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A General Result on the Stabilization of 
Linear Systems Using Bounded Controls 

Hkctor J. Sussmann, Senior Member, IEEE, Eduardo D. Sontag, Fellow, IEEE, and Yudi Yang 

Abstruct- We present two constructions of controllers that 
globally stabilize linear systems subject to control saturation. 
We allow essentially arbitrary saturation functions. The only 
conditions imposed on the system are the obvious necessary 
ones, namely that no eigenvalues of the uncontrolled system 
have positive real part and that the standard stabfiability rank 
condition hold. One of the constructions is in terms of a “neural- 
network type” one-hidden layer architecture, while the other one 
is in terms of cascades of linear maps and saturations. 

I. INTRODUCTION 

E consider linear time-invariant continuous-time sys- 
W t e m s  

C : k = A z + B u  (1.1) 

where i) A E IRnxn and B E E t n X m ,  for some integers n 
(the dimension of the system) and m (the number of inputs), 
and ii) the control values U are restricted to satisfy a bound 
111) 5 C, where C is a given positive constant. 

The study of such systems is motivated by the possibility of 
actuator saturation or constraints on actuators, reflected some- 
times also in bounds on available power supply or rate limits. 
These systems cannot be naturally dealt with within the context 
of standard (algebraic) linear control theory, but are ubiquitous 
in control applications. To quote the recent textbook [8, p. 
1711: “saturation is probably the most commonly encountered 
nonlinearity in control engineering.” Mathematically, control 
questions become nontrivial, as only control values bounded 
by C are allowed into the underlying linear system. 

We will present results on global stabilization, concentrating 
on several explicit architectures for controllers. Of course, 
there are general limits as to what can be achieved, no matter 
what type of control law is allowed. An obvious necessary 
condition for stabilizability is that C be asymptotically null- 
controllable with bounded controls (ANCBC). (We call C 
ANCBC with bound C if for every z E IR” there exists 
an open-loop control U :  [ O ,  00) + IR” that steers x to the 
origin in the limit as t + +00 and satisfies Iu(t)l 5 C 
for all t. It turns out (cf. Remark 1.1 below) that if C has 
this property for some C E (0,oo) then it has it for every 
C E (0,00), so we can simply talk about C being ANCBC, 
without mentioning C.) The ANCBC property is equivalent to 
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the following algebraic condition: 

(ANCBC*) i) A has no eigenvalues with positive real part, 
and ii) the pair ( A ,  B) is stabilizable in the 
ordinary sense (i.e., all the uncontrollable modes 
of C have strictly negative real parts). 

(The theory of controllability of linear systems with bounded 
controls is a well-studied topic; see, e.g., the fundamental 
paper [6], as well as the different, more algebraic approach 
discussed in [9].) Notice that under Condition (ANCBC*) 
there may very well be nontrivial Jordan blocks corresponding 
to critical eigenvalues, so the system x = Az need not 
be asymptotically stable or even Lyapunov-stable. This is 
what makes the problem interesting and allows inclusion of 
examples of practical importance such as systems involving 
integrators. 

In very special cases, including all one- and two- 
dimensional systems, stabilization is possible by simply using 
a saturated linear feedback law of the type: 

U = a( Fz) (1.2) 

where F is an m x n matrix and iT is a function that computes 
a saturation in each coordinate of the vector Fx, for instance, 
ui = sat((Fz);)-where sat(s) = sign(s) min{lsl,l}-or 
U ;  = tanh((Fz)i). A similar solution is possible for systems 
that are neutrally stable (i.e., such that the Jordan form of A has 
no off-diagonal ones corresponding to- critical eigenvalues), 
using the “Jurdjevic-Quinn” approach (see [2] and [7]). Thus 
it is natural to ask if simple control laws such as (1.2) can 
also be used for more general systems. This was negatively 
answered in a paper by A.T. Fuller as far back as the late 
1960’s. He showed in [ 11 that already for triple integrators such 
saturated linear feedback is not sufficient, at least under certain 
assumptions on the saturation g. (A stronger negative result, 
which applies to basically arbitrary d s ,  was more recently 
given, independently, in [ 141.) 

The fact that linear feedback laws when saturated can lead 
to instability has motivated a large amount of research. (See 
for instance [3] and [4], and references therein, for estimates 
of the size of the regions of attraction that result when 
using linear saturated controllers.) Here we take a different 
approach. Rather than working with linear saturated control 
laws U = @ ( F E )  and trying to show that they are globally 
stabilizing, or to estimate their domains of attraction, we allow 
more general bounded (and hence necessarily nonlinear) laws. 
This is not a new idea since, for example, optimal control 
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