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Introduction

Periodic, clock-like rhythms pervade nature and regulate the

function of all living organisms. For instance, circadian rhythms are

regulated by an endogenous biological clock entrained by the light

signals from the environment that then acts as a pacemaker [1].

Moreover, such an entrainment can be obtained even if daily

variations are present, like e.g. temperature and light variations.

Another important example of entrainment in biological systems is

at the molecular level, where the synchronization of several

cellular processes is regulated by the cell cycle [2].

An important question in mathematical and computational

biology is that of finding conditions ensuring that entrainment

occurs. The objective is to identify classes of biological systems that

can be entrained by an exogenous signal. To solve this problem,

modelers often resort to simulations in order to show the existence

of periodic solutions in the system of interest. Simulations,

however, can never prove that solutions will exist for all parameter

values, and they are subject to numerical errors. Moreover,

robustness of entrained solutions needs to be checked in the

presence of noise and uncertainties, which cannot be avoided

experimentally.

From a mathematical viewpoint, the problem of formally

showing that entrainment takes place is known to be extremely

difficult. Indeed, if a stable linear time-invariant model is used to

represent the system of interest, then entrainment is usually

expected, when the system is driven by an external periodic input,

with the system response being a filtered, shifted version of the

external driving signal. However, in general, as is often the case in

biology, models are nonlinear. The response of nonlinear systems

to periodic inputs is the subject of much current systems biology

experimentation; for example, in [3], the case of a cell signaling

system driven by a periodic square-wave input is considered. From

measurements of a periodic output, the authors fit a transfer

function to the system, implicitly modeling the system as linear

even though (as stated in the Supplemental Materials to [3]) there

are saturation effects so the true system is nonlinear. For nonlinear

systems, driving the system by an external periodic signal does not

guarantee the system response to also be a periodic solution, as

nonlinear systems can exhibit harmonic generation or suppression

and complex behavior such as chaos or quasi-periodic solutions

[4]. This may happen even if the system is well-behaved with

respect to constant inputs; for example, there are systems which

converge to a fixed steady state no matter what is the input

excitation, so long as this input signal is constant, yet respond

chaotically to the simplest oscillatory input; we outline such an

example in the Materials and Methods Section, see also [5]. Thus,

a most interesting open problem is that of finding conditions for

the entrainment to external inputs of biological systems modeled

by sets of nonlinear differential equations.

One approach to analyzing the convergence behavior of nonlinear

dynamical systems is to use Lyapunov functions. However, in

biological applications, the appropriate Lyapunov functions are not

always easy to find and, moreover, convergence is not guaranteed in

general in the presence of noise and/or uncertainties. Also, such an

approach can be hard to apply to the case of non-autonomous

systems (that is, dynamical systems directly dependent on time), as is

the case when dealing with periodically forced systems.

The above limitations can be overcome if the convergence

problem is interpreted as a property of all trajectories, asking that
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all solutions converge towards one another (contraction). This is

the viewpoint of contraction theory, [6], [7], and more generally

incremental stability methods [8]. Global results are possible, and

these are robust to noise, in the sense that, if a system satisfies

a contraction property then trajectories remain bounded in the

phase space [9]. Contraction theory has a long history. Contrac-

tions in metric functional spaces can be traced back to the work of

Banach and Caccioppoli [10] and, in the field of dynamical

systems, to [11] and even to [12] (see also [13], [8], and e.g. [14]

for a more exhaustive list of related references). Contraction theory

has been successfully applied to both nonlinear control and

observer problems, [7], [15] and, more recently, to synchroniza-

tion and consensus problems in complex networks [16], [17],[18].

In [19] it was proposed that contraction can be particularly useful

when dealing with the analysis and characterization of biological

networks. In particular, it was found that using non Euclidean

norms, as also suggested in [6] (Sec. 3.7ii), can be particularly

effective in this context [19], [20].

One of the objectives of this paper is to give a self-contained

exposition, with all proofs included, of results in contraction theory

as applied to entrainment of periodic signals, and, moreover, to

show their applicability to problems of biological interest. We believe

that contraction analysis should be recognized as an important component of the

‘‘toolkit’’ of systems biology, and this paper should be useful to other

researchers contemplating the use of these tools.

For concreteness, we focus mainly on transcriptional systems, as

well as related biochemical systems, which are basic building blocks

for more complex biochemical systems. However, the results that we

obtain are of more generality. To illustrate this generality, and to

emphasize the use of our techniques in synthetic biology design, we

discuss as well the entrainment of a Repressilator circuit in

a parameter regime in which endogenous oscillations do not occur,

as well as the synchronization of a network of Repressilators. A

surprising fact is that, for these applications, and contrary to many

engineering applications, norms other than Euclidean, and

associated matrix measures, must be considered.

Mathematical tools
We consider in this paper systems of ordinary differential

equations, generally time-dependent:

_xx~f (t,x) ð1Þ

defined for t [ ½0,?) and x [ C, where C is a subset of Rn. It will be

assumed that f (t,x) is differentiable on x, and that f (t,x), as well as

the Jacobian of f with respect to x, denoted as J(t,x)~
Lf

Lx
(t,x), are

both continuous in (t,x). In applications of the theory, it is often the

case that C will be a closed set, for example given by non-negativity

constraints on variables as well as linear equalities representing

mass-conservation laws. For a non-open set C, differentiability in x
means that the vector field f (t,.) can be extended as a differentiable

function to some open set which includes C, and the continuity

hypotheses with respect to (t,x) hold on this open set.

We denote by Q(t,s,j) the value of the solution x(t) at time t of the

differential equation (1) with initial value x(s)~j. It is implicit in the

notation that Q(t,s,j) [ C (‘‘forward invariance’’ of the state set C).

This solution is in principle defined only on some interval

sƒtvsze, but we will assume that Q(t,s,j) is defined for all t§s.

Conditions which guarantee such a ‘‘forward-completeness’’ property

are often satisfied in biological applications, for example whenever

the set C is closed and bounded, or whenever the vector field f is

bounded. (See Appendix C in [21] for more discussion, as well as [22]

for a characterization of the forward completeness property.) Under

the stated assumptions, the function Q is jointly differentiable in all its

arguments (this is a standard fact on well-posedness of differential

equations, see for example Appendix C in [21]).

We recall (see for instance [23]) that, given a vector norm on

Euclidean space ( .j j), with its induced matrix norm Ak k, the

associated matrix measure m is defined as the directional derivative of

the matrix norm, that is,

m(A):~ lim
h:0

1

h
IzhAk k{1ð Þ:

For example, if .j j is the standard Euclidean 2-norm, then m(A) is

the maximum eigenvalue of the symmetric part of A. As we shall

see, however, different norms will be useful for our applications.

Matrix measures are also known as ‘‘logarithmic norms’’, a concept

independently introduced by Germund Dahlquist and Sergei

Lozinskii in 1959, [24,25]. The limit is known to exist, and the

convergence is monotonic, see [24,26].

We will say that system (1) is infinitesimally contracting on a convex

set C(Rn if there exists some norm in C, with associated matrix

measure m such that, for some constant c [ R{ 0f g,

m J x,tð Þð Þƒ{c2, Vx [ C, Vt§0: ð2Þ

Let us discuss informally (rigorous proofs are given later) the

motivation for this concept. Since by assumption f t,xð Þ is

Author Summary

The activities of living organisms are governed by complex
sets of biochemical reactions. Often, entrainment to certain
external signals helps control the timing and sequencing of
reactions. An important open problem is to understand
the onset of entrainment and under what conditions it can
be ensured in the presence of uncertainties, noise, and
environmental variations. In this paper, we focus mainly on
transcriptional systems, modeled by Ordinary Differential
Equations. These are basic building blocks for more complex
biochemical systems. However, the results that we obtain
are of more generality. To illustrate this generality, and to
emphasize the use of our techniques in synthetic biology,
we discuss the entrainment of a Repressilator circuit and the
synchronization of a network of Repressilators. We answer
the following two questions: 1) What are the dynamical
mechanisms that ensure the entrainment to periodic inputs
in transcriptional modules? 2) Starting from natural systems,
what properties can be used to design novel synthetic
biological circuits that can be entrained? For some biological
systems which are always ‘‘in contact’’ with a continuously
changing environment, entrainment may be a ‘‘desired’’
property. Thus, answering the above two questions is of
fundamental importance. While entrainment may appear
obvious at first thought, it is not a generic property of
nonlinear dynamical systems. The main result of our paper
shows that, even if the transcriptional modules are modeled
by nonlinear ODEs, they can be entrained by any (positive)
periodic signal. Surprisingly, such a property is preserved if
the system parameters are varied: entrainment is obtained
independently of the particular biochemical conditions. We
prove that combinations of the above transcriptional
module also show the same property. Finally, we show
how the developed tools can be applied to design synthetic
biochemical systems guaranteed to exhibit entrainment.
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continuously differentiable, the following exact differential relation

can be obtained from (1):

D _xx~J t,xð ÞDx, ð3Þ

where, as before, J~J t,xð Þ denotes the Jacobian of the vector

field f , as a function of x [ C and t [ Rz, and where Dx denotes

a small change in states and ‘‘D _xx’’ means dDx=dt, evaluated along

a trajectory. (In mechanics, as in [27], Dx is called ‘‘virtual

displacement’’, and formally it may be thought of as a linear

tangent differential form, differentiable with respect to time.)

Consider now two neighboring trajectories of (1), evolving in C,

and the virtual displacements between them. Note that (3) can be

thought of as a linear time-varying dynamical system of the

form:

D _xx~J tð ÞDx

once that J(t)~J(t,x(t)) is thought of as a fixed function of time.

Hence, an upper bound for the magnitude of its solutions can be

obtained by means of the Coppel inequality [28], yielding:

Dxj jƒ Dx0j je
Ð t

0
m J jð Þð Þdj

, ð4Þ

where m Jð Þ is the matrix measure of the system Jacobian induced

by the norm being considered on the states and Dx 0ð Þj j~ Dx0j j.
Using (4) and (2), we have that

A bw0 : Dx tð Þj jƒbe{c2t:

Thus, trajectories starting from infinitesimally close initial condi-

tions converge exponentially towards each other. In what follows

we will refer to c2 as contraction (or convergence) rate.

The key theoretical result about contracting systems links

infinitesimal and global contractivity, and is stated below. This

result can be traced, under different technical assumptions, to e.g.

[6], [13], [12], [11].

Theorem 1. Suppose that C is a convex subset of Rn and that f (t,x) is

infinitesimally contracting with contraction rate c2. Then, for every two

solutions x(t)~Q(t,0,j) and z(t)~Q(t,0,f) of (1), it holds that:

x(t){z(t)j jƒ e{c2t j{fj j, Vt§0 : ð5Þ

In other words, infinitesimal contractivity implies global

contractivity. In the Materials and Methods section, we provide

a self-contained proof of Theorem 1. In fact, the result is shown

there in a generalized form, in which convexity is replaced by

a weaker constraint on the geometry of the space.

In actual applications, often one is given a system which

depends implicitly on the time, t, by means of a continuous

function u tð Þ, i.e. systems dynamics are represented by

_xx~f x,u tð Þð Þ. In this case, u tð Þ : Rz?U (where U is some subset

of R), represents an external input. It is important to observe that

the contractivity property does not require any prior information

about this external input. In fact, since u tð Þ does not depend on

the system state variables, when checking the property, it may be

viewed as a constant parameter, u [ U . Thus, if contractivity of

f x,uð Þ holds uniformly Vu [ U , then it will also hold for f x,u tð Þð Þ.
Given a number Tw0, we will say that system (1) is T-periodic if

it holds that

f (tzT ,x)~ f (t,x) Vt§0,x [ C :

Notice that the system _xx~f x,u tð Þð Þ is T-periodic, if the external

input, u tð Þ, is itself a periodic function of period T .

The following is the basic theoretical result about periodic orbits

that will be used in the paper. A proof may be found in [6], Sec.

3.7.vi.

Theorem 2. Suppose that:

N C is a closed convex subset of Rn;

N f is infinitesimally contracting with contraction rate c2;

N f is T-periodic.

Then, there is a unique periodic solution a(t) : ½0,?)?C of (1)

of period T and, for every solution x(t), it holds that x tð Þ{a tð Þj j?0
as t??.

In the Materials and Methods section of this paper, we provide

a self-contained proof of Theorem 2, in a generalized form which

does not require convexity.

A simple example
As a first example to illustrate the application of the concepts

introduced so far, we choose a simple bimolecular reaction, in

which a molecule of A and one of B can reversibly combine to

produce a molecule of C.

This system can be modeled by the following set of differential

equations:

_AA~{k1ABzk{1C,

_BB~{k1ABzk{1C,

_CC~k1AB{k{1C,

ð6Þ

where we are using A~A(t) to denote the concentration of A and

so forth. The system evolves in the positive orthant of R3.

Solutions satisfy (stoichiometry) constraints:

A(t)zC(t)~a

B(t)zC(t)~b
ð7Þ

for some constants a and b.

We will assume that one or both of the ‘‘kinetic constants’’ ki

are time-varying, with period T . Such a situation arises when the

ki’s depend on concentrations of additional enzymes, which are

available in large amounts compared to the concentrations of

A,B,C, but whose concentrations are periodically varying. The

only assumption will be that k1(t)§k0
1w0 and k{1(t)§k0

{1w0
for all t.

Because of the conservation laws (7), we may restrict our study

to the equation for C. Once that all solutions of this equation are

shown to globally converge to a periodic orbit, the same will follow

for A(t)~a{C(t) and B(t)~b{C(t). We have that:

_CC~k1 a{Cð Þ b{Cð Þ{k{1C: ð8Þ

Because A(t)§0 and B(t)§0, this system is studied on the subset

of R defined by 0ƒCƒmin a,bf g. The equation can be rewritten

as:

_CC~k1 ab{aC{bCzC2
� �

{k{1C: ð9Þ

Differentiation with respect to C of the right-hand side in the

above system yields this (1|1) Jacobian:

Global Entrainment of Transcriptional Systems
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J :~k1 { azbð Þz2C{k{1ð Þ: ð10Þ

Since we know that {azCƒ0 and {bzCƒ0, it follows that

Jƒ{k1k{1ƒ{k0
1k0

{1 :~{c2

for c~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

1k0
{1

q
. Using any norm (this example is in dimension

one) we have that m(J)v{c2. So (6) is contracting and, by means

of Theorem 2, solutions will globally converge to a unique solution

of period T (notice that such a solution depends on system

parameters).

Figure 1 shows the behavior of the dynamical system (9), using

two different values of k{1. Notice that the asymptotic behavior of

the system depends on the particular choice of the biochemical

parameters being used. Furthermore, it is worth noticing here that

the higher the value of k{1, the faster will be the convergence to

the attractor.

Results

Mathematical model and problem statement
We study a general externally-driven transcriptional module.

We assume that the rate of production of a transcription factor X
is proportional to the value of a time dependent input function

u(t), and X is subject to degradation and/or dilution at a linear

rate. (Later, we generalize the model to also allow nonlinear

degradation as well.) The signal u(t) might be an external input, or

it might represent the concentration of an enzyme or of a second

messenger that activates X . In turn, X drives a downstream

transcriptional module by binding to a promoter (or substrate),

denoted by e with concentration e~e(t). The binding reaction of

X with e is reversible and given by:

Xze'Y ,

where Y is the complex protein-promoter, and the binding and

dissociation rates are k1 and k2 respectively. As the promoter is not

subject to decay, its total concentration, eT , is conserved, so that

the following conservation relation holds:

ezY~eT : ð11Þ

We wish to study the behavior of solutions of the system that

couples X and e, and specifically to show that, when the input u(t)
is periodic with period T , this coupled system has the property that

all solutions converge to some globally attracting limit cycle whose

period is also T .

Such transcriptional modules are ubiquitous in biology, natural

as well as synthetic, and their behavior was recently studied in [29]

Figure 1. Entrainment of (9) to u(t)~~1:5zzsin(10t). Time (minutes) on the x-axis. The Figure shows the behavior of (9) for k{1~10 (blue), k{1~1
(green), k{1~0:1 (red). Notice that an increase of k{1 , causes an increase of the contraction rate, hence trajectories converge faster to the system
unique periodic attractor. The other system parameters are set to: a~b~1, k2~0:1
doi:10.1371/journal.pcbi.1000739.g001
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in the context of ‘‘retroactivity’’ (impedance or load) effects. If we

think of u(t) as the concentration of a protein Z that is

a transcription factor for X , and we ignore fast mRNA dynamics,

such a system can be schematically represented as in Figure 2,

which is adapted from [29]. Notice that u(t) here does not need to

be the concentration of a transcriptional activator of X for our

results to hold. The results will be valid for any mathematical

model for the concentrations, x, of X and y, of Y (the

concentration of e is conserved) of the form:

_xx~u tð Þ{dxzk1y{k2 eT{yð Þx
_yy~{k1yzk2 eT{yð Þx :

ð12Þ

An objective in this paper is, thus, to show that, when u is

a periodic input, all solutions of system (12) converge to a (unique)

limit cycle (Figure 3). The key tool in this analysis is to show that

uniform contractivity holds. Since in this example the input

appears additively, uniform contractivity is simply the requirement

that the unforced system (u~0) is contractive. Thus, the main step

will be to establish the following technical result, see the Material

and Methods:

Proposition 1. The system

_xx~{dxzk1y{k2 eT{yð Þx
_yy~{k1yzk2 eT{yð Þx

where

(x(t),y(t)) [ C~½0,?)|½0, eT � ð13Þ

for all t§0, and eT , k1, k2, and d are arbitrary positive constants, is

contracting.

Appealing to Theorem 2, we then have the following immediate

Corollary:

Proposition 2. For any given nonnegative periodic input u of period T ,

all solutions of system (12) converge exponentially to a periodic solution of

period T .

In the following sections, we introduce a matrix measure that

will help establish contractivity, and we prove Proposition 1. We

will also discuss several extensions of this result, allowing the

consideration of multiple driven subsystems as well as more

general nonlinear systems with a similar structure. (A graphical

algorithm to prove contraction of generic networks of nonlinear

systems can also be found in [18] where this transcriptional

module is also studied.)

Proof of Proposition 1
We will use Theorem 2. The Jacobian matrix to be studied is:

J :~
{d{k2 eT{yð Þ k1zk2x

k2 eT{yð Þ {k1{k2x

� �
: ð14Þ

As matrix measure, we will use the measure mP,1 induced by the

vector norm Pxj j1, where P is a suitable nonsingular matrix. More

specifically, we will pick P diagonal:

p1 0

0 p2

� �
, ð15Þ

where p1 and p2 are two positive numbers to be appropriately

chosen depending on the parameters defining the system.

Figure 2. A schematic diagram of the transcriptional system modeled in (12). As explained in [29], the transcriptional component takes as
input the concentration of protein Z and gives as output the concentration of protein X . The downstream transcriptional module takes as input the
concentration of protein X .
doi:10.1371/journal.pcbi.1000739.g002
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It follows from general facts about matrix measures that

mP,1 Jð Þ~m1 PJP{1
� �

, ð16Þ

where m1 is the measure associated to the .j j1 norm and is

explicitly given by the following formula:

m1 Jð Þ~ max
j

Jjjz
X
i=j

Jij

�� �� !
: ð17Þ

Observe that, if the entries of J are negative, then asking that

m1(J)v0 amounts to a column diagonal dominance condition.

(The above formula is for real matrices. If complex matrices would

be considered, then the term Jjj should be replaced by its real part

<fJjjg.)
Thus, the first step in computing mP,1 Jð Þ is to calculate PJP{1:

{d{k2 eT{yð Þ p1

p2
k1zk2xð Þ

p2

p1
k2 eT{yð Þ½ � {k1{k2x

2
64

3
75: ð18Þ

Using (17), we obtain:

mP,1 Jð Þ~ max {d{k2 eT{yð Þz p2

p1

k2 eT{yð Þ
����

����
�

;

{k1{k2xz
p1

p2
k1zk2xð Þ

����
����
	
:

ð19Þ

Note that we are not interested in calculating the exact value for

the above measure, but just in ensuring that it is negative. To

guarantee that mP,1 Jð Þv0, the following two conditions must

hold:

{d{k2 eT{yð Þz p2

p1
k2 eT{yð Þ

����
����v{c2

1 ; ð20Þ

{k1{k2xz
p1

p2
k1zk2xð Þ

����
����v{c2

2 : ð21Þ

Thus, the problem becomes that of checking if there exists an

appropriate range of values for p1, p2 that satisfy (20) and (21)

simultaneously.

The left hand side of (21) can be written as:

p1

p2
{1


 �
k1zk2xð Þ, ð22Þ

which is negative if and only if p1vp2. In particular, in this case

we have:

p1

p2
{1


 �
k1zk2xð Þƒ p1

p2
{1


 �
k1 :~{c2

1:

The idea is now to ensure negativity of (20) by using appropriate

values for p1 and p2 which fulfill the above constraint. Recall that the

term eT{y§0 because of the choice of the state space (this quantity

represents a concentration). Thus, the left hand side of (20) becomes

{dz
p2

p1
{1


 �
k2 eT{yð Þ ð23Þ

The next step is to choose appropriately p2 and p1 (without violating

the constraint p2wp1). Imposing p2=p1~1ze, ew0, (23) becomes

{dzek2 eT{yð Þ: ð24Þ

Then, we have to choose an appropriate value for e in order to make

the above quantity uniformly negative. In particular, (24) is uniformly

negative if and only if

ev
d

k2 eT{yð Þƒ
d

k2eT

: ð25Þ

We can now choose

e~
d

k2eT

{j,

with 0vjv

d

k2eT

. In this case, (24) becomes

{dzek2 eT{yð Þƒ{jk2eT :~{c2
2:

Thus, choosing p1~1 and p2~1ze~1z
d

k2eT

{j, with

0vjv

d

k2eT

, we have m1,P Jð Þv{c2. Furthermore, the contraction

rate c2, is given by:

min c2
1,c2

2

� 
:

Notice that c2 depends on both system parameters and on the

elements p1, p2, i.e. it depends on the particular metric chosen to

prove contraction. This completes the proof of the Proposition.

Generalizations
In this Section, we discuss various generalizations that use the

same proof technique.

Assuming X activation by enzyme kinetics. The

previous model assumed that X was created in proportion to the

amount of external signal u(t). While this may be a natural assumption

if u(t) is a transcription factor that controls the expression of X ,

a different model applies if, instead, the ‘‘active’’ form X is obtained

from an ‘‘inactive’’ form X0, for example through a phosphorylation

reaction which is catalyzed by a kinase whose abundance is represented

by u(t). Suppose that X can also be constitutively deactivated. Thus,

the complete system of reactions consists of

Xze'Y ,

Figure 3. Entrainment of the transcriptional module (12). Time in minutes on the x-axis. The state of the system (green), y, is entrained to
both u(t)~1:5z sin (0:1t) and to a repeating 0,1f g sequence. System parameters are set to: d~3, k1 = 1, k2~0:1.
doi:10.1371/journal.pcbi.1000739.g003
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together with

X0 'X

where the forward reaction depends on u. Since the concentrations of

X0zXzY must remain constant, let us say at a value Xtot, we

eliminate X0 and have:

_xx ~ u(t)(Xtot{x{y){dxzk1y{k2 eT{yð Þx,

_yy ~ {k1yzk2 eT{yð Þx:
ð26Þ

We will prove that if u tð Þ is periodic and positive, i.e.

u tð Þ§u0w0, then a globally attracting limit cycle exists. Namely,

it will be shown, after having performed a linear coordinate

transformation, that there exists a negative matrix measure for the

system of interest.

Consider, indeed, the following change of the state variables:

xt~xzy: ð27Þ

The system dynamics then becomes:

_xxt~u tð Þ Xtot{xtð Þ{dxtzdy

_yy~{k1yzk2 eT{yð Þ xt{yð Þ
: ð28Þ

As matrix measure, we will now use the measure m? induced by

the vector norm .j j?. (Notice that this time, the matrix P is the

identity matrix).

Given a real matrix J, the matrix measure m? Jð Þ is explicitly

given by the following formula (see e.g. [23]):

m? Jð Þ~ max
i

Jiiz
X
j=i

Jij

�� �� !
: ð29Þ

(Observe that this is a row-dominance condition, in contrast to the

dual column-dominance condition used for m1.)

Differentiation of (28) yields the Jacobian matrix:

J :~
{u tð Þ{d d

k2 eT{yð Þ {k1zk2 {eT{xtz2yð Þ

� �
:

Thus, it immediately follow from (29) that m? Jð Þ is negative if and

only if:

{u tð Þ{dz dj jv{c2
1; ð30Þ

{k1zk2 {eT{xtz2yð Þz k2 eT{yð Þj jv{c2
2: ð31Þ

The first inequality is clearly satisfied since by hypotheses both

system parameters and the periodic input u tð Þ are positive. In

particular, we have:

{u tð Þ{dz dj jƒ{u0 :~{c2
1;

By using (27) (recall that eT{y§0), the right hand side of the

second inequality can be written as:

{k1zk2 {eT{xtz2yð Þzk2 eT{yð Þ~{k1{k2x:

Since all system parameters are positive and x§0, the above

quantity is negative and upper bounded by {k1 :~{c2
2.

Thus, we have that m? Jð Þv{c2, where:

c2~ min c2
1,c2

2

� 
:

The contraction property for the system is then proved. By means

of Theorem 2, we can then conclude that the system can be

entrained by any periodic input.

Simulation results are presented in Figure 4, where the

presence of a stable limit cycle having the same period as u tð Þ is

shown.

Multiple driven systems. We may also treat the case in

which the species X regulates multiple downstream transcriptional

modules which act independently from each other, as shown in

Figure 5. The biochemical parameters defining the different

downstream modules may be different from each other,

representing a situation in which the transcription factor X
regulates different species. After proving a general result on

oscillations, and assuming that parameters satisfy the retroactivity

estimates discussed in [29], one may in this fashion design a single

input-multi output module in which e.g. the outputs are periodic

functions with different mean values, settling times, and so

forth.

We denote by e1, . . . ,en the various promoters, and use

y1, . . . ,yn to denote the concentrations of the respective promo-

ters complexed with X . The resulting mathematical model

becomes:

_xx ~ u(t){dxzK11y1{K21(eT ,1{y1)xz

zK12y2{K22(eT ,2{y2)xz � � �
zK1nyn{K2n(eT ,n{yn)x

_yy1~{K11y1zK21(eT ,1{y1)x

..

.

_yyn~{K1nynzK2n(eT ,n{yn)x :

ð32Þ

We consider the corresponding system with no input first,

assuming that the states satisfy x(t)§0 and 0ƒyi(t)ƒeT ,i for all

t,i.

Our generalization can be stated as follows:

Proposition 3. System (32) with no input (i.e. u(t)~0) is

contracting. Hence, if u(t) is a non-zero periodic input, its solutions

exponentially converge towards a periodic orbit of the same period as u(t).

Proof. We only outline the proof, since it is similar to the proof of

Proposition 2. We employ the following matrix measure:

mP,1 Jð Þ~m1 PJP{1
� �

, ð33Þ

where

P :~

p1 0 0 . . . 0

0 p2 0 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 . . . pnz1

2
66664

3
77775 ð34Þ

and the scalars pi have to be chosen appropriately

(piw0, Vi~1, . . . ,nz1).
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In this case,

J :~

{d{
Pn
i~1

K2i(eT ,i{yi) K11zK21x K12zK22x . . . K1nzK2nx

K21(eT ,1{y1) {K11{K21x 0 . . . 0

K22(eT ,2{y2) 0 {K12{K22x . . . 0

..

. ..
. ..

.
P

..

.

K2n(eT ,n{yn) 0 0 . . . {K1n{K2nx

2
666666666664

3
777777777775

ð35Þ

and

PJP{1 :~

{d{
Pn
i~1

K2i(eT ,i{yi)
p1

p2
(K11zK21x)

p1

p3
(K12zK22x) . . .

p1

pnz1
(K1nzK2nx)

p2

p1
K21(eT ,1{y1) {K11{K21x 0 . . . 0

p3

p1
K22(eT ,2{y2) 0 {K12{K22x . . . 0

..

. ..
. ..

.
P

..

.

pnz1

p1
K2n(eT ,n{yn) 0 0 . . . {K1n{K2nx

2
6666666666666664

3
7777777777777775

ð36Þ

Hence, the nz1 inequalities to be satisfied are:

{d{
Xn

i~1

K2i(eT ,i{yi)z
1

p1

Xn

i~1

piz1 K2i(eT ,i{yi)j jv{c2
1 ð37Þ

and

{K1i{K2ixz
p1

piz1
(K1izK2i)x

����
����v{c2

iz1, i~1,2, . . . ,n: ð38Þ

Clearly, the set of inequalities above admits a solution. Indeed,

the left hand side of (38) can be recast as

p1

piz1
{1


 �
(K1izK2ix), i~1,2, . . . ,n

which is negative definite if and only if p1=piz1v1 for all

i~1, . . . ,n. Specifically, in this case we have

p1

piz1
{1


 �
(K1izK2ix)

ƒ

p1

piz1
{1


 �
K1i :~{c2

iz1, i~1,2, . . . ,n

Also, from (37), as eT ,i{yi§0 for all i, we have that (37) can be

rewritten as:

{d{
Xn

i~1

K2i(eT ,i{yi)z
Xn

i~1

piz1

p1
(eT ,i{yi)v{c2

1:

Since p1=piz1v1, we can impose piz1=p1~1ze1,iz1 (with

e1,iz1w0) and the above inequality becomes

{dz
Xn

i~1

e1,iz1K2i(eT ,i{yi)v{c2
1:

Clearly, such inequality is satisfied if we choose e1,iz1 sufficiently

small; namely:

e1,iz1v
d

n{1ð Þk2eT ,i
:

Following a similar derivation to that of the previous Section, we

can choose

eiz1~
d

n{1ð Þk2eT ,i

{jiz1,

with 0vjiz1v
d

n{1ð Þk2eT ,i
. In this case, we have:

c2
1 :~{

Xn

i~1

jiz1

n{1
K2ieTi:

Thus, m Jð Þv{c2, where

c2~ min
i

cif g, i~1, . . . ,nz1:

The second part of the Proposition is then proved by applying

Theorem 2.

In Figure 6 the behavior of two-driven downstream transcrip-

tional modules is shown. Notice that both the downstream

modules are entrained by the periodic input u tð Þ, but their steady

state behavior is different.

Notice that, by the same arguments used above, it can be

proven that

_xx ~ u(t) XTOT{x{
Pn
i~1

yi


 �
{dxzK11y1{K21(eT ,1{y1)xz

zK12y2{K22(eT ,2{y2)xz � � �
zK1nyn{K2n(eT ,n{yn)x,

_yy1~{K11y1zK21(eT ,1{y1)x

..

.

_yyn~{K1nynzK2n(eT ,n{yn)x :

ð39Þ

is contracting.

Transcriptional cascades. A cascade of (infinitesimally)

contracting systems is also (infinitesimally) contracting [6], [30]

(see Materials and Methods for an alternative proof). This

implies that any transcriptional cascade, will also give rise to

a contracting system, and, in particular, will entrain to periodic

inputs. By a transcriptional cascade we mean a system as shown

in Figure 7. In this figure, we interpret the intermediate variables

Figure 4. Entrainment of the transcriptional module (26). Time in minutes on the x-axis. The system state (green), y, is entrained to the
periodic input (blue): u(t)~1:5z sin (0:1t). The zoom on t [ 0,10½ � min highlights that trajectories starting from different initial conditions converge
towards the attracting limit cycle. System parameters are set to: k1~0:5, k2~5, Xtot~1, eT ~1, d~20.
doi:10.1371/journal.pcbi.1000739.g004

ð35Þ

ð36Þ
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Yi as transcription factors, making the simplifying assumption

that TF concentration is proportional to active promoter for

the corresponding gene. (More complex models, incorporating

transcription, translation, and post-translational modifications

could themselves, in turn, be modeled as cascades of contracting

systems.)

More abstract systems. We can extend our results even

further, to a larger class of nonlinear systems, as long as the same

general structure is present. This can be useful for example to

design new synthetic transcription modules or to analyze the

entrainment properties of general biological systems. We start with

a discussion of a two dimensional system of the form:

_xx ~ u tð Þ{a xð Þzf x,yð Þ,
_yy ~ {f x,yð Þ:

: ð40Þ

In molecular biology, a(x) would typically represent a nonlinear

degradation, for instance in Michaelis-Menten form, while the

function f represents the interaction between x and y. The aim of

this Section is to find conditions on the degradation and interaction

terms that allow one to show contractivity of the unforced (no input

u) system, and hence existence of globally attracting limit cycles.

We assume that the state space C is compact (closed and

bounded) as well as convex. Since the input appears additively, we

must prove contractivity of the unforced system.

Figure 5. Multiple driven transcriptional modules. A schematic diagram of the transcriptional modules given in (12).
doi:10.1371/journal.pcbi.1000739.g005
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Theorem 3. System (40), without inputs u, evolving on a convex

compact subset of phase space is contracting, provided that the following

conditions are all satisfied, for each x,y [C:

N La

Lx
w0;

N Lf

Ly
w0;

N Lf

Lx
does not change sign;

N La

Lx
w2

Lf

Lx
.

Notice that the last condition is automatically satisfied if
Lf

Lx
v0,

because
La

Lx
w0.

As before, we prove contraction by constructing an appropriate

negative measure for the Jacobian of the vector field. In this case,

the Jacobian matrix is:

J~

{
La

Lx
z

Lf

Lx

Lf

Ly

{
Lf

Lx
{

Lf

Ly

2
664

3
775: ð41Þ

Once again, as matrix measure we will use:

mP,1 Jð Þ~m1 PJP{1
� �

, ð42Þ

with

P~
p1 0

0 p2

� �
, ð43Þ

and p1,p2w0 appropriately chosen.

Using (42) we have

mP,1 Jð Þ~ max {
La

Lx
z

Lf

Lx
z

p2

p1

Lf

Lx

����
���� ; {

Lf

Ly
z

p1

p2

Lf

Ly

����
����

� 	
: ð44Þ

Following the same steps as the proof of Proposition 1, we have to

show that:

{
Lf

Ly
z

p1

p2

Lf

Ly

����
����v{c2

1, ð45Þ

{
La

Lx
z

Lf

Lx
z

p2

p1

Lf

Lx

����
����v{c2

2: ð46Þ

Clearly, if Lf =Lyw0 for every x,y [ C and p1vp2, the first

inequality is satisfied, with

c2
1~

p1

p2

{1


 �
Lf

Lx
:

To prove the theorem we need to show that there exists p1vp2

and c2
2 satisfying (46). For such inequality, since Lf =Lx does not

change sign in C by hypothesis, we have two possibilities:

1.
Lf

Lx
v0, Vx,y [ C;

2.
Lf

Lx
w0, Vx,y [ C.

In the first case, the right hand side of (46) becomes

{
La

Lx
z

Lf

Lx
{

p2

p1

Lf

Lx
ð47Þ

Choosing p2=p1~1ze, with ew0, we have:

{
La

Lx
z

Lf

Lx
{

p2

p1

Lf

Lx
~{

La

Lx
ze

Lf

Lx
:

Specifically, if we now pick

ew
A

B

where A~ max
La

Lx
and B~ min

Lf

Lx

����
����, we have that the above

quantity is uniformly negative definite, i.e.

A c2
2,1 : {

La

Lx
ze

Lf

Lx
v{c2

1,2:

In the second case, the right hand side of (46) becomes

{
La

Lx
z

Lf

Lx
z

p2

p1

Lf

Lx
: ð48Þ

Again, by choosing p2=p1~1ze, with ew0, we have the following

Figure 7. Transcriptional cascade discussed in the text. Each box contains the transcriptional module described by (12).
doi:10.1371/journal.pcbi.1000739.g007

Figure 6. Entrainment of two-driven transcriptional modules. Time in minutes on the x-axis. Outputs Y1 (top) and Y2 (bottom) of two
transcriptional modules driven by the external periodic input u(t)~1:5z sin (t). The parameters are set to: d~0:01, k11~10, k21~10, eT ,1~1 for
module 1 and k12~0:1, k22~0:1, eT ,2~1 for module 2.
doi:10.1371/journal.pcbi.1000739.g006
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upper bound for the expression in (48):

{
La

Lx
z2

Lf

Lx
ze

Lf

Lx
: ð49Þ

Thus, it follows that mP,1 Jð Þv{c2 provided that the above

quantity is uniformly negative definite. Since, by hypotheses,

La

Lx
w2

Lf

Lx
Vx,y [ C, ð50Þ

then A c2
2,2 : {

La

Lx
z

Lf

Lx
z

p2

p1

Lf

Lx
ƒ{c2

2,2. The proof of the

Theorem is now complete.

From a biological viewpoint, the hardest hypothesis to satisfy in

Theorem 3 might be that on the derivatives of f x,yð Þ. However, it

is possible to relax the hypothesis on Lf =Lx if the rate of change of

a xð Þ with respect to x, i.e. La=Lx, is sufficiently larger than Lf =Lx.

In particular, the following result can be proved.

Theorem 4. System (40), without inputs u, evolving on a convex

compact set, is contractive provided that:

N La=Lxw0, Vx [ C;

N Lf =Lyw0, Vx,y [ C;

N La=Lxw maxC 2 Lf =Lxj jf g .

Proof. The proof is similar to that of Theorem 3. In particular,

we can repeat the same derivation to obtain again inequality (46).

Thence, as no hypothesis is made on the sign of Lf =Lx, choosing

p2=p1~1ze we have

{
La

Lx
z

Lf

Lx
z

p2

p1

Lf

Lx

����
����~{

La

Lx
z

Lf

Lx
z

Lf

Lx

����
����ze

Lf

Lx

����
����: ð51Þ

Thus, it follows that, if La=Lx§2 Lf =Lxj j, then A c2 such that

mP,1 Jð Þv{c2, implying contractivity. The above condition is

satisfied by hypotheses, hence the theorem is proved.
Remarks. Theorems 3 and 4 show the possibility of designing

with high flexibility the self-degradation and interaction functions

for an input-output module.

This flexibility can be further increased, for example in the

following ways:

N Results similar to that of the above Theorems can be derived

(and also extended) if some self degradation rate for y is present

in (40), i.e.

_xx~u tð Þ{a xð Þzf x,yð Þ
_yy~{b yð Þ{f x,yð Þ

ð52Þ

with
Lb

Ly
v0.

N Theorem 3 and Theorem 4 can also be extended to the case in

which the X -module drives more than one downstream

transcriptional modules.

Applications to synthetic biology
We introduced above a methodology for checking if a given

transcriptional module can be entrained to some periodic input.

The aim of this section is to show that our methodology can serve

as an effective tool for designing synthetic biological circuits that

are entrained to some desired external input.

In particular, we will consider the synthetic biological oscillator

known as the Repressilator [31], for which an additional coupling

module has been recently proposed in [32]. A numerical

investigation of the synchronization of a network of non-identical

Repressilators was independently reported in [33].

We will show that our results can be used to isolate a set of

biochemical parameters for which one can guarantee the

entrainment to any external periodic signal of this synthetic

biological circuit. In what follows, we will use the equations

presented in [32] to model the Repressilator and the additional

coupling model.

Entrainment using an intra-cellular auto-inducer. The

Repressilator is a synthetic biological circuit that consists of three

genes that inhibit each other in a cyclic way [31]. As shown in

Figure 8, gene lacI (associated to the state variable c in the model)

expresses protein LacI (C), which inhibits the transcription of gene

tetR (a). This translates into protein TetR (A), which inhibits

Figure 8. The Repressilator circuit. A schematic representation of the three-genes Repressilator circuit.
doi:10.1371/journal.pcbi.1000739.g008
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transcription of gene cI (b). Finally, the protein CI (B), translated

from cI, inhibits expression of lacI, completing the cycle.

In Figure 9 a modular addition to the three-genes circuit is

presented. The module was first presented in [32] and makes the

Repressilator circuit sensitive to the concentration of the auto-

inducer (labeled as S in the model) which is a small molecule that

can pass through the cell membrane. Specifically, the module makes

use of two proteins: (i) LuxI, which synthesizes the auto-inducer; (ii)

LuxR, with which the auto-inducer synthesized by LuxI forms

a complex that activates the transcription of various genes.

We model the above circuit with the simplified set of differential

equations proposed in [32]. Specifically, the dynamics of the

mRNAs are

_aa~{az
a

1zC2
,

_bb~{bz
a

1zA2
,

_cc~{cz
a

1zB2
z

kS

1zS
:

ð53Þ

Figure 9. Modular addition to the Repressilator circuit. This module is used for forcing the original circuit with some external signal
(represented by an extra-cellular molecule in the bottom panel).
doi:10.1371/journal.pcbi.1000739.g009
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Notice that the above equations are dimensionless. This is done

by: (i) measuring time in units of mRNA lifetime (which is assumed

equal for the three genes), and (ii) expressing the protein levels in

units of their Michaelis constant. The parameter a represents the

dimensionless transcription rate in the absence of self-repression,

while k denotes the maximum contribution of the auto-inducer to

the expression of lacI.

The dynamics of the proteins are described by

_AA~bAa{dAA,

_BB~bBb{dBB,

_CC~bCc{dCC :

ð54Þ

The parameters bA, bB, bC represent the ratios between the

mRNAs and the respective proteins’ lifetimes and dA, dB, dC

represent the protein decay rate.

The last differential equation of the model from [32] keeps track

of the evolution of the intra-cellular auto-inducer. It is assumed

that the proteins TetR and LuxI have equal lifetimes. This in turn

implies that the dynamics of such proteins are identical, and hence

one uses the same variable to describe both protein concentrations.

Thus, the dynamics of the auto-inducer are given by:

_SS~{ks0Szks1A,

where ks0 is the rate of degradation of S.

We now model the forcing on the intracellular auto-inducer

concentration by adding an external input u tð Þ to the above

dynamical equation. The equation for S becomes:

_SS~{ks0Szks1A{g S{u tð Þð Þ , ð55Þ

where g can be thought as a diffusion rate.

We will now use the analytical methodology developed in the

previous sections, to properly tune the biochemical parameters of

the Repressilator circuit, whose mathematical model consists of the

set of differential equations (53), (54), (55), so that it shows

entrainment to the periodic input u tð Þ. That is, the measured

output (e.g. cI ), oscillates asymptotically with a period equal to

that of u tð Þ. Of course, the periodic orbit of the output will depend

on the particular choice of the parameters.

In what follows, we assume that all the system parameters can

be varied except for the self-degradations that we assume to be

fixed as, in practice, they are difficult to modify.

In this case, the Jacobian matrix to be studied is

~JJ :~

{1 0 0 0 0
{2aC

1zC2ð Þ2
0

0 {1 0
{2aA

1zA2ð Þ2
0 0 0

0 0 {1 0
{2aB

1zB2ð Þ2
0

k

1zSð Þ2

bA 0 0 {dA 0 0 0

0 bB 0 0 {dB 0 0

0 0 bC 0 0 {dC 0

0 0 0 ks1 0 0 {ks0{g

2
6666666666666666666664

3
7777777777777777777775

:
ð56Þ

The matrix measure that we will use to prove contraction is

mP,?
~JJ
� �

~m? P~JJP{1
� �

,

where P is a 7|7 diagonal matrix having on the main diagonal

the positive arbitrary scalars pi. Computation of P~JJP{1 yields

P~JJP{1~

{1 0 0 0 0
p1

p5

{2aC

1zC2ð Þ2
0

0 {1 0
p2

p4

{2aA

1zA2ð Þ2
0 0 0

0 0 {1 0
p3

p5

{2aB

1zB2ð Þ2
0

p3

p7

k

1zSð Þ2

p4

p1
bA 0 0 {dA 0 0 0

0
p5

p2
bB 0 0 {dB 0 0

0 0
p6

p3

bC 0 0 {dC 0

0 0 0
p7

p4
ks1 0 0 {ks0{g

2
6666666666666666666666666664

3
7777777777777777777777777775

:
ð57Þ

Thus, from the definition of m? given in (29), we have that there

exists some c [ R{ 0f g such that mP,?(~JJ)ƒ{c2, Vt if and only if

there exists a set of scalars ci,pi [ R{ 0f g, i~1, . . . ,7, such that

{1z
p1

p5

2aC

1zC2ð Þ2
ƒ{c2

1 ð58aÞ

{1z
p2

p4

2aA

1zA2ð Þ2
ƒ{c2

2 ð58bÞ

{1z
p3

p5

2aB

1zB2ð Þ2
z

p3

p7

k

(1zS)2
ƒ{c2

3 ð58cÞ

{dAz
p4

p1
bAƒ{c2

4 ð58dÞ

{dBz
p5

p2
bBƒ{c2

5 ð58eÞ

{dCz
p6

p3
bCƒ{c2

6 ð58fÞ

{ks0{gz
p7

p4
ks1ƒ{c2

7 ð58gÞ

It is easy to check that the nonlinear terms in the above

equations satisfy the following inequalities:

f xð Þ~ 2ax

1zx2ð Þ2
ƒM :~

3
ffiffiffi
3
p

a

8
,

and

ð57Þ

ð56Þ
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g xð Þ~ k

(1zS)2
ƒk,

for all x§0. Hence, the system of inequalities (58a)–(58g) are

satisfied, if the following set is fulfilled:

{1z
p1

p5
Mƒ{c2

1 ð59aÞ

{1z
p2

p4
Mƒ{c2

2 ð59bÞ

{1z
p3

p5
Mz

p3

p7
kƒ{c2

3 ð59cÞ

{dAz
p4

p1
bAƒ{c2

4 ð59dÞ

{dBz
p5

p2
bBƒ{c2

5 ð59eÞ

{dCz
p6

p3
bCƒ{c2

6 ð59fÞ

{ks0{gz
p7

p4

ks1ƒ{c2
7 ð59gÞ

The system can then be proved to be contracting for a given set

of biochemical parameters, if there exists a set of scalars pi,

i~1 . . . 7 satisfying the above inequalities. For example, if the

repressilator parameters are chosen so that

kzMv1, bAvdA, bBvdB, bCvdC , ks1vks0zg, ð60Þ

then it is trivial to prove that, for any constant value �ppw0, the set of

scalars pi~�pp, for i~1, . . . ,7, satisfies (59a)–(59g). Indeed, in

Figure 10 we provide a set of biochemical parameters for which

the circuit is contracting and shows entrainment to the periodic

input u(t)~1:5z1:5 sin (0:5t). (These parameters, except for the

maximal transcription rate a, are in the same ranges as those used in

[31], [32]. These parameters are also close to those used in [33] and

[34]. The reason for picking an a much smaller than in [32], is that

we need to slow down transcription so as to eliminate intrinsic

oscillations; otherwise the entrainment effect cannot be shown. This

lowering of a by two orders of magnitude is also found in other

works, for example in [35], where the same model is studied, with a
somewhat larger but of the same order of magnitude as here.)

Note that using the set of inequalities (59a)–(59g) as a guideline,

it is possible to find other parameter regions where the system is

still contracting but exhibit some other desired properties. For

instance, to tune (e.g. increase) the amplitude of the output

oscillations shown in Figure 10, a possible approach can be that of

increasing the biochemical parameter k so as to make stronger the

effect of the auto-inducer on the dynamics of the gene cI (variable

c(t) in the model).

Again we can prove that the set of inequalities (59a)–(59g) is

satisfied for k arbitrarily large, if we set pi~�pp, for i~1, . . . ,6 and

choose p7 such that

�pp

p7
kv1{M,

and

{ks0{gz
p7

�pp
ks1ƒ{c2

7:

Now, due to biochemical constraints the parameter ks1 is

considerably smaller than ks0 and g (in our simulations the ratio

is of about two orders of magnitude). Therefore, whatever the

value of k, it suffices to set �pp~1 and p7~10kze, with e being

a positive arbitrary constant, to get a solution to (59a)–(59g) and

hence guarantee the system to be contracting.

Figure 11 shows the behavior of the system output with the

modified parameters confirming that with this choice of

parameters the oscillation amplitude is indeed larger as expected.

Observe the nonlinear character of the oscillation depicted in

Figure 11, which is reflected in the lack of symmetry in the

behavior at minima and maxima of cI(t). Our theory predicts the

existence (and uniqueness) of such a nonlinear oscillations. None of

the usual techniques, based on linear analysis, can explain such

behavior.

Entrainment using an extra-cellular auto-inducer. We

now consider the case in which the extracellular auto-inducer can

change due to an external signal as well as diffusion from

intracellular auto-inducer, as represented in Figure 9. A new

variable must be introduced, to keep track of the extracellular

auto-inducer concentration. The only difference in the new model

with respect to the previous one is that the differential equation for

S becomes:

_SS~{ks0Szks1A{g S{Seð Þ : ð61Þ

Notice that the parameter g measures the diffusion rate of the

auto-inducer across the cell membrane, i.e. g~sA=Vc, with s
representing the membrane permeability, A its surface area and

VC the cell volume. In the above equation, Se denotes the

concentration of the extra-cellular auto-inducer, whose dynamics

are given by:

_SSe~{kseSezgext S{Seð Þzu tð Þ, ð62Þ

where gext~sA=Vext, with Vext denoting the total extracellular

volume, while kse stands for the decay rate.

In analogy with the previous section, we will ensure entrainment

of the dynamical system consisting of (53), (54), (61), (62), by tuning

the biochemical parameters of this new circuit. Again, the

guidelines for engineering the parameters will be provided by

the tools developed in the previous sections.

Following the schematic of the previous section, we will prove

that there exists c [ R{ 0f g and a 8|8 constant diagonal matrix
�PP, such that m�PP,? Jð Þƒ{c2, where J is the system Jacobian.

If we denote with pi, i~1, . . . ,8 the diagonal elements of �PP, we

obtain the following block-structure for the matrix �PPJ �PP{1:

�PPJ �PP{1~
P~JJP{1 v1

vT
2 {kse{gext

" #
, ð63Þ

Global Entrainment of Transcriptional Systems

PLoS Computational Biology | www.ploscompbiol.org 17 April 2010 | Volume 6 | Issue 4 | e1000739



Global Entrainment of Transcriptional Systems

PLoS Computational Biology | www.ploscompbiol.org 18 April 2010 | Volume 6 | Issue 4 | e1000739



where P~JJP{1 is given in (57) and:

v1~

0

0

0

0

0

0
p7

p8

g

2
6666666666664

3
7777777777775

, v2~

0

0

0

0

0

0
p8

p7

gext

2
6666666666664

3
7777777777775

ð64Þ

Thus, we have that m?
�PPJ �PP{1
� �

ƒ{c2 if and only if there exist

some ci [ R{ 0f g, i~1, . . . ,8 such that inequalities (58a)–(58f) are

all satisfied and additionally:

{ks0{gz
p7

p4
ks1z

p7

p8
gƒ{c2

7, ð65aÞ

{kse{gextz
p8

p7
gextƒ{c2

8: ð65bÞ

Again, we can find sets of biochemical parameters in order to

satisfy the above inequalities and hence ensure global entrainment

of the circuit to some external input. For example, if we set

kzMv1, bAvdA, bBvdB, bCvdC , ks1vks0 ksew0, ð66Þ

then, as in the previous section, it is trivial to show that setting all

pi to the same identical value satisfies the set of inequality required

to prove contraction and hence guarantees entrainment. Notice

that the last constraint in (66) is automatically satisfied by the

physical (i.e. positivity) constraints on the system parameters.

In Figure 12, the behavior of the circuit is shown with the

parameters chosen so as to satisfy the constraints given in (66).

Entraining a population of Repressilators. Consider,

now, a population of N Repressilator circuits, which are coupled

by means of an auto-inducer molecule. We can think of such

a network as having an all-to-all topology, with the coupling given

by the concentration of the extracellular auto-inducer, Se. The

aim of this section is to show that the methodology proposed

here can also be used as an effective tool to guarantee the

synchronization of an entire population of biochemical oscillators

onto some entraining external periodic input.

We denote with the subscript i the state variables of the i-th

circuit in the network, which is modelled using the equations

reported in [32] as:

_aai~{aiz
a

1zC2
i

_bbi~{biz
a

1zA2
i

_cci~{ciz
a

1zB2
i

z
kSi

1zSi

_AAi~bAai{dAAi

_BBi~bBbi{dBBi

_CCi~bCci{dCCi

_SSi~{ks0Sizks1Ai{g Si{Seð Þ

_SSe~{kseSezgext

PN
j~1

Sj{Se

� �
zu(t)

: ð67Þ

Figure 13 shows a simulation of a population of Repressilators

modeled as in (67), with biochemical parameters tuned as in the

previous Section: all the circuits composing the network evolve

asymptotically towards the same synchronous evolution, which has

period equal to that of the input signal u(t). The interested reader

is referred to the Materials and Methods for the proof.

Materials and Methods

All simulations are performed in MATLAB (Simulink), Version

7.4, with variable step ODE solver ODE23t. Simulink models are

available upon request. The proofs of the results are as follows.

K-reachable sets
We will make use of the following definition:

Definition 1. Let Kw0 be any positive real number. A subset C5Rn

is K-reachable if, for any two points x0 and y0 in C there is some

continuously differentiable curve c : 0,1½ �?C such that:

1. c 0ð Þ~x0,

2. c 1ð Þ~y0 and

3. c’ rð Þj jƒK y0{x0j j, Vr.

For convex sets C, we may pick c(r)~x0zr(y0{x0), so

c’(r)~y0{x0 and we can take K~1. Thus, convex sets are

1-reachable, and it is easy to show that the converse holds as well.

Notice that a set C is K-reachable for some K if and only if the

length of the geodesic (smooth) path (parametrized by arc length),

connecting any two points x and y in C, is bounded by some

multiple K0 of the Euclidean norm, y{xj j2. Indeed, re-

parametrizing to a path c defined on 0,1½ �, we have:

c’ rð Þj j2ƒK0 y{xj j2:
Since in finite dimensional spaces all the norms are equivalent,

then it is possible to obtain a suitable K for Definition 1.

Remark 1. The notion of K-reachable set is weaker than that of convex

set. Nonetheless, in Theorem 5, we will prove that trajectories of a smooth

system, evolving on a K-reachable set, converge towards each other, even if C is

not convex. This additional generality allows one to establish contracting

behavior for systems evolving on phase spaces exhibiting ‘‘obstacles’’, as are

frequently encountered in path-planning problems, for example. A mathematical

example of a set with obstacles follows.

Example 1. Consider the two dimensional set, C, defined by the

following constraints:

x2zy2
§1, x§0, y§0 :

Clearly, C is a non-convex subset of R2. We claim that C is K-reachable, for

any positive real number Kw

2

p
. Indeed, given any two points a and b in C,

there are two possibilities: either the segment connecting a and b is in C, or it

intersects the unit circle. In the first case, we can simply pick the segment as

a curve (K~1). In the second case, one can consider a straight segment that is

modified by taking the shortest perimeter route around the circle; the length of the

perimeter path is at most
2

p
times the length of the omitted segment. (In order to

obtain a differentiable, instead of merely a piecewise-differentiable, path, an

arbitrarily small increase in K is needed.)

Figure 10. Simulation of the Repressilator model described by (53), (54), (55). Time (minutes) on the x-axis. Behavior of cI when the input
u(t)~0:4z0:4 sin (0:5t) is applied. Notice that when no forcing is present cI converges to a non oscillatory regime behavior. System parameters are
tuned in order to satisfy (72). Specifically: bA~bB~bC~1, dA~dB~dC~1:1, a~1:5, k~0:1, ks0~1, g~1:5, ks1~0:01.
doi:10.1371/journal.pcbi.1000739.g010
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Proof of Theorem 1
We now prove the main result on contracting systems, i.e.

Theorem 1, under the hypotheses that the set C, i.e. the set on

which the system evolves, is K-reachable.

Theorem 5. Suppose that C is a K-reachable subset of Rn and that

f (t,x) is infinitesimally contracting with contraction rate c2. Then, for every

two solutions x(t)~Q(t,0,j) and z(t)~Q(t,0,f) it holds that:

x(t){z(t)j jƒKe{c2t j{fj j Vt§0 : ð68Þ

Proof. Given any two points x 0ð Þ~j and z 0ð Þ~f in C, pick

a smooth curve c : 0,1½ �?C, such that c 0ð Þ~j and c 1ð Þ~f. Let

y t,rð Þ~Q(t,0,c rð Þ, that is, the solution of system (1) rooted in

y 0,rð Þ~c rð Þ, r [ ½0,1�. Since Q and c are continuously differentiable,

also y t,rð Þ is continuously differentiable in both arguments. We define

w(t,r) :~
Ly

Lr
(t,r):

It follows that

Lw

Lt
(t,r)~

L
Lt

Ly

Lr


 �
~

L
Lr

Ly

Lt


 �
~

L
Lr

f (y t,rð Þ,t):

Now,

L
Lr

f (y t,rð Þ,t)~ Lf

Lx
(y t,rð Þ,t) Ly

Lr
(t,r)

so, we have:

Lw

Lt
(t,r)~J(y t,rð Þ,t)w(t,r), ð69Þ

where J(y t,rð Þ,t)~ Lf

Lx
(y t,rð Þ,t). Using Coppel’s inequality [28],

yields

w(t,r)j jƒ w(0,r)j je
Ð t

0
m J tð Þð Þdt

ƒK j{fj je{c2t, ð70Þ

Vx [ C, Vt [ Rz, and Vr [ ½0,1�. Notice the Fundamental Theorem

of Calculus, we can write

y t,1ð Þ{y t,0ð Þ~
ð1

0

w(t,s)ds:

Hence, we obtain

x(t){z(t)j jƒ
ð1

0

w(t,s)j jds:

Now, using (70), the above inequality becomes:

x(t){z(t)j jƒ
ð1

0

w(0,s)j je
Ð t

0
m J tð Þð Þdt


 �
dsƒK j{fj je{c2t:

The Theorem is then proved.

Proof of Theorem 1. The proof follows trivially from

Theorem 5, after having noticed that in the convex case, we

may assume K~1.

Proof of Theorem 2
In this Section we assume that the vector field f is T-periodic

and prove Theorem 2.

Before starting with the proof of Theorem 2 we make the following:

Remark 2. Periodicity implies that the initial time is only relevant

modulo T . More precisely:

Q(kTzt,kT ,j)~Q(t,0,j) Vk [ N,t§0,x [ C : ð71Þ

Indeed, let z(s)~Q(s,kT ,j), s§kT , and consider the function

x(t)~z(kTzt)~Q(kTzt,kT ,j), for t§0. So,

_xx(t)~ _zz(kTzt)~f (kTzt,z(kTzt))~f (kTzt,x(t))~f (t,x(t)) ,

where the last equality follows by T-periodicity of f . Since

x(0)~z(kT)~Q(kT ,kT ,j)~j, it follows by uniqueness of solutions

that x(t)~Q(t,0,j)~Q kTzt,kT ,jð Þ, which is (71). As a corollary, we

also have that

Q(kTzt,0,j)~Q(kTzt,kT ,Q(kT ,0,j))

~Q(t,0,Q(kT ,0,j)) Vk [ N,t§0,x [ C
ð72Þ

where the first equality follows from the semigroup property of solutions (see e.g.

[21]), and the second one from (71) applied to Q(kT ,0,j) instead of j.

Define now

P(j)~Q(T ,0,j),

where j~x 0ð Þ [ C. The following Lemma will be useful in what

follows.

Lemma 1. Pk(j)~Q(kT ,0,j) for all k [ N and j [ C.

Proof. We will prove the Lemma by recursion. In particular, the

statement is true by definition when k~1. Inductively, assuming it

true for k, we have:

Pkz1(j)~P(Pk(j))~Q(T ,0,Pk(j))

~Q(T ,0,Q(kT ,0,j))~Q(kTzT ,0,j) ,

as wanted.

Theorem 6. Suppose that:

N C is a closed K-reachable subset of Rn;

N f is infinitesimally contracting with contraction rate c2;

N f is T-periodic;

N Ke{c2T
v1.

Then, there is an unique periodic solution a(t) : ½0,?)?C of (1) having

period T . Furthermore, every solution x(t), such that x 0ð Þ~j [ C,

converges to a tð Þ, i.e. x(t){a(t)j j?0 as t??.

Proof. Observe that P is a contraction with factor Ke{c2T
v1:

P(j){P(f)j jƒKe{c2T j{fj j for all j,f [ C, as a consequence of

Theorem 5. The set C is a closed subset of Rn and hence complete

Figure 11. Increasing the amplitude of oscillations for the model described by (53), (54), (55). Time (minutes) on the x-axis. Behavior of cI
when: (i) the input u(t)~0:4z0:4 sin (0:5t) is applied; (ii) no forcing is present. System parameters are the same as that used in Figure 10, except
k~15.
doi:10.1371/journal.pcbi.1000739.g011
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as a metric space with respect to the distance induced by the norm

being considered. Thus, by the contraction mapping theorem,

there is a (unique) fixed point �jj of P. Let a(t) :~Q(t,0,�jj).
Since a(T)~P(�jj)~�jj~a(0), a(t) is a periodic orbit of pe-

riod T . Moreover, again by Theorem 5, we have that

x(t){a(t)j jƒKe{c2t j{�jj
�� ��?0. Uniqueness is clear, since two

different periodic orbits would be disjoint compact subsets, and

hence at positive distance from each other, contradicting

convergence. This completes the proof.

Proof of Theorem 2. It will suffice to note that the

assumption Ke{c2T
v1 in Theorem 6 is automatically satisfied

when the set C is convex (i.e. K~1) and the system is

infinitesimally contracting.

Notice that, even in the non-convex case, the assumption

Ke{c2T
v1 can be ignored, if we are willing to assert only the

existence (and global convergence to) a unique periodic orbit, with

some period kT for some integer kw1. Indeed, the vector field is

also kT-periodic for any integer k. Picking k large enough so that

Ke{c2kT
v1, we have the conclusion that such an orbit exists,

applying Theorem 6.

Cascades
In order to show that cascades of contracting systems remain

contracting, it is enough to show this, inductively, for a cascade of

two systems.

Consider a system of the following form:

_xx~f (t,x)

_yy~g(t,x,y)

where x(t) [ C1(Rn1 and y(t) [ C2(Rn2 for all t (C1 and C2 are

two K-reachable sets). We write the Jacobian of f with respect to

x as A(t,x)~
Lf

Lx
(t,x), the Jacobian of g with respect to x as

B(t,x,y)~
Lg

Lx
(t,x,y), and the Jacobian of g with respect to y as

C(t,x,y)~
Lg

Ly
(t,x,y),

We assume the following:

Figure 12. Simulation of the Repressilator forced by some extra-cellular molecule. Time (minutes) on the x-axis. Behavior of cI when the
input u(t)~0:4z0:4 sin (0:5t) is applied. Notice that when no forcing is present, the steady state behavior is non-oscillatory. System parameters are:
bA~bB~bC~1, dA~dB~dC~1:1, a~1:5, k~0:5, ks0~1, ks1~0:01.
doi:10.1371/journal.pcbi.1000739.g012

Figure 13. Synchronization of Repressilators. Behavior of a population of Repressilator modeled as in (80). Time (minutes) on x-axs. Notice that
all the circuits synchronize with a steady-state evolution having the same period as u tð Þ~0:4z0:4 sin 0:5tð Þ. System parameters are chosen as in
Figure 11, with gext~0:1.
doi:10.1371/journal.pcbi.1000739.g013
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1. The system _xx~f (t,x) is infinitesimally contracting with

respect to some norm (generally indicated as .j j�), with some

contraction rate c2
1, that is, m�(A(t,x))ƒ{c2

1 for all x [ C1

and all t§0, where m� is the matrix measure associated to

.j j�.
2. The system _yy~f (t,x,y) is infinitesimally contracting with

respect to some norm (which is, in general different

from .j j�, and is denoted by .j j��), with contraction rate

c2
2, when x is viewed a a parameter in the second system,

that is, m��(C(t,x,y))ƒ{c2
2 for all x [ C1, y [ C2 and

all t§0, where m�� is the matrix measure associated to

.j j��.
3. The mixed Jacobian B(t,x,y) is bounded: B(t,x,y)k kƒk2,

for all x [ C1, y [ C2 and all t§0, for some real number

k, where ‘‘ .k k’’ is the operator norm induced by .j j�
and .j j�� on linear operators Rn1|n2|1?Rn1|n2 . (All norms

in Euclidean space being equivalent, this can be verified in any

norm.)

We claim that, under these assumptions, the complete system is

infinitesimally contracting. More precisely, pick any two positive

numbers p1 and p2 such that

c2
1 {

p2

p1

k2
w 0

and let

c2 :~ min c2
1{

p2

p1
k2,c2

2

� 	
:

We will show that m(J)ƒ{c2, where J is the full Jacobian:

J~
A 0

B C

� �
ð73Þ

with respect to the matrix measure m induced by the following

norm in Rn1|n2 :

(x1,x2)j j~p1 x1j j�zp2 x2j j�� :

Since

(IzhJ)x~
(IzhA)x1

hBx1z(IzhC)x2

� �

for all h and x, we have that, for all h and x:

(IzhJ)xj j~p1 (IzhA)x1j jzp2 hBx1z(IzhC)x2j j

ƒp1 IzhAj j x1j jzp2 hBj j x1j jzp2 IzhCj j x2j j,

where from now on we drop subscripts for norms. Pick now

any hw0 and a unit vector x (which depends on h) such that

IzhJk k~ (IzhJ)xj j. Such a vector x exists by the definition

of induced matrix norm, and we note that 1~ xj j~
p1 x1j j�zp2 x2j j��, by the definition of the norm in the product

space. Therefore:

1

h
IzhJk k{1ð Þ

~
1

h
(IzhJ)xj j{ xj jð Þ

ƒ

1

h
p1 IzhAj j x1j jzp2 hBj j x1j jzp2 IzhCj j x2j j{p1 x1j j{p2 x2j jð Þ

~
1

h
IzhAj j{1z

p2

p1
h Bj j


 �
p1 x1j jz

1

h
IzhCj j{1ð Þp2 x2j j

ƒ max
1

h
IzhAj j{1ð Þz p2

p1
k2 ,

1

h
IzhCj j{1ð Þ

� 	
,

where the last inequality is a consequence of the fact that

l1a1zl2a2ƒ maxfa1,a2g for any nonnegative numbers with

l1zl2~1 (convex combination of the ai’s). Now taking limits as

h:0, we conclude that

m(J)ƒ max {c2
1z

p2

p1
k2,{c2

2

� 	
~{c2 ,

as desired.

Entraining a population of Repressilators: proof
The general principle that we apply to prove entrainment of

a population of Repressilators is as follows.

Assume that the cascade system

_xx~f x,yð Þ,
_yy~g y,v tð Þð Þ,

ð74Þ

with v tð Þ being an exogenous input, satisfies the contractivity

assumptions of the above Section. Then, consider the intercon-

nection of N identical systems which interact through the variable

y as follows:

_xxi~f (xi,y), i~1, . . . ,N,

_yy~g(y,
PN
i~1

xizu):
ð75Þ

Suppose that ½x1(t), . . . ,xN (t),y(t)� is a solution of (75) defined for

all t§0, for some input u(t). Then, we have the synchronization

condition: xi(t){xj(t)?0, as t?z?.

Indeed, we only need to observe that every pair ½xi(t),y(t)� is

a solution of (74) with the same input

v(t)~
XN

i~1

xi(t)zu(t):

Furthermore, if u tð Þ is a T-periodic function, the N inter-

connected dynamical systems synchronize onto a T-periodic

trajectory.

The above principle can be immediately applied to prove that

synchronization onto a T -periodic orbit is attained for the

Repressilator circuits composing network (67) (see also [19]).

Specifically, let xi :~ ai,bi,ci,Ai,Bi,Ci,Si½ � and y~Se; we have

that x1, . . . ,xN ,y½ � is a solution of (67). We notice that any pair

xi,y½ � is a solution of the following cascade system
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_aa~{aza= 1zC2
� �

_bb~{bza= 1zA2
� �

_cc~{cza= 1zB2
� �

z kSð Þ= 1zSð Þ
_AA~bAa{dAA

_BB~bBb{dBB

_CC~bCc{dCC

_SS~{ks0Szks1A{g S{Seð Þ
_SSe~{kseSe{gextNSezu(t)zgext S1z:::zSNð Þ:

ð76Þ

Thus, as shown above, contraction of (76) implies synchronization

of (67). Differentiation of (76) yields the Jacobian matrix

J~

{1 0 0 0 0 f1 Cvð Þ 0 0

0 {1 0 f1 Avð Þ 0 0 0 0

0 0 {1 0 f1 Bvð Þ 0 f2 Svð Þ 0

bA 0 0 {dA 0 0 0 0

0 bB 0 0 {dB 0 0 0

0 0 bC 0 0 {dC 0 0

0 0 0 ks1 0 0 {ks0{g g

0 0 0 0 0 0 0 {kq

2
666666666666666664

3
777777777777777775

ð77Þ

where f1 and f2 denote the partial derivatives of decreasing and

increasing Hill functions with respect to the state variable of

interest and kq~ksezkdiff , kdiff ~gextN .

Note that the Jacobian matrix J has the structure of a cascade,

i.e.

J~
A B

0 C

� �
,

with:

A~

{1 0 0 0 0 f1 Cð Þ 0

0 {1 0 f1 Að Þ 0 0 0

0 0 {1 0 f1 Bð Þ 0 f2 Sð Þ
bA 0 0 {dA 0 0 0

0 bB 0 0 {dB 0 0

0 0 bC 0 0 {dC 0

0 0 0 ks1 0 0 {ks0{g

2
666666666664

3
777777777775

,

B~ 0 0 0 0 0 0 g½ �T , C~{kq. Thus, to prove con-

traction of the virtual system (76) it suffices to prove that there exist

two matrix measures, m� and m�� such that:

1. m� Að Þƒ{c2
�;

2. m�� Cð Þƒ{c2
��;

where c�,c�� [ R{ 0f g. Clearly, since kq is a positive real

parameter, the second condition above is satisfied (with m�� being

any matrix measure). Now, notice that matrix A has the same

form as the Jacobian matrix of the Repressilator circuit (56).

Hence, if the parameters of the Repressilator are chosen so that

they satisfy (66), then there exist a set of positive real parameters pi,

i~1, . . . ,7, such that mP,? Að Þƒ{c2
� (that is, the first condition

above is also satisfied with m�~mP,?).

Thus, we can conclude that (76) is contracting. Furthermore, all

the trajectories of the virtual system converge towards a T-periodic

solution (see Theorem 6). This in turn implies that all the

trajectories of network (67) converge towards the same T-periodic

solution. That is, all the nodes of (67) synchronize onto a periodic

orbit of period T .

A counterexample to entrainment
In [5] there is given an example of a system with the following

property: when the external signal u(t) is constant, all solutions

converge to a steady state; however, when u(t)~ sin t, solutions

become chaotic. (Obviously, this system is not contracting.) The

equations are as follows:

_xx~{x{u

_pp~{pza(xzu)

_jj~10(y{j)

_yy~28pj{y{pjf

_ff~pjy{(8=3)f

where a(y)~y2=(Kzy2) and K~0:0001. Figure 14 shows typical

solutions of this system with a periodic and constant input

respectively. The function ‘‘rand’’ was used in MATLAB to

produce random values in the range ½{10,10�.

Discussion

We have presented a systematic methodology to derive

conditions for various types of biochemical systems to be globally

entrained to periodic inputs. For concreteness, we focused mainly

on transcriptional systems, which constitute basic building blocks

for more complex biochemical systems. However, the results that

we obtained are of more generality. To illustrate this generality,

and to emphasize the use of our techniques in synthetic biology

design, we discussed as well the entrainment of a Repressilator

circuit in a parameter regime in which endogenous oscillations to

not occur, as well as the synchronization of a network of

Repressilators. These latter examples serve to illustrate the power

of the tools even when a large amount of feedback is present.

Our key tool is the use of contraction theory, which we believe

should be recognized as an important component of the ‘‘toolkit’’

of systems biology. In all cases conditions are derived by proving

that the module of interest is contracting under appropriate

generic assumptions on its parameters. A surprising fact is that, for

these applications, and contrary to many engineering applications,

norms other than Euclidean, and associated matrix measures,

must be considered. Of course, more than one norm may be

appropriate for a given problem: for example we can pick different

pi’s in our weighted norms, and each such choice gives rise to

a different estimate of convergence rates. This is entirely analogous

to the use of Lyapunov functions in classical stability analysis:

different Lyapunov functions provide different estimates.

Ultimately, and as with any other method for the analysis of nonlinear

systems, such as the classical tool of Lyapunov functions, finding the

‘‘right’’ norm is more of an art than a science. A substantial

amount of trial and error, intuition, and numerical experimenta-

tion may be needed in order to come up with an appropriate

norm, and experience with a set of already-studied systems (such as the

ð77Þ
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ones studied here) should prove invaluable in guiding the

search.
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