Eq. (8) implies asymptotic stability in
probability of the sOSP system. Further results have been provided
in the stochastic framework relating passivity with stability and
feedback stabilization, see Florchinger (1999); Lin and Lin (2009).

2.3. Noise-to-state stability

In this section, we discuss systems that may have nonvanishing
noise (l(0) ≠ 0) andunknownnoise intensityΣ .Weuse the notion
of noise-to-state stability (NSS), which guarantees that for any
noise covariance there exists a probability bound on the system’s
state, Krstic and Deng (1998). To accommodate unknown noise
intensity, we drop the assumption Σ = I used in the previous
sections.

Definition 2.4 (Adapted3 fromDeng et al. (2001)). For the nonlinear
stochastic system (1), suppose there exists aC2 function V : Rn

→

R≥0, and class K∞ functions α1, α2, α3 and ρ such that

α1(|x|) ≤ V (x) ≤ α2(|x|) (10)

and, for all nonnegative definite matrices Σ ∈ Rr×r ,

LV (x, Σ) ,
∂V
∂x

f (x) +
1
2
Tr

ΣT l(x)T

∂2V
∂x2

l(x)Σ


≤ −α3(|x|) + ρ(|ΣΣT
|F ). (11)

Then, the system is said to be noise-to-state stable (NSS) and V (x)
is called a noise-to-state Lyapunov function.

In the special case that α3(|x|) ≥ cV (x) for some constant c > 0,
the following inequality holds from Deng et al. (2001, Thm 4.1):

E[V (x(t))] ≤ e−ctV (x0) + c−1ρ(|ΣΣT
|F ). (12)

Therefore, from theMarkov inequality,4 and from inequality (10) it
is easy to conclude that, for any ϵ > 0, there exists a KL function
β , and a K∞ function δ, such that:

P{|x| < β(|x0|, t) + δ(|ΣΣT
|)} ≥ 1 − ϵ ∀t ≥ 0. (13)

This shows that the state of the system is bounded in probability.
In the next proposition we derive an easy to verify sufficient
condition for NSS.

Proposition 2.5. The nonlinear stochastic system (1) is noise-to-
state stable if there exists aC2 function V : Rn

→ R≥0 satisfying (10),
a continuous strictly increasing function η : R≥0 → R≥0, and a class

3 In Deng et al. (2001), inequality (11) is equivalently stated as: |x| ≥ ρ(|ΣΣT
|F )

⇒ LV (x, Σ) ≤ −α(x), where ρ, α ∈ K∞ .
4 The Markov inequality states that for any random variable X and any constant

a > 0, P(|X | ≥ a) ≤ E|X |/a.
K∞ function α, such that:

∂V (x)
∂x

f (x) ≤ −α(|x|),
l(x)T ∂2V (x)

∂x2
l(x)


F

≤ η(|x|) (14)

and

η(s) = o(α(s)) as s → ∞. (15)

Proof. From the assumptions, LV (x, Σ) satisfies

LV (x, Σ) =
∂V (x)

∂x
f (x) +

1
2
Tr

ΣT l(x)T

∂2V (x)
∂x2

l(x)Σ


=
∂V (x)

∂x
f (x) +

1
2
Tr

ΣΣT l(x)T

∂2V (x)
∂x2

l(x)


≤
∂V (x)

∂x
f (x) +

1
2
|ΣΣT

|F

l(x)T ∂2V (x)
∂x2

l(x)

F

≤ −α(|x|) + η(|x|)|z|

where z =
1
2 |ΣΣT

|F , and the first inequality follows from the
matrix Cauchy–Schwarz inequality,Magnus andNeudecker (1999)
(i.e., for any two real matrices A, B of the same order, (Tr{ATB})2 ≤

Tr{ATA}Tr{BTB}).
If lims→∞ η(s) = c < ∞, the proof is straightforward, since

LV ≤ −α(|x|) + c|z|. When lims→∞ η(s) = ∞, define η̃(·) =

η(·) − η(0). Clearly, η̃ is a class K∞ function. Therefore, LV (x, Σ)
is upper bounded by

LV (x, Σ) ≤ −α(|x|) + η(0)|z| + η̃(|x|)|z|
≤ −α(|x|) + (η(0) + θ−1(|z|))|z| + η̃(|x|)θ(η̃(|x|))

where θ is a class K∞ function to be selected.
Now, let q0(s) = infr≥s

α(r)
η̃(r) for s > 0. Since α and η̃ are positive

and continuous, q0(s) is well-defined and continuous for s > 0.
Moreover, by construction, q0(s) is non-decreasing and positive.
From the definition of η̃, lims→∞

α(s)
η̃(s) = lims→∞

α(s)
η(s)−η(0) ≥

lims→∞
α(s)
η(s) . Given that η(s) = o(α(s)) as s → ∞, lims→∞

α(s)
η̃(s) =

∞, which means that q0(s) → ∞ as s → ∞.
Since q0(s) is non-decreasing and goes to infinity with s, there

exists a class K∞ function q(s) s.t. q(s) ≤ q0(s) ∀s > 0. Since
q0(s) = infr≥s

α(r)
η̃(r) ≤

α(s)
η̃(s) ∀s > 0, then q(s)η̃(s) ≤ α(s)∀s ∈ [0, ∞).

Finally, choose θ ∈ K∞ to be θ(·) =
1
2q(η̃

−1(·)), so that θ(η̃(·))
= q(·)/2. The inequality becomes:

LV (x, Σ) ≤ −
1
2
α(|x|) + |z|(θ−1(|z|) + η(0))

= −
1
2
α(|x|) + ρ(|ΣΣT

|F ), (16)

with K∞ function ρ(s) =
1
2 s(θ

−1( 1
2 s) + η(0)). The system is thus

noise-to-state stable as in (11). �

The proposition above provides a new tool that simplifies the
verification of NSS. Note that in the definition of NSS, the second
term in condition (11) has Σ and x coupled, while Proposition 2.5
is only dependent on x.

3. Stochastic and noise-to-state stability of interconnected
systems

Consider an interconnection of stochastic dynamical ‘‘subsys-
tems’’ Hi, i = 1, . . . ,N , given by

Hi :


dxi = (fi(xi) + gi(xi)ui)dt + li(xi)Σidwi
yi = hi(xi)

(17)
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where, for each subsystem Hi, xi ∈ Rni is the state vector, ui ∈ Rm

the input, yi ∈ Rm the output, and Σi a ri × ri nonnegative definite
matrix. The coupling of the subsystems is described by:

u = (K ⊗ Im)y (18)

where u = [uT
1, . . . , u

T
N ]

T , y = [yT1, . . . , y
T
N ]

T , and K ∈ RN×N . In the
same manner, let x = [xT1, . . . , x

T
N ]

T . Furthermore, assume fi(0) =

0 and hi(0) = 0, so that the resulting interconnected system has
an equilibrium at the origin.

3.1. Stochastic stability of interconnected systems

In the following theorem, we give a matrix condition that
guarantees stochastic stability for an interconnection of sOSP
subsystems.

Theorem 3.1. For the interconnected system described in (17)–(18),
with Σi = Iri i = 1, . . . ,N, assume that each dynamical subsystem
Hi is stochastic output strictly passive, as in Definition 2.3, with gain
γi, and storage function satisfying (5). If there exists a diagonal matrix
D = diag{d1, . . . , dN} > 0 such that:

D(K − Γ ) + (K − Γ )TD ≤ 0 (19)

where Γ = diag(γ −1
1 , . . . , γ −1

N ), then the interconnected system is
globally stable in probability.

Proof. Let V (x) =
N

i=1 diVi(xi), where Vi is as in (8) for each Hi.
Then,

LV (x) =

N
i=1

di
∂Vi

∂xi
(fi(xi) + gi(xi)ui) +

1
2
diΣT

i li(xi)
T ∂2Vi

∂x2i
li(xi)ΣT

i

≤

N
i=1

−
1
γi
diyTi yi + diyTi ui

= yT [(D(K − Γ ) + (K − Γ )TD) ⊗ Im]y.

Thus, from assumption (19), LV (x) ≤ 0∀x ∈ Rn1+···nN , the origin
is globally stable in probability. �

3.2. Noise-to-state stability of interconnected systems

In this section, we deal with an interconnection of stochastic
subsystems with unknown noise intensity. We show that (19)
guarantees NSS for an interconnection of subsystemswhich satisfy
the following property.

Definition 3.2. The stochastic dynamical system (7) is called
NSS⊕OSP if it has a storage function V : Rn

→ R≥0 satisfying (10)
and:

∂V
∂x

f (x) ≤ −α(|x|) −
1
γ
h(x)Th(x),

∂V
∂x

g(x) = h(x)T and
l(x)T ∂2V

∂x2
l(x)


F

≤ η(|x|)
(20)

where γ > 0 is a constant, referred to as ‘‘gain’’, α ∈ K∞, and
η : R≥0 → R≥0 is a strictly increasing continuous function, satis-
fying η(s) = o(α(s)) as s → ∞.

To seewhywe refer to this property asNSS⊕OSP, note that the first
and third conditions in (20) guarantee NSS for the uncontrolled
system (cf., Proposition 2.5). Likewise, the first and second
conditions imply OSP for the deterministic part of the system.
Theorem 3.3. For the interconnected system described in (17)–(18),
assume that each dynamical subsystem Hi is NSS ⊕ OSP, as
in Definition 3.2, with gain γi. If there exists a diagonal matrix
D = diag{d1, . . . , dN} > 0 satisfying inequality (19), where Γ =

diag(γ −1
1 , . . . , γ −1

N ), then the interconnected system is noise-to-state
stable.
Proof. Let V (x) =


diVi(xi), then

LV (x, Σ) =

N
i=1

diLVi

≤

N
i=1

di


−αi(|xi|) −

1
γi
hi(xi)Thi(xi)



+

N
i=1

di


hi(xi)Tui +

1
2
ηi(|xi|)|ΣiΣ

T
i |F



=

N
i=1

di


−αi(|xi|) +

1
2
ηi(|xi|)|ΣiΣ

T
i |F


+

1
2
yT [(D(K − Γ ) + (K − Γ )TD) ⊗ Im]y

≤

N
i=1

di(−αi(|xi|) + ηi(|xi|)|zi|) (21)

where zi =
1
2 |ΣiΣi|F , and the last inequality follows from

assumptions on D, K , and Γ .
Let, J, I ⊂ {1, . . . ,N} be such that J = {j ∈ {1, . . . ,N}| lims→∞

ηj(s) = cj < ∞} and I = Jc = {i ∈ {1, . . . ,N}| lims→∞ ηi(s) =

∞}. Since ηi(s) = o(αi(s)) as s → ∞, there exist θi ∈ K∞, i ∈ I ,
such that the next inequality follows as in the derivations leading
to (16):

LV ≤ −
1
2

N
i=1

diαi(|xi|) +


j∈J

djcj|zj|

+


i∈I

di|zi|(θ−1
i (|zi|) + ηi(0)).

Let

α̃(r) = min
|x|≥r

N
i=1

diαi(|xi|).

Clearly, α̃(|x|) ≤


diαi(|xi|), α̃ is nondecreasing, and α̃(0) = 0.
As |x| → ∞, |xi| → ∞ for at least one i, which implies that
α̃(r) → ∞. Therefore, ∃α ∈ K∞ s.t. α(r) ≤ α̃(r) ∀r ∈ R≥0.

Now, choose

ρi(s) =


ci
2
s, i ∈ J
θ−1
i


1
2
s


+ ηi(0)


1
2
s, i ∈ I

where, since |zi| ≤ |z| and θ−1
i ∈ K∞, we know that ρi(|z|) ≥ ρi

(|zi|). Let ρ(|z|) =
N

i=1 diρi(|z|) ≥
N

i=1 diρi(|zi|), and ρ ∈ K∞.
The inequality becomes, LV ≤ −

1
2α(|x|) + ρ(|ΣΣT

|F ), and thus
the interconnected system is noise-to-state stable as in (11). �

Theorems 3.1 and 3.3 divide the problem of certifying stability
properties of a large scale nonlinear system into two tractable
steps. Step one is to identify dissipativity properties, such as sOSP
or NSS⊕OSP, as an abstraction of the detailed dynamical model of
the subsystems. Step two is to establish the feasibility of the linear
matrix inequality (19), for which various computational methods
exist, Boyd, Ghaoui, Feron, and Balakrishnan (1994); Grant and
Boyd (2011). Tools for the verification of dissipation properties, for
step one, are provided in the next section.
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4. Verifying sOSP and NSS⊕OSP

4.1. Sufficient conditions for one-dimensional systems with nonzero
equilibrium

We now present conditions that guarantee the sOSP and the
NSS⊕OSP properties for a scalar stochastic dynamical system. The
goal is to apply such results to interconnected systems as in the
previous section. As a simplifying assumption, we assume g(x) =

g is a constant, and without loss of generality g = 1 because
the interconnection matrix K can be modified to incorporate a
different value of g .

Consider again Hi, one of the nonlinear stochastic subsystems
defined in (17), with xi, yi, ui ∈ R, gi(xi) ≡ 1, and where the
inputs ui are given by the feedback relation in (18). We drop the
assumption that fi(0) = 0, hi(0) = 0, and assume instead that the
deterministic part of (17) has an unique equilibrium point at x∗.
This means that

0 = fi(x∗

i ) + u∗

i ,

where u∗

i is the ith entry of u∗
= Ky∗. By taking the coordinate

change ˜(.) = (.) − (.)∗, we obtain:
dx̃i = (f̃i(x̃i) + ũi)dt + l̃i(x̃i)Σidwi

ỹi = h̃i(x̃i)
(22)

where h̃i(x̃i) = hi(x̃i + x∗

i ) − hi(x∗

i ), l̃i(x̃i) = li(x̃i + x∗

i ), f̃i(x̃i) =

fi(x̃i + x∗

i ) − fi(x∗

i ), and, hence, f̃i(0) = 0 and h̃i(0) = 0. In what
follows, we drop the subscript i to simplify the notation.

Corollary 4.1. (sOSP) For each stochastic subsystem in (22), with
x, y, u ∈ R, Σ = 1, l(x∗) = 0, and h differentiable, assume that
∀x ≠ x∗:
(A1) (x − x∗)(h(x) − h(x∗)) > 0 and (x − x∗)(f (x) − f (x∗)) < 0;
(A2) There exists a constant γ > 0 such that

f (x) − f (x∗)

h(x) − h(x∗)
+

1
2
h′(x)


∥l(x)∥2

h(x) − h(x∗)

2

≤ −
1
γ

, (23)

where h′(x) :=
∂h
∂x .

Then, the system is stochastic output strictly passive.

Proof. Let

V (x) =

 x−x∗

0
h(s) − h(x∗)ds (24)

which is positive definite, from (A1). Therefore, ∂V
∂x = h(x) − h(x∗)

and ∂2V
∂x2

=
∂h(x)
∂x . Hence, fromassumption (A2), inequality (8) holds,

and the system is sOSP. �

Corollary 4.2 (NSS⊕OSP). Consider a stochastic subsystem as de-
scribed in (22), with x, y, u ∈ R, g(x) = 1, and h ∈ C1. Assume the
following holds:
(B1) (x − x∗)(h(x) − h(x∗)) > 0 and

(x − x∗)(f (x) − f (x∗)) < 0, ∀x ≠ x∗;
(B2) There exists a constant γ̂ > 0 such that

f (x) − f (x∗)

h(x) − h(x∗)
≤ −

1
γ̂

∀x ≠ x∗
; (25)

(B3) l(·), h(·), and f (.) are such that as |x| → ∞, |(h(x) −

h(x∗))(f (x) − f (x∗))| → ∞, and that ∀i, j = 1, . . . , r, as
|x| → ∞

|h′(x)li(x)lj(x)| = o(|(h(x) − h(x∗))(f (x) − f (x∗))|). (26)

Then, the system is NSS ⊕ OSP for any γ > γ̂ .
Proof. Without loss of generality, assume that x∗
= 0. Let V (x) be

given as in (24), so that the equality condition in (20) holds, and
∂V
∂x f +

1
γ̂
hTh = hf +

1
γ̂
h2. Choose some constant γ > γ̂ so that,

from assumption (B2),

hf +
1
γ
h2 < 0 ∀x ≠ 0. (27)

Moreover, from (B2) and (B1), we know that hf +
1
γ
h2

=
γ̂+(γ−γ̂ )

γ

hf +
1
γ
h2

≤
γ−γ̂

γ
hf ≤ 0, i.e.,hf +

1
γ
h2
 ≥

γ − γ̂

γ
|hf |. (28)

Then, |hf +
1
γ
h2

| ≥
γ−γ̂

γ
|hf |, and from assumption (B3), ∀i, j =

1, . . . r ,

|h′(x)li(x)lj(x)| = o(|h(x)f (x) +
1
γ
h2(x)|) as |x| → ∞. (29)

Using relation (29) we will show that there exist functions α and
η as defined in (20) such that η(s) = o(α(s)) as s → ∞. The
following lemmas construct such functions.

Lemma 4.3. Consider a continuous function m : R → R such that
m(x) < 0∀x ≠ 0, and m(x) → −∞ as |x| → ∞. Then, there exists
a K∞ function α such that m(x) ≤ −α(|x|) and |m(x)| = O(α(|x|))
as |x| → ∞.

Lemma 4.4. Consider a continuous function f : R → R≥0. There
exists a strictly increasing function η : R≥0 → R≥0 such that f (x) ≤

η(|x|) and η(|x|) = O(f (x)) as |x| → ∞.

From Lemma 4.4, let η(|x|) ≥
r

i,j=1 |h′(x)li(x)lj(x)| ≥ |h′(x)|r
i,j=1 |li(x)lj(x)|2 = |l(x)T ∂2V

∂x2
l(x)|F , and

η(|x|) = O(
r

i,j=1 |h′(x)li(x)lj(x)|) as |x| → ∞. Likewise, we can
choose α from Lemma 4.3 with m(x) = h(x)f (x) +

1
γ
h(x)2. Note

that function hf +
1
γ
h2 satisfies conditions of Lemma 4.3, from

(27)–(28) and the assumption that |hf | → ∞. Finally, from (29)
and properties of α and η we conclude that, as |x| → ∞,

η(|x|) = O


r

i,j=1

|h′(x)| |li(x)lj(x)|



= o

h(x)f (x) +
1
γ
h2(x)




= o(α(|x|)).

The system is thus NSS⊕OSP, with constant γ > γ̂ , as in Defini-
tion 3.2. �

4.2. Sufficient conditions for one-dimensional systems with unknown
equilibrium

The equilibrium point of an interconnected system becomes
harder to determine as the system dimension increases. The
following results give conditions for sOSP and NSS⊕OSP which are
equilibrium-independent.

Corollary 4.5. (sOSP) For the stochastic subsystem in (22), with
x, y, u ∈ R, Σ = 1, and l(x∗) = 0, assume that h, f , and l are differ-
entiable and satisfy the following, for all x ∈ R:

(A1*) f is strictly decreasing, h is strictly increasing;
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(A2*) There exist constants a, bk > 0, k = 1, . . . , r, s.t.

∂h(x)
∂x

∈ [0, a] and
∂ lk(x)∂x

 ≤


bk

∂h(x)
∂x

, (30)

and there exists a constant γ > 0 such that

∂ f (x)
∂x

≤


−

1
γ

−
1
2
ab


∂h(x)
∂x

, (31)

where b =
r

k=1 bk.
Then, the system is stochastic output strictly passive.

Proof. Given inequality (30), and the fact that lk(x∗) = 0, we
have |lk(x)| ≤

√
bk|h(x) − h(x∗)|. Thus, ∥l(x)∥2

2 =
r

k=1 lk(x)
2

≤

b(h(x) − h(x∗))2. Moreover, from (31), and since ∂h(x)
∂x ∈ [0, a], it is

easy to see from Corollary 4.1 that the system is sOSP. �

Corollary 4.6 (NSS⊕OSP). Consider a stochastic subsystem described
by (22), with x, y, u ∈ R, g(x) = 1, h ∈ C1, and where f is differ-
entiable. Assume the following holds:

(B1*) f is strictly decreasing, h is strictly increasing;
(B2*) There exists a constant γ̂ > 0 s.t.

∂ f (x)
∂x

≤ −
1
γ̂

∂h(x)
∂x

; (32)

(B3*) l(·), h(·), and f (.) are such that |h(x)f (x)| → ∞ as |x| → ∞

and ∀i, j = 1, . . . , r

|h′(x)li(x)lj(x)| = o(|h(x)f (x)|) as |x| → ∞. (33)

Then, the system is NSS ⊕ OSP for any γ > γ̂ .

Proof. It is clear that (B1*)–(B2*) imply (B1)–(B2) in Corollary 4.2.
Since h(x∗) and f (x∗) are constants, and since h and f are strictly
monotone functions,we conclude that |h(x)f (x)| → ∞ as |x| → ∞

implies that |h̃(x̃)f̃ (x̃)| → ∞ as |x̃| → ∞. Furthermore, such con-
ditions imply that |h(x)f (x)| = O(|(h(x) − h(x∗))(f (x) − f (x∗))|).
Hence, assumption (B3*) implies (B3) in Corollary 4.2. The subsys-
tem is thus NSS⊕OSP with constant γ > γ̂ . �

5. Application to biological reaction networks

Chemical reactions are dependent on random thermal motion,
and are inherently stochastic. Stochastic models are described by
a Markov jump process X(t), where Xi(t) represents the number
of species i at time t . This process is usually defined by the Chem-
ical Master Equation (CME), a system of coupled ordinary differ-
ential equations describing the probability transition function of
every reaction over time, Kampen (2007). However, since the CME
involves, in most cases, an infinite-dimensional probability tran-
sition vector, it is computationally expensive to obtain the exact
solution. The Chemical Langevin Equation (CLE), replaces the large
dimensional CME with a small stochastic differential equation
(SDE) that is easier to compute. The solution of such an equation is
now a continuous random process instead of the discrete Markov
jumpprocess X(t), and thus, the solutions are not exactly the same.
Nonetheless, one can derive a CLE,5 from the CME, such that the so-
lution provides an approximation of X(t) when the system is suf-
ficiently large, Gillespie (2000); Khanin and Higham (2007). This
approximation is particularly useful for system sizes that are not
so large that stochastic effects are averaged out.

5 This SDE is to be interpreted in the Itô sense, because, under appropriate
assumptions, Kurtz (1978), a density dependentMarkov Chain can be approximated
by an Itô diffusion process.
Belowwe study a class of SDEs, that can be seen as an intercon-
nection of stochastic subsystems as described by (17)–(18):

dxi = (−cixi + ui)dt +

ci|xi|σi1dwi1

+

N
j=1


kij|yj|σi1(j+1)dwi(j+1)

yi = hi(xi)
u = Ky,

(34)

where xi, yi, ui ∈ R, and dwij are independent. The structure of
these equations is motivated by the Chemical Langevin Equation.
Since the regularity assumptions impose local Lipschitz continu-
ity, there is a technical issue that arises from the square root terms
of the CLE. We may view the results as applying to a slightly per-
turbed system with nonlinearities

√
ϵ + ci|xi|, and similarly for y,

where 0 < ϵ ≪ 1. In this class, for each subsystem i, the vector
li : RN

→ R1×(N+1) depends not only on xi but also on other entries
of x. However, when there exists lui : R → R1×(N+1) so that

li(x) ≤ lui (xi) ∀x ∈ RN ,

where the inequality is elementwise, a result similar to Theo-
rem 3.3 and Corollary 4.2 holds by using lui (xi) instead of li(x). The
proof follows similarly sinceli(x)T ∂2Vi

∂x2i
li(x)


F

=

∂2V
∂x2

2 N+1
j=1

N+1
k=1

|lij(x)lik(x)|2

≤

lui (xi)T ∂2Vi

∂x2i
lui (xi)


F

.

Proposition 5.1. For a stochastic system as described in (34),
assume that each hi is: (i) strictly increasing; (ii) upper and lower
bounded; (iii) has bounded derivative; and (iv) does not converge to
zero at infinity. Then, each subsystem i = 1, . . . ,N is NSS ⊕ OSP.

Proof. It is sufficient to show that conditions in Corollary 4.6 hold.
Since function hi is strictly increasing, and fi = −cixi is linearly
decreasing, (B1*) holds. Moreover, since hi has bounded derivative,
we know that 0 ≤ h′

i(xi) ≤ ai for some ai > 0. Therefore, for
γ̂i ≥

ai
ci
, assumption (B2*) holds because:

∂ fi
∂xi

= −ci ≤ −
1
γ̂i
ai ≤ −

1
γ̂i

∂hi

∂xi
.

Clearly, |hi(xi)fi(xi)| → ∞ as |xi| → ∞. Since every hi is bounded,
then there exists some constant bij ≥ 0 such that the correspond-
ing diffusion coefficients


kijyj ≤ bij. Note that

li(x) = [

ci|xi|,


ki1|h1(x1)|, . . . ,


kiN |hN(xN)|]T

≤ lui (xi) = [

ci|xi|, bi1, . . . , bi,N ]

T .

We thus need to show that lui verifies (33). Since h′

i(xi) ≤ ai, for
j, k = 2, . . . ,N + 1 we obtain h′

i(xi)l
u
ij(xi)l

u
ik(xi) ≤ aibijbik =

o(xi) = O(|hi(xi)fi(xi)|) as |xi| → ∞, and also, h′

i(xi)l
u
i1(xi)l

u
ik(xi) ≤

aibik
√
ci|xi| = o(xi) as |xi| → ∞. Additionally, lim|xi|→∞ h′

i(xi) =

0, because hi is a strictly increasing and bounded. Therefore,
lim|xi|→∞ |h′

i(xi)l
u
11(xi)2/xi| = lim|xi|→∞ h′

i(xi)ci = 0, which im-
plies that h′

i(xi)l
u
11(xi)2 = o(xi) as |xi| → ∞. Since (B3*) also holds,

the system is NSS⊕OSP. �

The conditions imposed on hi in Proposition 5.1 are satisfied
by standard activation models in enzyme kinetics, such as Hill
equations of the form h(s) =

k1sp

1+sp . Likewise, inhibition terms,
such as h(s) =

k1
1+sp , can be encompassed by Proposition 5.1, by
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defining ĥ(s) = −h(s), and incorporating the negative sign in the
interconnection matrix K .

As a special case of (34), consider a cycle of three genes, each
repressing the expression of the next one in the cycle, as in Elowitz
and Leibler (2000):

dx1 =


−c1x1 + k32 +

k31
1 + xp3


dt +

√
c1x1Σ11dw11

+


k32Σ12dw12 +


k31

1 + xp3
Σ13dw13

dx2 =


−c2x2 + k12 +

k11
1 + xp1


dt +

√
c2x2Σ21dw21

+


k12Σ22dw22 +


k11

1 + xp1
Σ23dw23

dx3 =


−c3x3 + k22 +

k21
1 + xp2


dt +

√
c3x3Σ31dw31

+


k22Σ32dw32 +


k21

1 + xp2
Σ33dw33 (35)

where ci and kjl, for i, j, l = 1, 2, 3, are positive constants, and
dwij’s are independent standard Brownian processes. Although,
biologically, the system variables only make physical sense in
the positive quadrant, we view the system as evolving on R3.
Therefore, we let hi(xi) = −ki2 −

ki1
1+xpi

for xi ≥ 0, and define it to

be hi(xi) = −hi(−xi) + 2hi(0) for xi < 0, so that the system is
well-defined for negative values of xi. Then, it can be written as in
(17)–(18), for x ∈ R3:dxi = (−cixi + ui)dt +


ci|xi|Σi1dwi1

+


ki2Σi2dwi2 +

√
uiΣi3dwi3, i = 1, 2, 3,

yi = hi(xi)
whereu1
u2
u3


=

 0 0 −1
−1 0 0
0 −1 0

y1
y2
y3


.

From the proof of Proposition 5.1, each subsystem i is NSS⊕OSP

with γi > ai/ci, where ai ≥ maxs∈R≥0 h
′

i(s) =
ki1
4p (p − 1)

p−1
p (p +

1)
p+1
p . In order to conclude NSS for the interconnected system,

we need to verify the matrix inequality (19). Let Γ = diag{γ −1
1 ,

γ −1
2 , γ −1

3 }, and note that

(K − Γ ) =

−γ −1
1 0 −1

−1 −γ −1
2 0

0 −1 −γ −1
3

 .

For matrices of this cyclic form, it was shown in Arcak and Sontag
(2006) that a diagonal matrix D > 0 satisfying D(K − Γ ) + (K −

Γ )TD < 0 exists if and only if γ1γ2γ3 < sec(π
3 )3 = 8. Thus, we

conclude that the interconnected system (35) is NSS if

k11k21k31
c1c2c3

<
8 · 43

(p − 1)3
p−1
p (p + 1)3

p+1
p

. (36)

We simulated the system with two different sets of parameters
and several noise levels (i.e., |ΣΣT

|F ). Fig. 1 shows the behavior
of a system that is not NSS. In the absence of noise (Σij = 0),
the system converges to a steady-state oscillation, and therefore
it is not asymptotically stable. Note that NSS implies asymptotic
stability of the deterministic part of the system (cf. (11) with Σij =

0). For the second case, we selected a set of parameters that satisfy
the condition for NSS derived in (36). Indeed, in Fig. 2 we see
that the system is asymptotically stable when Σij = 0 and, in the
presence of noise, its sample paths are bounded in probability (as
seen from the 99% confidence level plots).
Fig. 1. Simulation of system (35) with parameters p = 4, ci = 1, ki1 = 100,
ki2 = 1, for i = {1, 2, 3}, and (x1(0), x2(0), x3(0)) = (5, 0, 5). (Top) Plots of x1(t)
(blue), x2(t) (green), and x3(t) (red) forΣij = 0. (Bottom) Plots of two sample paths
of x1(t) (dashed) and 99% confidence levels of 2000 samples paths of x1(t) (line),
for Σij = 0.05.

6. Conclusions

We provided a technique to certify stability in probability and
NSS using passivity of subsystems and a matrix diagonal stability
condition. This technique is different from the classical large-
scale literature, since it takes into account the sign structure
of the interconnection. Moreover, we demonstrated that, under
appropriate assumptions, SOSP and NSS⊕OSP can be easily
verifiable by equilibrium independent conditions. Literature
results typically rely on the calculation of such equilibrium, which
can be intractable as the dimension of the system increases. The
NSS notion is appropriate for the stability analysis of biological
reaction networks, as it admits systems with nonvanishing noise
and unknown noise intensity.

Appendix

Proof of Lemma 4.4. Let (ai, bi) be the intervals where f is not
increasing. Choose a constant M > 0. For each interval i, let ϵi
be such that 0 < ϵi < ai+1 − bi, f (bi + ϵi) − f (ai) ≤ M , and
such that the intersection between the function f and the straight
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Fig. 2. Behavior of system (35)with parameters: p = 4, ci = 1, ki1 = 10, ki2 = 1 for
i = {1, 2, 3}, and (x1(0), x2(0), x3(0)) = (5, 0, 5). (Top) Plots of x1(t) (blue), x2(t)
(green), and x3(t) (red) for Σij = 0. (Middle–Bottom) Plots of two sample paths of
x1(t) (dashed), and 99% confidence levels of 2000 sample paths of x1(t) (line), for
Σij = 0.05 and Σij = 5, respectively.

line passing through (ai, f (ai)) and (bi + ϵi, f (bi + ϵi)) is empty for
ai < x < bi + ϵi. Note that, from continuity assumption of f , such
ϵi is guaranteed to exist. Define
η̃(x) =


f (bi + ϵi) − f (ai)

bi + ϵi − ai
(x − ai) + f (ai),

x ∈ [ai, bi + ϵi)

f (x), otherwise.

If f is such that there exists bi = ∞ (i.e., f = C∀x ≥ ai), let
η̃ = f (ai) + M − e−(x−ai)2 for x ≥ ai.

Set η = aη̃. Then, η = aη̃ ≥ af ≥ af and also η̃ − f ≤ M .
Therefore, if we select a constant c > 0 s.t. f ≥ c for x > x0, and

η

f
≤ a


M

f
+ 1


≤ a


M
c

+ 1


for x > x0.

Thus, η = O(f ). �

Proof of Lemma 4.3. Since m(x) < 0∀x ≠ 0 and m(x) → −∞ as
|x| → ∞, then |m(x)| > 0∀x ≠ 0 and |m(x)| → ∞ as |x| → ∞.
Hence, there exists a K∞ function α such that α ≤ |m|. Using a
construction similar to the proof of Lemma 4.4, we can define the
K∞ function α such that α ≤ |m| ≤ |m|, and |m| − α ≤ M ,
for some constant M > 0. Therefore, |m| = O(α), concluding the
proof. �
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