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ON FINITE-GAIN STABILIZABILITY OF LINEAR SYSTEMS
SUBJECT TO INPUT SATURATION*

WENSHENG LIUt, YACINE CHITOURt, AND EDUARDO SONTAG

Abstract. This paper deals with (global) finite-gain input/output stabilization of linear systems with saturated
controls. For neutrally stable systems, it is shown that the linear feedback law suggested by the passivity approach
indeed provides stability, with respect to every LP-norm. Explicit bounds on closed-loop gains are obtained, and they
are related to the norms for the respective systems without saturation.

These results do not extend to the class of systems for which the state matrix has eigenvalues on the imaginary
axis with nonsimple (size > 1) Jordan blocks, contradicting what may be expected from the fact that such systems
are globally asymptotically stabilizable in the state-space sense; this is shown in particular for the double integrator.
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1. Introduction. In this work we are interested in those nonlinear systems that are ob-
tained when cascading a linear system with a memory-free input nonlinearity:

(E) k=Ax+Bo’(u), y=Cx.

The nonlinearity r is of a "saturation" type (definitions are given later). Figure shows the
type of system being considered, where the linear part has transfer function W(s) and the
function cr shown is the standard semilinear saturation (results will apply to more general
O" ’S).

Linear systems with actuator saturation constitute one of the most important classes of
nonlinear systems encountered in practice. Surprisingly, until recently few general theoretical
results were available regarding global feedback design problems for them. One such general
result was given in 14], which showed that global state-space stabilization for such systems
is possible under the assumptions that all the eigenvalues of A are in the closed left-hand
plane, plus stabilizability and detectability of (A, B, C). (These conditions are best possible,
since they are also necessary. The controller consists of an observer followed by a smooth
static nonlinearity.) For more recent work, see [20], which showedbased upon techniques
introduced in 16] for a particular casehow to simplify the controller that had been proposed
in [14]. See also [8] for closely related work showing that such systems can be semiglobally
(that is, on compact sets) stabilized by means of linear feedback.

In this paper, we are interested in studying not merely closed-loop state-space stability,
but also stability with respect to measurement and actuator noise. This is the notion of stability
that is often found in input/output studies. The problem is to find a controller C so that the
operator (u, u) - (yl, Y2) defined by the standard systems interconnection

y P(Ul -f" Y2),

Y2 C(u2 @ Yl)

is well posed and finite-gain stable, where P denotes the input/output behavior of the original
plant E. See Fig. 2. (In our main results, we will take for simplicity the initial state to be
zero. However, nonzero initial states can be studied as well, and some remarks in that regard
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1191
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FIG. 1. Input-saturated linear system.
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FIG. 2. Standard closed loop.

are presented in a latter section of the paper.) Once such input/output stability is achieved,
geometric operator-theoretic techniques can be applied; see for instance [3] and the references
therein. For other work on computing norms for nonlinear systems in state-space form, see
for instance 18] and the references given therein.

We focus on a case which would be trivial if one were only interested in state stability,
specifically when the original matrix A is neutrally stable; that is, we focus on the case
where all eigenvalues have nonpositive real parts and there are no nontrivial Jordan blocks
for eigenvalues in the imaginary axis. (The whole point of [14] and [20] was of course to
deal with such possible nontrivial blocks, e.g., multiple integrators.) In this case, a standard
passivity approach suggests the appropriate stabilization procedure. For instance, assume
that cr is the identity (so the original system is linear), A 4- A’ < 0, and C B’. Then
the system is passive, with storage function V(x) Iix112/2, since integrating the inequality
dV(x(t))/dt < y(t)’u(t) gives fg y(s)’u(s)ds > V(x(t)) V(x(O)). Thus the negative
feedback interconnection with the identity (strictly passive system), that is, u -y, results
in finite-gain stability. For this calculation and more discussion on passivity, see for instance
[7] and the references given therein. (For the use of the same formulas for just state-space
stabilization with applications to linear systems with saturations, see [5] and [9]; see also the
discussion on the Jurdevic-Quinn method in [13].)

In this paper, we essentially generalize the passivity technique to systems with saturations.
We first establish finite-gain stability in the various p-norms, using linear state feedback
stabilizers. Then we show how outputs can be incorporated into the framework. Our work is
very much in the spirit of the well-known absolute stability area, but we have not been able to
find a way to deduce our results from that classical literature.

These results do not extend to the class of systems for which the state matrix has eigen-
values on the imaginary axis with nonsimple (size> 1) Jordan blocks, contradicting what may
be expected from the fact that such systems are globally asymptotically stabilizable in the
state-space sense; this is shown in particular for the double integrator.
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1192 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

We make one remark on terminology. In the operator approach to nonlinear systems,
see, e.g., [19], a "system" is typically defined as a partially defined operator between normed
spaces, and "stability" means that the domain of this operator is the entire space. In that
context, finite-gain stability is the requirement that the operator be everywhere defined and
bounded; the norm of the operator is by definition the gain of the system. In this paper, we
use simply the term LP-stability to mean this stronger finite-gain condition.

The reader is referred to the companion paper [2] for results complementary to those in
this paper, dealing with Lipschitz continuity ("incremental gain stability") and continuity of
the operators in question. The two papers are technically independent.

Organization ofPaper. In 2 we provide definitions and statements ofthe main results, as
well as some related comments. Proofs of the main results are given in 3. Section 4 estimates
gains in terms of the corresponding gains for systems without saturation, in particular for
p 2 (H-norms). Results regarding nonzero initial states and global asymptotic stability of
the origin are collected in 5. Section 6 shows how to enlarge the class of input nonlinearities
even more, so as to include nonsaturations as well. The paper closes with 7, which contains
the double integrator counterexample.

2. Statements of main results. We introduce now the class of saturation functions to be
considered, and state the main results on finite-gain stability. Some remarks are also provided.
Proofs are deferred to a later section.

2.1. Saturation functions. We next formally define what we mean by a saturation. Es-
sentially, we ask only that this be a function which has the same sign as its argument, stays
away from zero at infinity, is bounded, and is not horizontal near zero.

DEFINITION 1. We call cr a saturation function if it satisfies the following two

conditions:
(i) cr is locally Lipschitz and bounded;

or(t)(ii) ttr(t) > 0 ift # 0, liminft0 > O, andliminfltl Ir(t)l > 0.
For convenience we will simply call a saturation function cr an S-function. We say that

r is an n-valued S-function if cr (or1 rn)’, where each component cri is an S-function
and

if(X) de....f (tTI(X1) tTn(Xn))!

for x (x Xn) E ]tn. Here we use (...)’ to denote the transpose of the vector (...).
Remark 1. It follows directly from Definition 1 that most reasonable saturation-type

functions are indeed S-functions in our sense. Included are arctan(t), tanh(t), and the standard
saturation function cr0(t) sign(t) min{Itl, }, i.e.,

ift>l,

r0(t) if Itl < 1,

-1 if <-1.

Remark 2. It is easy to see that if cr satisfies a bound Icr(t)l _< Mltl for near zero (in
particular if tr(0) 0 and (i) in Definition 1 holds), then Condition (ii) in Definition is
equivalent to the following condition:

(c) There exist positive numbers a, b, K and a measurable function r R [a, b] such
that for all E we have Ir(t) r(t)tl < Ktr(t).

It is clear that (c) implies (ii). To see the converse, let g > 0 be such that Icr(t)l < Mltl
for tl <_ . Then just let
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1193

1

r(t)

if t--0,

if 6 [-3, 3]/{0},

if t>3,

if <-3.

It is easily verified that there exist positive constants a, b, K such that (c) holds for this r.
DEFINITION 2. We say that a constant K > 0 is an S-boundfor cr if there exist a, b > 0

and a measurablefunction r I [a, b] such that, for all N,
(i) b < K,
(ii) ler(t)l < K,
(iii) ler(t)l < girl,
(iv) let(t)- r(t)t] < Kter(t).

The above discussion shows that such (finite) S-bounds always exist.
A constant K > 0 is called an S-boundfor an IRm-valued S-function tr ifK is an S-bound

for each component ofr.
2.2. Lt’-Stability. Consider the initialized control system given by

2 f(x,u),
(1)

x(0) 0,

where the state x and the control u take, respectively, values in ]l and/Rm. We assume that
the function f ]n x 1m - In is locally Lipschitz with respect to (x, u). Terminology for
systems will be as in any standard reference, such as [13].

Throughout this paper, if is a point in Rn, we use I1 (i-1 /2)/2 to denote the
usual Euclidean norm. For each matrix S, SII denotes the induced operator norm, and all F
denotes the Frobenius norm, i.e, IISIIF Wr(SS’) 1/, where Tr(.) denotes trace. Recall that
all _< s F.

For each < p < oe and each integrable (essentially bounded, for p cxz) vector-valued
function x LP([0, cx), Rn), we let Ilxll denote the usual LP-norms:

(foCX)lipII/IIL Ilx(t)llPdt

if p < cx, and

Ilxll-- ess supo<_t<llx(t)ll.

DEFINITION 3. Let <_ p < cx and 0 <_ M <_ x. We say that (1) has LP-gain less than
or equal to M iffor any u LP([0, pc), Rm), the solution x of (E) corresponding to u is in
Lp ([0, cxz), Nn) and satisfies

The infimum ofsuch numbers M will be called the LP-gain of (E). We say that system (E) is
LP-stable if its LP-gain is finite.

By a neutrally stable n x n matrix A we mean one for which all solutions of 2 Ax
are bounded; equivalently, A has no eigenvalues with positive real part and each Jordan block
corresponding to a purely imaginary eigenvalue has size 1. Another well-known characteri-
zation of such matrices is that they are the ones for which there exists a symmetric positive
definite matrix Q such that A’Q + QA < O.
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1194 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

We now state our main result.
THEOREM 1. Let A, B be n x n, n x m matrices respectively. Let cr be an m-valued

S-function. Assume that A is neutrally stable. Then there exists an m x n matrix F such that
the system

k Ax + Bcr(Fx + u),
(2)

x(O) 0

is LP-stablefor all <_ p < .
Theorem is an immediate consequence of the more general technical result contained

in Theorem 2 below. To state that theorem in great generality, we recall first a standard
notion. Let (E) : Ax / Bu be a linear system, where x and u take values in ]n and Im,
respectively. For each measurable and locally essentially bounded u [0, cx) -- ]m and
each x0 ", let Xu(t, xo) be the solution of (E) corresponding to u with xu(O, xo) xo.
Following the terminology of [6], the stabilizable subspace S(A, B) of (A, B) is the subspace
of n which consists of all those initial states x0 n for which there is some u so that
Xu(t, xo) 0 as -- cx. In other words, S(A, B) is the subspace of ]/n made up of all the
states that can be asymptotically controlled to zero (so this includes in particular the reachable
subspace). Observe that the pair (A, B) is stabilizable (asymptotically null controllable) iff
S(A,B) _._n.

THEOREM 2. Let A and B be n n and n m matrices, respectively. Let S(A, B) be
the stabilizable subspace of (A, B). Let cr be an Im-valued S-function and let 0
S(A, B) c_ I1 be a locally Lipschitz function such that II0()11 _< min{L, LIIII} for all,, where L > 0 is a constant and k > 0 is some integer Assume that A is neutrally
stable. Then there exist an m x n matrix F and an e > 0 such that the system

(3)
c Ax + Bcr(Fx + u) + eO(v)

x(O) o

is LP-stablefor each < p < cxz, i.e., there existsfor each p a finite constant Mp > 0 such

thatfor any u LP([O, o), m), v LP([O, ), k),

The proof is deferred to 3.
Theorem 2 implies Theorem (just take 0 0) as well as a result dealing with small

"nonmatching" state perturbations.
Remark 3. It is possible to make the result even more general by weakening the Lipschitz

assumption on 0. Moreover, even the Lipschitz property of o" is not needed. The main problem
in dropping this last assumption is that uniqueness of solutions of the closed-loop system is
then not guaranteed, so that there is no well-defined input-to-state operator. Nonetheless, one
could rephrase all statements by asserting that all possible solutions satisfy the stated bounds.
This is consistent with the way stability is defined in some texts on input/output stability, where
well-posedness (existence and uniqueness of solutions) is stated as a property independent of
stability itself.

2.3. Output stabilization. Consider the initialized linear input/output system

(aao) J Ax + Bet(u),

x(o) o,
y=Ex,
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FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1 195

where A, B, and E are, respectively, n x n, n x m, r x n matrices. Assume that system
(Eao) is asymptotically observable (that is, it is detectable). Our main result for input/output
systems is as follows.

THEOREM 3. Assume that system (Eao) is asymptotically observable, A is neutrally stable,
and the m-valued S-function cr is globally Lipschitz. Then there exist an m n matrix F
and an n r matrix L such that the following property holds. Let 1 < p < cxz. Pick any
Ul G LP([0, x), m) and u2 LP([0, x), r), and consider the solution x (x, x2) of

X’l AXl -k-Bcr(y2-k-UI), y EXl,

x’2 (A d- LE)x2 + Bcr(Fx2) L(yl + U2), Y2 Fx2

with x(O) O. Consider the total outputfunction y (yl, Y2) (EXl, Fx2). Then y is in
Lp ([0, o:), ]r+rn) and

IlYlI < Mp(llull / Ilu211.)

for some constant Mp > O.

2.4. Not every feedback stabilizes. One may ask whether any F that would stabilize
when the saturation is not present would also provide finite gain for (2). Not surprisingly, the
answer is negative. In order to give an example, we need first a simple technical remark.

LEMMA 1. Consider the system J Ax + Bcr(Fx + u), where the matrix A is assumed
to have all eigenvalues in the imaginary axis and where each component ofor is a continuous

function whose range contains a neighborhood of the origin (this holds, for instance, if it is
an S-function). Furthermore, assume that the pair (A, B) is controllable. Then, given any
state xo n, there is some measurable essentially bounded control u steering the origin to

xo in finite time.

Proof. Since all eigenvalues of A have zero real part and the pair (A, B) is controllable,
for each e > 0 there is some control v0 for the system k Ax / Bu so that [w0(t)l < e for all
and v0 drives in finite time the origin to x0 (see, e.g., 12]). Considering that the range of tr

contains a neighborhood of the origin and using a measurable selection (Fillipov’s Theorem),
we see that there is a measurable control v which achieves the same transfer, for the system
Jc Ax + Bet(u). Now let, along the corresponding trajectory, u(t) v(t) Fx(t). It
follows that this achieves the desired transfer for Ax + Bcr(Fx + u). q

The next two examples show that even if A is neutrally stable, Theorem 1 may not be true
if F only satisfies the condition that A + BF is Hurwitz.

Example 1. Let

A=(0 -1 ) (01)0 B= F=-(1/2, 1),

and any cr so that cr (1/2) 1. Then both the origin and (- 1, 0)’ are equilibrium points of the
system

Jc Ax + Bcr(Fx).

By Lemma 1, there is some input u0 that steers the origin to (-1, 0)’ in some finite time To.
Consider the input u equal to u0 for 0 _< < To and to zero for > To. Then if x is the
trajectory of (2) corresponding to Ul, we have that x(t) (-1, 0)’ for all >_ To. Clearly, for
any 1 < p < cx, b/1 LP([0, x), ) and x LP([0, ), ]12). Therefore, system (3) is not
LP-stable for any _< p < z. If we use multiple inputs, a different example which includes
p cx is as follows.
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96 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

Example 2. Assume that m n 2. Let

A ( ), B ( 01 ), F ( -3 7
-1 2/"

Then A + BF F is Hurwitz. Let cr (or0, or0)’, where cro is the standard saturation function.
Then the system

2 cr(Fx + u),
(4)

x(0) (0, 0)’

is not LP-stable for any < p < oo. To see this, take a control v on some interval [0, T] that
steers (0, 0)’ to (1, 1)’. Let u v on [0, T] and u (0, 0)’ on (T, oo). Let x (Xl, x2)’ be
the solution of (4) corresponding to u. Then on IT, oo), we have Xl(t) x2(t) T + 1.
Thus (4) is not LP-stable for any < p < oo. (In fact, the trajectory is not even bounded for
a bounded input.)

3. Proofs of the main results. For notational convenience (to avoid having too many
negative signs in the formulas) we will prove the main theorem for systems written in the form

c Ax Bcr(Fx + u) + cO(v),
(5)

x(0) 0.

A trivial remark is needed before we start.
Remark 4. Assume that or1 k, m and tr2 k2 ]tn each satisfy a growth estimate

of the type IIri(u)ll _< Cllull, IIr2(o)ll _< CIIoll for u 6 , v 6 2. It follows from classical
linear systems theory that if the system . Ax is globally asymptotically stable--that is, A
is a Hurwitz matrix--then the controlled system k f(x, u, v) Ax + BCrl(u) + cr2(v) is
automatically also LP-stable for all < p < oo. We will be interested in the case in which A
is merely stable, but this remark will be used at various points.

We now prove Theorem 2. First note that we can assume that (A, B) is controllable.

3.1. Reduction to the controllable case. Suppose Theorem 2 is already known to be
true for controllable (A, B); we show how the general case follows. It is an elementary linear
system exercise to show that the stabilizable subspace S(A, B), for any two A, B, is invariant
under A; this follows for instance from its characterization as a sum of the reachable subspace
and the space of stable modes. Thus the restriction of A to S(A, B) is well defined, and it
is again neutrally stable. Now since 0 takes values in S(A, B), the trajectories of (5) lie in
S(A, B). So we may assume that (A, B) is stabilizable, i.e., S(A, B) n, since otherwise
we can restrict ourselves to S(A, B). Then, up to a change of coordinates, we may assume
that

A=(A1 A) B=(I )0 A3

where (A, B1) is controllable and A is neutrally stable. Assume that A1 is an r x r matrix
and B1 is an r m matrix.

Let ]I ]1 be given by () (0(1) O(r))’ for 6 r, where 0 is the
standard saturation function, i.e., Oo(t) sign (t) min{ 1, Itl}.

By our assumption that the result is known in the controllable case, there exists an m x r
matrix F1 and el > 0 so that the system

(6)
x (0) 0

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FINITE GAIN FOR LINEAR SATURATED-INPUT SYSTEMS 1197

is LP-stable for all < p _< cxz. Let 1-’p be the LP-gain of this system, so [[Xlllzp
I’p(llull, / Ilwll) for all u 6 LP([0, cxz), Nm) and w 6 LP([0, x), r).

Since (A, B) is stabilizable, we can find an rn x n matrix E such that A + BE is Hurwitz.
Then the system

(7)
(A + BE)y + v,

y(0) 0

is Lm-stable for any _< p < cxz. Let yp be the Lm-gain of (7), so Y ’p v .
Take an e > 0 such that eL?’ BE _< . Let F (F1,0). We show that for this

choice of F and e, system (5) is LP-stable for any < p _< cxz. For this purpose, let
u LP([0, o), Nm), v LP([0, ), k). Letx be the solution of (5) corresponding to u, v.
Let y be the solution of

(8)
(A + BE)y + eO(v),

y(O) O.

Then we have IlYlI eL, and IIYlI eL’plloll (note that II0()11 min{L, tllll}
for all 6 Nk). Let z x y. Then z satisfies

Az Bcr(Fz + Fy + u) BEy,
z(O) o.

Write z (Zl, z2)t. Then we have z2 0 and Zl satisfies

1 AZl Ba(FlZl + Fy + u) B1Ey

z (0) O

Since B1 Ey B1E Y eL, nl E 1, we have

B1Eye =0( BEy).et
Then Zl satisfies

,1 Az Bo(Fz + Fy + u) + eaO
z (0) O.

By the LP-stability of (6) we get that

This shows that (5) is LP-stable, which concludes the proof that we may assume that (A, B)
is controllable.
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1198 WENSHENG LIU, YACINE CHITOUR, AND EDUARDO SONTAG

3.2. ProofofTheorem 2 assuming controllability. From elementary linear algebra, we
know that any neutrally stable matrix A is similar to a matrix

0 A2

where A1 is an r x r Hurwitz matrix and A2 is an (n r) (n r) skew-symmetric matrix.
So, up to a change of coordinates, we may assume that A is already in the form (9). In these
coordinates, we write

B Be

where Be is an (n r) x m matrix, and we write vectors as x (xl, x)’ and also 0 (01,0)’.
Consider the feedback law F (0, B). Then system (5), with this choice of F, can be written
as

(10)
21 AlXl Blo(Bx2 -Jr- u) q--

22 A2x2 B2ff(Bx2 nt- u) nt- e02(v)
xl(O) O, x2(O) O.

Since A1 is Hurwitz, it will be sufficient to show that there exists an e > 0 such that the
xz-subsystem is LP-stable (we may think of x2 as an additional input to the first subsystem
and apply Remark 4).

The controllability assumption on (A, B) implies that the pair (A2, B2 is also controllable.
Since A2 is skew-symmetric, the matrix/ A2 BzB; is Hurwitz. (Just observe that the
Lyapunov equation ’In-r + In-r --2BzB holds, and the pair (, B2) is controllable;
see 13, Ex. 4.6.7].) Therefore, the theorem is a consequence of the following lemma. This is
where the main parts of our argument lie (except for a small technical point, whose proof is
deferred to 3.5).

LEMMA 2. Let or, 0 be as in Theorem 2. Let A be a skew-symmetric matrix. Assume that
ft A BB’ is Hurwitz. Then there exists an e > 0 such that the system

(11)
2 Ax Br(B’x + u) + eO(v),

x(O) 0

is LP-stablefor all <_ p <_
Proof. Assume that cr (o" O’m)t. Let 0 < a < b < ec, K > 0 be constants and

ri IR [a, b], m, be measurable functions so that the components ri of
satisfy (i)-(iv) in Definition 2 with the respective ri ’s. We may assume that K is large enough
such that K > L. Let

r def min lim inf tri ()l.
i=1 I1

Then F > 0. Let e > 0 satisfy

(12) e <

where ?, is the L-gain of the initialized linear control system

(13)
(A BB’)y + u,

y(0) 0.
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By (12) there exists a 6 (0, 1/2] such that

(1 26)1’
g,/-lln

Let u 6 LP([0, o), ]m), /3 Lt’([0, Cx), k). Let y be the solution of

(14)
(A BB’)y + eO(v),

y(O) O.

Let x be the solution of (11) corresponding to u, v and let z x y. Then z satisfies

(15)
Az Bcr(B’z + u + B’y) + BBry,

z(O) o.

Let u + B’y and fi Bty. Then we get

(16)
(1 26)F

Now (15) can be written as

Az B (cr(Btz + ) )(17)
z(0) 0.

(We have brought the problem to one of a "matched uncertainty" type, in robust control terms,
if we think of fi as representing a source of uncertainty.)

]nLet (t)= B’z(t)+ ?t(t). For each < p < oo, consider the function Vo, p IR
given by

Vo, p(X) Ilxll p+l

p+l

Along the trajectories of (17), we have

--IIz(t)llP-i’(t)[r ((t)) O(t)] -!-Ilz(t)llP-’(t’(t)[r ((t)) (t)]
Since K is an S-bound for cr and considering (16), we have the following decay estimate"

(18)

f’O,p(Z(t)) < -]lz(t)llP-l’(t) (or ((t)) fi(t))

+(K+ (1- 26)1’) IIz(t)ll p- Ilfi(t)ll.

We next need to bound the first term in the right-hand side of (18). For that purpose, we will
partition [0, c) into two subsets. By the definition of 1’, there is some M1 > 1 so that

min inf Itri()l > (1-6)I’.
i--1 II_>M1

The first subset consists of those for which II’ (t)II M1V/-. For such t, trivially,

(19) ’(t) (or ((t)) (t)) >_ ’(t)o- ((t)) Ml/-ll(t)ll.
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Next we consider those for which [['(t)ll > M1V/-. First we note some general facts about
any vector 6 ]m for which

(20) I111 > MI/-.

If we pick i0 so that ]iol maxi=l m{lil}, then Ii0l > M1, and therefore, by the choice of
M, Io'i0(io) > (1 8)I". Weconclude that if satisfies (20) then

I111to() ioO-io(io) -- (1- s)r,

or equivalently

(1 -s)r

From this and (16) we have if I[(t)l[ > M1V/-,

(21)

'(t) (er ((t)) fi(t)) > '(t)r ((t)) II'(t)ll IlO(t)ll

>_ '(t)cr ((t)) /mllll' '(t)cr ((t))
(1 -)r

( 1 2) '(t)a ((t))
_

1-8

'(t)r ((t)).
1-8

Note also that < for 0 < 6 < 1/2. Combining (19) and (21) we have a common
estimate valid for all > 0:

'(t) (r ((t)) fi(t)) >

Using this and (18) we get

(22)

(ZO, p(Z(t)) <_ -[[z(t)llP-l'(t) ((t))
1-8

/llz(t)ll p-1 K / II(t)]l 4- M14rll(t)ll

Let r diag(rl rm) with r() diag(r(l) 75m(m)) for 6 ]1 m. Then
a I < r () < b I for all 6 m. Wehave for any 6 m,

(23)

v () r ()11 Ii (i)i O'i (i)l 2

i=1

< K /2 (O'i (bi))2 <
i=1

Nowwe rewrite (17) in the form

(24)
,(t)z + B [r ((t)) (t) cr ('(t)) r ((t)) fi(t) + fi(t)],

z(0) 0,


