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Abstract—This brief is concerned with the stability of continuous-time
networked systems. Using contraction theory, a result is established on the
network structure and the properties of the individual component sub-
systems and their couplings to ensure the overall contractivity of the en-
tire network. Specifically, it is shown that a contraction property on a re-
duced-order matrix that quantifies the interconnection structure, coupled
with contractivity/expansion estimates on the individual component sub-
systems, suffices to ensure that trajectories of the overall system converge
towards each other.

Index Terms—Contractivity.

I. INTRODUCTION

It is often useful to break down the analysis and design of large-scale
systems into two independent steps: i) at a “local” level of analysis, one
imposes constraints on the structure and behavior of individual subsys-
tems (components) that can be certified independently of any possible
interconnections; ii) at a “global” level, properties of the network or in-
terconnection graph are imposed, so as to guarantee a desired behavior
for the full interconnected system provided that the subsystems satisfy
the local certification requirement.
Such a “multi-scale” or hierarchical methodology is robust in the

sense that a large degree of uncertainty can be tolerated in the compo-
nents, only constrained by meeting appropriate specifications. There
are many examples of such approaches in control theory, including
among others: (1) the use of small-gain theorems to guarantee stability
of a negative feedback loop provided that the components are individ-
ually stable (qualitative property of components) and the overall loop

gain is less than one, as well as nonlinear generalizations based
on input to state stability [1]–[4], in which a nonlinear gain character-
izes the required local properties; (2) input/output monotone systems
theory [5]–[7], in which the local information is based on “input-output
characteristics” (DC gains); and (3) the use of passivity-based tools
[8]–[10].
In this work, we present an approach to this general principle for

continuous-time systems, this time in the framework of contractive sys-
tems as defined in the sense of [11] (see also Section II). Despite being
similar in spirit to the other approaches listed above, and in particular
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those based on the use of small-gain theorems, our results deal with in-
cremental properties and are, in principle, easier to check for individual
systems (just relying on the computation of the Jacobian).
For continuous-time systems, we show that contractivity of the

overall system can be guaranteed if the matrix measures (matrix
norms) of Jacobians of individual components are upper bounded
and the measure (norm) of a reduced-order matrix associated to the
interconnection is negative. The reduced-order matrix uses only norm
and matrix-measure estimates, but no precise knowledge, of compo-
nents. No assumptions are made on the networks. Directed networks,
self-loops, and multiple regulatory interactions are allowed.

II. CONTRACTION THEORY

A. Preliminaries

In this Section, we introduce some of the definitions that will be used
in the rest of the technical note.
We first recall (see for instance [12]) that, given a vector norm on Eu-

clidean space , with its induced matrix norm , the associated
matrix measure is defined as the one-sided directional derivative of
the matrix norm in the direction of evaluated at the identity, that is

For example, if is the standard Euclidean 2-norm, then is the
maximum eigenvalue of the symmetric part of . Matrix measures
are also known as “logarithmic norms”, a concept independently in-
troduced by Germund Dahlquist and Sergei Lozinskii in 1959, [13],
[14]. The limit is known to exist, and the convergence is monotonic,
see [13], [15].

B. Contraction of Continuous-Time Systems

We now consider systems of ordinary differential equations, gener-
ally time-dependent

(1)

defined for and . We assume that is
differentiable on , and that , as well as the Jacobian of with
respect to , denoted as , are both continuous
in . We denote by the value of the solution at time
of the differential (1) with initial value . This solution is
in principle defined only on some interval , but we
will assume that is defined and belongs to for all
(“forward invariance” of the state set ).
Definition 1: We say that the continuous-time system (1) is (in-

finitesimally) contracting, with respect to a norm in with associ-
ated matrix measure , if for some constant , called a contraction
rate, the following inequality holds:

(2)

The key theoretical result about continuous-time contracting systems
links infinitesimal contraction to global contractivity, and is stated
below. This result is well known (see for example [11]) and a self
contained simple proof can be found in [16].
Theorem 1: Suppose that is a convex subset of and that

is (infinitesimally) contracting with contraction rate . Then, for every
two solutions and of (1), it holds
that

(3)

A generalization to non-convex can be obtained by using the con-
cept of -reachable sets introduced in [16]. In [11], a proof of Theorem
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1 is given when the norm being used in (3) is the Euclidean norm (see
also [17]). The case of non Euclidean norms is also discussed in [11]
and [29] and applied to the study of biological systems in [28] to paper
in the Journal of Computational Biology. Historically, ideas closely re-
lated to those expressed in [11] can be traced back to [18] and even to
[19] (see also [20], [21], and e.g., [17], [22] for a more exhaustive list
of related references).

III. GLOBALIZATION RESULT WITH MATRIX MEASURES AND NORMS

We now turn to themain contributions of this note.We assume given:
1) spaces endowed respectively with “local” norms ,

, and
2) an “interconnection” or “structure” norm on .
The structure norm is assumed to be monotone, meaning that, for any
two vectors , where an
inequality such as “ ” between vectors is understood coordinate-
wise, that is, for all indices . All the usual norms, with

are monotone.
We let and introduce a “global” norm

on as follows. Given any vector , with
,

That is, the global norm is obtained by first computing the local norms
, and then evaluating the structure norm of the resulting

vector with components . Using that the structure norm is assumed
to be monotone, it is easy to show that this is indeed a norm.
For example, if all the local norms as well as the structure norms

are norms, with the same , then the global norm is again the same
norm (on a larger space). However, more generally one may mix

different norms.
Given norms and in and respectively, we may

consider the usual induced operator norm on matrices ,
. In particular, for the special cases when

and and the above norms, we denote this norm as
defined as: When

we write: and when :

We use the notations , , and for the matrix measures
(logarithmic norms) associated to , , and respectively.
Given any “global” matrix , we define its associated

“structure” matrix as follows. We start by partitioning
in the form

...
...

...
(4)

Then, for each , we define the following numbers:
and for each with , we let:
Finally, we define

...
...

. . .
...

Our main result is as follows:
Theorem 2: For every set of local norms on , every monotone

structure norm on , and every matrix ,

The proof will actually show a little more, namely that just upper
bounds on the numbers could be used instead of the numbers them-
selves. The theorem follows from:
Lemma 1: For every set of local norms on , every monotone

structure norm on , and every matrix

(5)

where is such that as .
To see how Theorem 2 follows from Lemma 1, we recall that

, and similarly for
. Subtracting unity from both sides in (5), dividing by , and

taking the limit as , the proof of the Theorem is obtained.
We now prove the Lemma.
Proof: Pick any vector . We will show that

(6)

for some function as above. Since this holds in particular for all
with , the Lemma will follow.
We need the following observation. Since, for any norm and in-

duced matrix norm , by definition, the matrix measure of a matrix
is , where , there is a function

such that . In particular,
there are such functions associated to the local norms . We
let . Thus

(7)

We start the proof of the Lemma by writing in block form
, with , , and denote

. In block form, , with ,
, where

By definition of the global norm, we have , where we
denote for each and .
Similarly, where we denote for each

and .
Using the triangle inequality, we have that, for every

where we used the estimate (7). In terms of the following vector
:

we can summarize the above inequality as “ ” (in the
coefficient-wise order), and hence, using monotonicity of the
structure norm, we know that . By the triangle in-
equality recalling that

and , we have that
which is (6) and hence

the Lemma is proved.

IV. STRUCTURED SYSTEMS

We now consider again the continuous-time system (1) and show
how the globalization results can be used to prove contraction by
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studying a reduced order matrix obtained from the system Jacobian.
Let denote the Jacobian matrix of (1) (i.e., ) and
partition the matrix as

...
...

. . .
...

with .
We then define a structure Jacobian as

...
...

. . .
...

(8)

where for each : and for each
with , we let .

The following result immediately follows from Theorem 1 and The-
orem 2.
Corollary 1: Let be a convex set in and suppose that local and

structure norms are picked as in Theorem 2. If there is some constant
such that

then (3) holds.

V. A REPRESENTATIVE APPLICATION TO NETWORKED SYSTEMS

We now illustrate, using a representative example, how the multi-
scale approach presented in this technical note can be used to give suffi-
cient conditions for the stability of networked systems. Specifically, we
consider a network of Fitzhugh-Nagumo neuron models. (Note that the
problem of deriving sufficient conditions ensuring network stability is
particularly important in the context of neuronal networks as discussed,
for instance, in [23], [24] and references therein.)
The key steps of our methodology can be outlined as follows: (i) we

first compute the reduced-order structure matrix for the network of
interest [that is, we compute (8)]; (ii) we then use such reduced-order
structure matrix, to design appropriate coupling protocols between the
network nodes so as to guarantee the network convergence.
The network of FN systems of interest can be described as [25]

(9)

where is the membrane potential, is a recovery variable,
is the magnitude of the stimulus current and the parameters and
are assumed to be nonnegative. Clearly, in this case, the set on

which the network evolves is a convex set. In what follows, we will
assume that is periodic. We recall from [11, Sec. 3.7.vi] and [16,
Theor.2] that a contracting system (evolving in a convex subset of the
state space) forced by a -periodic signal exhibits a -periodic evolu-
tion (this property is known as entrainment [16]). The parameters are
set to: , , . The network topology is shown in Fig. 1.
We assume the coupling protocol among nodes to be similar to the

so-called excitatory-only coupling, which is believed to play an impor-
tant role for the synchronization of neurons in the brain (see e.g., [26]).
Specifically, we couple FN oscillators in the network on the state vari-
able via the additional coupling function

(10)

Fig. 1. Network used for the simulations of HN.

which is added to the first state equation in (9). Here indicates all
nodes in the neighborhood of the -th system, i.e., directly connected
to it. Thus, network dynamics becomes

(11)

To guarantee that all nodes converge towards a unique trajectory
in state space, it now suffices to choose the parameters of the cou-
pling protocol (10) so as to make the closed-loop network (11) con-
tracting. Indeed, the synchronous subspace
with , is flow invariant for the network dynamics (that
is, trajectories with initial conditions in remain on it for all ).
Hence, if the network is contracting, trajectories starting from any two
initial conditions will converge exponentially towards each other. As
trajectories in remain therein for all time, it immediately follows that
all trajectories must converge towards and asymptotically towards
each other; that is, nodes will synchronize. Moreover, network con-
traction also yields (see [16]) that the synchronous evolution will be
periodic with the same period as .
Now, to study contractivity of the network dynamics we would need

to study the Jacobian of (11), which is a matrix. Using our
approach, we can look instead at the structure Jacobian, which in this
case is an matrix, defined as in (8). For example, let’s suppose

and use as local norm on the one induced by the vector
norm to compute the structure Jacobian. Then, choosing

we have

Now, to ensure network contraction (and hence synchronization) we
have to tune the parameter so that a uniformly negative structure
matrix measure for exists.
To this aim, the matrix measure induced by the 1-vector norm

(on ) can be used. Uniform negativity of is obtained if:

1) ; 2) . Notice that the first
condition above is fulfilled if . The second condition is instead
satisfied if

(12)

Thus, if (12) is fulfilled, all network trajectories converge towards
a unique synchronous solution. Fig. 2 shows a simulation for such a
network, confirming the theoretical predictions.
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Fig. 2. Simulation of (9) with and (top panel). The behavior
of is shown in the bottom panel.

VI. CONCLUSION

We presented sufficient conditions based on contraction theory en-
suring stability of networked systems. The analysis is multi-scale, and
is robust in the sense that a large degree of uncertainty can be tolerated
in the components, as long as the contraction estimates are met for the
network subsystems and their couplings.
We view our introduction of “mixed” global norms as a key contri-

bution. For example, as emphasized in [16], and norms play
a central role in establishing the contractivity of models of gene reg-
ulatory networks. Combining such norms with Euclidean norms for
interconnections leads directly to contraction results for diffusively in-
terconnected systems, and as a corollary, to entrainment results with
respect to periodic external inputs for such interconnections.
Contraction-based analysis is a powerful tool for stability analysis,

among other reasons because no a priori knowledge is required of an
attractor in order to perform stability analysis. Moreover, the approach
can be also turned into design tool. For example, for set-point regu-
lation or synchronization, once a system has been designed so that a
particular state or subspace is flow-invariant, contraction ensures that
all system trajectories converge to this desired point or subspace.
Amore general problem is that of synchronization, whichmeans that

one is not interested in contraction with respect to the global measure,
but only on a weaker property, contraction to the set of states with equal
coordinates. In this case, the (negative) second eigenvalue of the Lapla-
cian matrix will determine the structure measure, so contractivity of the
individual components can be relaxed. Much work remains to be done
in this direction, but some preliminary results along these lines were
discussed in [27].
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