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Abstract—This paper provides synchronization conditions for
networks of nonlinear systems. The components of the network
(referred to as “compartments” in this paper) are made up of an
identical interconnection of subsystems, each represented as an
operator in an extended � space and referred to as a “species.”
The compartments are, in turn, coupled through a diffusion-like
term among the respective species. The synchronization condi-
tions are provided by combining the input-output properties of the
subsystems with information about the structure of the network.
The paper also explores results for state-space models, as well
as biochemical applications. The work is motivated by cellular
networks where signaling occurs both internally, through inter-
actions of species, and externally, through intercellular signaling.
The theory is illustrated by providing synchronization conditions
for networks of Goodwin oscillators.

Index Terms—Graph theory, interconnected systems, input-
output stability, nonlinear systems, synchronization.

I. INTRODUCTION

T HE analysis of synchronization phenomena in networks
has become an important topic in systems and control

theory, motivated by diverse applications in physics, biology,
and engineering. Emerging results in this area show that, in ad-
dition to the individual dynamics of the components, the net-
work structure plays an important role in determining conditions
leading to synchronization [1]–[5].

In this paper, we study synchronization in networks of non-
linear systems, by making use of the input-output properties
of the subsystems comprising the network. Motivated by cel-
lular networks where signaling occurs both internally, through
interactions of species, and externally, through intercellular sig-
naling, we assume that each component of the network (referred
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to as a “compartment” in the paper) itself consists of subsys-
tems (referred to as “species”) represented as operators in the
extended space. The input to the operator includes the influ-
ence of other species within the compartment as well as a dif-
fusion-like coupling term between identical species in different
compartments.

A similar input-output approach was taken in [6]–[8] to study
stability properties of individual compartments, rather than syn-
chronization of compartments. These studies verify an appro-
priate passivity property [9], [10] for each species and form a
“dissipativity matrix,” denoted here by , that incorporates in-
formation about the passivity of the subsystems, the intercon-
nection structure of the species, and the signs of the intercon-
nection terms. To determine the stability of the network, [7],
[8] check the diagonal stability of the dissipativity matrix, that
is, the existence of a diagonal solution to the Lya-
punov equation , similarly to classical work on
large-scale systems by Vidyasagar and others, see [11]–[13].

In the special case of a cyclic interconnection structure with
negative feedback, this diagonal stability test encompasses
the classical secant criterion [14], [15] used frequently in
mathematical biology. Following [6], [7], [16] investigated
synchronization of cyclic feedback structures using an incre-
mental variant of the passivity property. This reference assumes
that only one of the species is subject to diffusion and modifies
the secant criterion to become a synchronization condition.

With respect to previous work, the main contributions of the
present paper are as follows: i) The results are obtained by using
a purely input-output approach. This approach requires in prin-
ciple minimal knowledge of the physical laws governing the
systems, and is therefore particularly well-suited to applications
displaying high uncertainty on parameters and structure, such as
(molecular) biological systems. Results for systems with an “in-
ternal description”, i.e. in state space form, are derived as corol-
laries. ii) The individual species are required to satisfy a weaker
condition with respect to the one assumed in [16]. iii) The in-
terconnections among the subsystems composing each network
are not limited to cyclic topologies, thus enlarging the class of
systems for which synchronization can be proved. iv) The diffu-
sive coupling can involve more than one species and its topology
is not required to be balanced. v) The new formulation allows
exogeneous signals, and studies their effect on synchronization.

The paper is organized as follows. In Section II the notation
used throughout the paper is summarized, and the model under
study is introduced. In Section III the main results are presented,
and the proofs can be found in Section IV. In Section V the
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operator property required to derive the synchronization con-
dition is related to verifiable conditions for particular classes
of systems described by ODE’s; moreover the main results are
extended to the case where the compartmental and the species
couplings involve different variables. In Section VI, we show
that the synchronization condition can be expressed in terms of
algebraic inequalities, for particular classes of interconnection
structures. Finally, in Section VII, we illustrate the proposed
theory, deriving synchronization conditions for a network of
Goodwin oscillators and convergence conditions for nonlinear
state observers.

II. PRELIMINARIES AND PROBLEM STATEMENT

We denote by the extended space of signals
which have the property that each restriction

is in , for every . Given an element
and any fixed , we write for the norm of the
restriction , and given two functions and any
fixed , the inner product of and is denoted by

. The same notation is used for vector functions.1

Consider identical compartments, each composed of
subsystems that we refer to as species. The input-output be-
havior of species in compartment is described by

(1)

where is an operator to be further specified. The intercon-
nections among species and compartments are given by

(2)

, , where the coefficients
, , represent the interconnection between

different species, and are identical in each compartment. These
coefficients are grouped into an matrix

(3)

and the resulting interconnection is called species coupling.
The scalars , , are non-

negative and represent the interconnection among systems of the
same species in different compartments. We will call this inter-
connection compartmental coupling. We assume that there are
no self-loops, i.e. , , .
Note that different species can possess different coupling struc-
tures (as implied by the superscript in ). The compart-
mental coupling is expressed in a diffusive-like form, as a func-
tion of the differences between species in the respective com-
partments, and not the species themselves. This is more general
than true diffusion, which would correspond to the special case
in which for all ; under this symmetry condi-
tion, the fluxes and (between
the th species in the th and the th compartments) would
cancel each other out.

1We will denote by � the extended space of � dimensional signals.

Fig. 1. Example of interconnection structure. Each compartment is composed
by 3 subsystems (represented as nodes of a graph) each characterized by an oper-
ator� , � � �, 2, 3. Two subsystems of the same species in different compart-
ments are connected by an edge whenever the corresponding coefficient � is
positive. In each compartment, different species are interconnected according to
a directed graph where the output of a system characterized by the operator �
enters as input of another system (characterized by an operator� ) weighted by
the coefficient � . In this example, the interconnections are cyclic (� � �

unless � � � � � mod 	 ), but the theory allows arbitrary graphs. The com-
partments composing the network are assumed to be identical. For simplicity,
no external inputs are shown in this figure.

Finally, the scalars are external inputs that can model
e.g., disturbances acting on the systems. The resulting in-
terconnected system can be represented as a graph as illustrated
in Fig. 1.

We denote by ,
and the vectors of the outputs, inputs
and external signals of systems of the same species . Given a set
of vectors , , we indicate the stacked vector
by , e.g. we will indicate the stacked
vector of outputs by .

We then rewrite the feedback law (2) as

(4)
where , , are Laplacian matrices associated to
the compartmental coupling

The connectivity properties of the corresponding graphs are
related to the algebraic properties of the Laplacian matrices and,
in particular, to the notion of algebraic connectivity extended to
directed graphs in [17]:

Definition 1: For a directed graph with Laplacian matrix ,
the algebraic connectivity is the real number defined as

where and where
.
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To characterize synchronization mathematically, we denote
the average of the outputs of the copies of the species by

where , , and define

(5)

Because is equal to zero if and only if for some
, measures the synchrony of the outputs of the

species in the time interval . The same notation is used
to define the vectors and .

We recall now an operator property that will be extensively
used in the paper (the definitions are slightly adapted versions
of those in [18], [19] and [10]).

Definition 2: Let . Then is relaxed coco-
ercive if there exists some such that for every pair of
inputs

(6)

If (6) holds with , then is called monotone. If (6) holds
with , then is called cocoercive.

Cocoercivity implies monotonicity and monotonicity implies
relaxed cocoercivity. We refer to the maximum possible with
which (6) holds as the cocoercivity gain, and denote it as .
The existence of follows because the set of ’s that satisfy
(6) is closed from above. In particular, we will call -relaxed
cocoercive the operators with a cocoercivity gain . No-
tice that a -relaxed cocoercive operator with a strictly posi-
tive is a cocoercive operator while, in general, it is only re-
laxed-cocoercive (and also monotone when ). Sometimes
in the literature the terms relaxed cocoercive, monotone, and co-
coercive are referred as incrementally output-feedback passive,
incrementally passive and incrementally output-strictly passive
respectively [3].

When there is no coupling between the compartments, i.e.
, , the compartments are isolated and

their stability depends on the species coupling. Stability with
species coupling has been studied in [6] with an input-output
approach, and in [7], [8] with a Lyapunov approach. Using the
output strict passivity property of the operators

(7)

and defining the dissipativity matrix2

(8)

where

and where is the interconnection matrix (3), [7], [8] prove sta-
bility of the interconnected system from the diagonal stability

2The matrix used in [7], [8] is slightly different than the one used here; we
are adopting the equivalent formulation found in [20].

of the dissipative matrix ; that is, from the existence of a di-
agonal matrix such that

(9)

As we will see in Theorem 1 below, the dissipativity matrix
plays an important role also when studying the synchronization
properties of the system (1), (2). The key differences of Theorem
1 from [7], [8] is that the output strict passivity property (7) is
replaced with the incremental property in Definition 2, and the
coefficients in are augmented with terms from Defini-
tion 1, which are due to diffusive coupling of the compartments.

III. MAIN RESULTS

The following theorem relates the properties of the intercon-
nections and the operators to the synchrony of the outputs in
the closed-loop system. In particular we show that, if the op-
erators describing the open-loop systems are -relaxed cocoer-
cive and the interconnection matrices satisfy certain algebraic
conditions, the closed loop system has the property that ex-
ternal inputs with a “high” level of synchrony (as implied by a
small ) produce outputs with the same property (small

).
Theorem 1: Consider the closed loop system defined by (1),

(2). Suppose that the following assumptions are verified:
1) Each operator is -relaxed cocoercive as in Definition

2, .
2) For , , where is

the algebraic connectivity in Definition 1 associated to the
matrix that describes the compartmental coupling of
species .

3) The dissipativity matrix defined as in (8) with
, is diagonally stable.

Then, for all , , , that
satisfy (1) and (2) we have

for some , and all . Moreover, if ,
then also , and we have .

From Theorem 1 we observe that the compartmental coupling
increases the co-coercivity gain of a species whenever the alge-
braic connectivity is strictly positive. Since high values of co-
coercivity gains tend to improve diagonal stability the compart-
mental coupling has a beneficial effect on synchronization. The
algebraic connectivity is intimately related to topological prop-
erties of the underlying graph associated to the compartmental
coupling (see Section V, Remark 2).

This result can be extended to analyze synchronization in sys-
tems described with a state space formalism (with arbitrary ini-
tial conditions). This extension takes the form of a Corollary of
Theorem 1. Consider the systems

(10)

where are scalars and and the initial condi-
tions are arbitrary. We assume that are locally Lipschitz
in the first argument and that are continuous. Furthermore
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we assume that the systems are -well-posed, in the sense that
for each and each initial state there is a unique solu-
tion defined for all and the corresponding outputs
are also in .

If we set the initial conditions to zero we can define the input-
output operators by substituting any input

in (10), solving the differential equation, and substi-
tuting the resulting state-space trajectory in in
order to obtain the output function . If we assume that the
operators are well defined and we define the input as in (4)
then the results of Theorem 1 apply to the closed loop system.

The assumption that the initial state of the systems are set
to zero is easy to dispose of, assuming appropriate reachability
conditions. The following Corollary of Theorem 1 states that
under the assumptions of Theorem 1 plus reachability and de-
tectability conditions, if the external inputs are not present, the
solutions of the closed-loop systems asymptotically synchro-
nize. In particular we will assume that the closed-loop system
(10) is zero-state reachable, i.e. that for any state there exists
an input belonging to that drives the system from the zero
state to in finite time.

Corollary 1: Consider system (10) and assume that the non-
linear operators , , associated to (10) with
zero initial conditions are well defined. Consider the closed-loop
system defined by (10) with inputs as in (2) but with no ex-
ternal inputs (i.e., ) and suppose that the conditions
in Theorem 1 are verified and that the closed loop system is
zero-state reachable. Then for all outputs that satisfy the closed
loop system equations we have that ,

, , as .
In addition, if for all initial states and all inputs, any two state

trajectories satisfy

, , as , then all bounded
solutions synchronize and the synchronized solution converges
to the limit set of the isolated system (i.e., the system where

for every ).
Remark 1: To guarantee that the solutions of the closed-loop

system are bounded, additional conditions on the isolated sys-
tems are required. One option is to demand that each isolated
system is semipassive (as proposed in [4]).

IV. PROOF OF THE MAIN RESULT AND COROLLARY

We define the matrix

. . .
...

...
...

. . .
. . .

where

It follows that , , and:

. . .
...

...
. . .

. . .
(11)

By observing that

is equal to zero for every if and only if
for every , for some , it is evident that also

is a measure of synchrony for the outputs of the species
(in different compartments) denoted by the index . Moreover,
since from (5) and (11), and are related
by and, thus

(12)

In what follows we will use the same notation to measure input
synchrony, i.e., we define , , .
Before proving Theorem 1 we present a preliminary Lemma:

Lemma 1: Consider the open-loop systems (1). If the opera-
tors , are -relaxed cocoercive then

(13)

for each and every .
Proof: Consider the scalar product

(14)

and define for every , , that in vector
form reads

(15)

Define . By substituting (15) in (14) we obtain

(16)

We first claim that the term is nonnegative. To show
this, we use the -relaxed cocoercivity property of and
obtain

(17)

for . By summing (17) over
and by dividing by a normalization constant we get
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It follows that:

(18)

which proves the claim. Finally, from (16) and (18) we conclude
that

which is the desired inequality (13).
We are now ready to prove Theorem 1.
Proof of Theorem 1: Consider the inputs

(19)

where are the Laplacian matrices representing the coupling
between the compartments and the are for now thought
as external inputs. From Lemma 1 and substituting (19) in (13)
we get

(20)

Next, we note that is a projection
matrix onto the span of . Because , it follows that

and, thus

(21)

By using (21) as well as the fact that

(because this expression is a scalar), we observe that

(22)

were are the smallest eigenvalues of the symmetric part of the
“reduced Laplacian matrices”, i.e., of the matrices

. By using the properties of the matrix it is straight-
forward to check that is the algebraic connectivity as defined
in Definition 1. Combining (20) and (22) we obtain

From Assumption 2 we have that for .
We conclude that

(23)

where . Now, we apply the feedback

(24)

to the resulting system, where represents the in-
terconnection between the different species. By defining

(we apply this convention in general to denote
vectors stackings), we rewrite (24) as

We define

where

From Assumption 3 the matrix is diagonally stable i.e. there
exist positive constants , such that

(25)

and . Choose such that
and observe that

From (23) we can write , for
, and therefore

where and .
Substituting , where

, we obtain

and using the Cauchy–Schwartz inequality we write

for some . We conclude that

for any , where . As a direct consequence, if
then . We conclude by observing that

and for every and
.

To prove Corollary 1 we follow an argument similar to the
one used in [20] to prove stability of interconnected systems.
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Proof of Corollary 1: Consider system (10) where the initial
conditions are arbitrary, the inputs are

(26)

for , , and let be the solutions of
the closed loop system. Consider now system (10) with initial
conditions and inputs . From zero-state
reachability, there exist inputs such that the
solutions at time reaches the states , i.e.
for every . Consider now the input

(27)

and let be the solution with initial state and
input defined in (27). From causality we observe that

and therefore , ,
and therefore studying the steady state behavior of is
equivalent to studying the steady state behavior of . Con-
sider the outputs associated to the solutions (with
zero initial conditions and inputs ). From Theorem 1 we
know that . Since each input is in ,

is in and we have that is in as well. Since
the solutions are bounded, from continuity of we con-
clude that and therefore is absolutely continuous (see e.g.,
[21]). From Barbalat’s Lemma we conclude that for

that implies that also for . This proves
output synchronization. State synchronization directly follows
from the additional property that for all initial states and all in-
puts, given two state trajectories we have that

(28)

for , , as . All the so-
lutions that exist for all converge to the set where for
every , and , ,
as . Since for every , for
all bounded network solutions, the synchronized solution con-
verges to the limit set of the isolated system (i.e. the system
where the compartments are uncoupled).

V. DISCUSSION AND EXTENSIONS

A. Conditions for Relaxed Cocoercivity

The results presented require that the operators describing
the input-output relation of the isolated systems are relaxed
cocoercive. This condition must in general be checked case by
case. Therefore, it is of interest to provide verifiable conditions,
for particular classes of systems described by ODE’s, that
imply relaxed cocoercivity of the correspondent input-output
operator.

Consider a one-dimensional system of the following form:

(29)

with zero initial conditions. Suppose that is a function such
that for every

(30)

The study of conditions like (30) can be traced back to [22], [23].
Note that (30) is equivalent to require that system (29) is conver-
gent when (see e.g., [24]). Sometimes, in the literature,
condition (30) is named QUAD condition (see e.g., [25]–[27]).
We now prove that the associated input-output operator from
to is -relaxed cocoercive. Fix the initial condition to zero.
Consider two input functions and belonging to and
the corresponding outputs and (belonging to as well).
Then

Since (30) holds, we conclude that

Integrating both sides and assuming zero initial condition we
finally obtain

where the norm and the inner product are taken in the
spaces, showing that the associated input-output operator is

-relaxed cocoercive. This result particularizes to linear time
invariant systems and, e.g., for the system ,

, we obtain .
We conclude this section by remarking that Definition 2 par-

ticularizes to the special case in which the operator is a non-
linear function . Moreover it is immediate to show that
a monotone increasing and Lipschitz continuous static nonlin-
earity , with Lipschitz constant , is a -relaxed
cocoercive operator (with positive ).

B. State Coupling Versus Output Coupling

The present work is motivated by synchronization in models
of biochemical networks where the compartmental coupling
represents the diffusion of reagent concentrations (states of the
systems) through the compartments. The results presented in
Section III assume that the species diffuse through the outputs
that, in general, could be nonlinear functions of the species
concentrations. In other words the compartmental and species
couplings involve the same variables and this could be non
realistic in the modeling of biological systems. In this section
we generalize the results of the previous sections to handle this
situation.

Consider the system

(31)
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where

, , that corresponds, in vector nota-
tion, to

(32)

Suppose that the solutions of (31) are defined for every input in
, and that the respective output is in as well. We fix the

initial conditions to zero and we define the nonlinear operators
associated to (31). Suppose that each operator can be

factorized as where is a nonlinear
operator and is a static nonlinearity associated
to the functions from the real line to itself.

Suppose that the operators and are -relaxed cocoer-
cive and -relaxed cocoercive respectively. Consider now the
closed loop system. We follow the same lines of the proof of
Theorem 1 exploiting the cocoercivity of the functions
(associated to the operator ). Consider the inputs

where are (for now) external inputs. Since are -re-
laxed cocoercive, from Lemma 1, we get

(33)
Next we observe that

(34)

Let’s fix and define and . We ob-
serve that is monotone increasing, in fact for every

where the last inequality follows from the fact that
is -relaxed cocoercive. By defining

, we use the identity
to rewrite the right side of (34) as

Suppose that then
. Since are doubly hyperdominant and

are monotone increasing functions, from Theorem 3.7 in [18]
we obtain

We conclude that

(35)
Combining (33) and (35) we obtain

Therefore, if for , we conclude that

where .
The rest of the the derivation follows the same lines of the

proof of Theorem 1 where are redefined by
. This leads to the following result.

Theorem 2: Consider the closed loop system defined by (31)
and (32) with zero initial conditions. Assume that the input-
output operators associated to (31) are
well-defined and suppose that the following assumptions are
verified:

1) The operators and the functions are, respectively,
-relaxed cocoercive and -relaxed cocoercive for

.
2) The Laplacian matrices satisfy the condition

and for , , where is
the algebraic connectivity associated to the compartmental
coupling.

3) The matrix , where , is diagonally
stable.

Then

for some and . Moreover, if , we
have .

Furthermore, if the closed loop systems are zero-state reach-
able, the closed loop system (31) and (32) with no external in-
puts and arbitrary initial conditions has the property
that the outputs of the compartments synchronize, i.e.

, , , as . In
addition, if for all initial states and all inputs any two state tra-
jectories satisfy

, , as , then all bounded
network solutions synchronize and the synchronized solution
converges to the limit set of the isolated system (i.e. the system
where for every ).
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Remark 2: The algebraic connectivity and the properties of
the Laplacian matrices can be related to properties of the un-
derlying interconnection graph associated to the compartmental
coupling. The condition required by Theorem 2 is
equivalent to assuming that the underlying graphs are balanced
(i.e. that for each vertex the sum of the weights of the edges en-
tering in one vertex is equal to the sum of the weights of the
edges exiting from the same vertex). Furthermore, since the re-
sulting Laplacian matrices are doubly hyperdominant with zero
excess, the condition implies that are positive semidef-
inite and therefore the algebraic connectivity . If further-
more we assume that the graph is connected, then the algebraic
connectivity is guaranteed to be strictly positive (see e.g., [17]).

Remark 3: The results presented in the paper can be used to
analyze and design nonlinear observers. To see this, consider two
identical compartments interconnected through a unidirectional
compartmental coupling (for convention going from compart-
ment two to compartment one). The interconnection can involve
one or more of the species. By interpreting the diffusive coupling
terms as output injection, we can regard the first compartment as
a nonlinear model and the second one as its state-observer. Thus
Corollary 1 can be used to provide provable conditions for the
observer error to converge to zero. The fact that our formulation
allows for directed (non symmetric) graphs is here fundamental.
In Section VII we will illustrate this idea with a specific example.

VI. SPECIAL STRUCTURES AND SYNCHRONIZATION

CONDITIONS

Our results are based on the condition that be diago-
nally stable, which is related to both the compartmental cou-
pling (through the algebraic connectivity) and the species cou-
pling (through the interconnection matrix ). In this Section,
we analyze a number of interconnection structures and provide
conditions for the matrix to be diagonally stable. These con-
ditions take the form of inequalities that link the algebraic con-
nectivities of the compartmental coupling with the relaxed co-
coercivity gains of the operators .

Cyclic Systems: Stability of isolated cyclic systems is an-
alyzed in [7]. Extending the work in [7], the output synchro-
nization problem for cyclic systems was studied in [16], for the
special case in which the interconnected systems are coupled
through the output of the first system only. Our approach is suit-
able for more general coupling (the interconnection structure is
depicted in Fig. 2). The interconnection matrix is

. . .

. . .
...

...
. . .

. . .
. . .

and the dissipativity matrix is therefore

. . .

. . .
...

...
. . .

. . .
. . .

Fig. 2. Cyclic interconnection structure.

For this matrix to be diagonally stable the following secant con-
dition must be satisfied [7]:

Since , the secant condition leads to:

(36)

Our approach generalizes the result of [16] (note that cor-
respond to in [16]) where the coupling among the systems
is limited to the first system (i.e., when ,
in (36)). In fact, in this case (36) reduces to

(37)

which is the expression provided in [16].
As an example, consider the case where each species in a

compartment is directly connected to the respective species in
each other compartment with the same weight , i.e.
for every and . This implies that the
Laplacian matrices are

and that , . In this case, (36) specializes
to

where, since must be strictly positive, the condition
, must be satisfied. If we restrict

the compartmental coupling to only the first species, (37) takes
the simple form

Branched Structures: In [8] several interconnection struc-
tures have been analyzed and diagonal stability is proven for
the associated dissipative matrices.
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Fig. 3. Branched interconnection structure, for notational simplicity the inputs
� are not shown in the picture.

i) For the interconnection structure depicted in Fig. 3, the in-
terconnection and dissipativity matrices are, respectively

Lemma 2 in [20] shows that is diagonally stable iff
the condition

holds. Since , the synchronization condition
becomes

(38)

If we limit the coupling to the first species only, (38) re-
duces to

(39)

ii) For the interconnection structure depicted in Fig. 4, the
interconnection matrix is

Fig. 4. Second type of branched interconnection structure. For notational sim-
plicity the inputs � are not shown in the picture.

and therefore the dissipativity matrix is

The analysis in [8] gives the sufficient condition

which leads to

(40)

If we limit the coupling to the first species only, (40) re-
duces to

(41)

VII. CASE STUDIES

A. Synchronization in Networks of Goodwin Oscillators

We illustrate the proposed theory via a genetic regulatory
network example: the Goodwin oscillator. We consider a net-
work of identical Goodwin oscillators interconnected through
a compartmental coupling described by Laplacian matrices

. The Goodwin model is an example of
cyclic feedback systems described in Section VI where metabo-
lites repress the enzymes which are essential for their own
synthesis by inhibiting the transcription of the molecule DNA
to messenger RNA (mRNA). The model for such a mechanism
is schematically shown in Fig. 5(a) and can be described as the
cyclic interconnection of 3 elementary subsystems plus a static
nonlinearity [see Fig. 5(b)].

Each Goodwin oscillator can be modeled as a compartment
made up of the following four cyclically interconnected sub-
systems (see [28] for more details)

(42)
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Fig. 5. (a) Biological interpretation for the Goodwin oscillator. The enzyme
(e) combines with the substrate to produce a product (p) which represses the
transcription of DNA to mRNA (m), the template for making the enzyme. (b)
Input-output scheme representing the mathematical model (42) where � �

�� , � � � , � � � .

, , 2, 3, where , are positive coef-
ficients, is the Hill coefficient (that measures the coop-
erativity of the end product repression) and are external
inputs. The interconnections are encompassed by the inputs

(43)

, , where , ,
, and give rise to the cyclic interconnection matrix

while the second term in (43) represents the diffusion among the
compartments.

From Section V, we observe that the linear sub-systems ,
, 2, 3 can be associated to cocoercive operators with con-

stants . The static nonlinearities are monotone
increasing functions that satisfy

where

(44)

From Section V we know that the co-coercivity coefficient for
the static nonlinearity is . Since all the blocks are associated
to cocoercive operators, Assumption 1 in Theorem 1 is satisfied.
The closed loop system is zero-state reachable since it can be
fully actuated from the external inputs . Furthermore it is
proved in [16] that the positive orthant is an invariant set and

Fig. 6. Simulation results for a network of Goodwin oscillators where only the
first species are coupled through a complete compartmental coupling � and
where � � � � �� . On the left: two oscillators are not sufficient for synchro-
nization. On the right: simulation results for 180 oscillators. As predicted by the
synchronization condition the oscillators synchronize.

Fig. 7. Simulation results for a network of Goodwin oscillators where only
the first species are coupled through a ring compartmental coupling � and
where � � ����. On the left: as predicted by the synchronization condition
four oscillators are sufficient for the network to synchronize. On the right: the
number of cells is increased up to 45 and synchronization is not observed.

that the solutions of the closed loop system are bounded. The
secant condition for cyclic systems (36) specifies to

(45)

Therefore, if (45) holds, then all the conditions of Corollary
1 are satisfied and we conclude that the concentrations of the
species in different compartments synchronize when ,

, 2, 3, .
When the compartments are isolated each of them has a

unique equilibrium. By choosing the parameters ,
, 3 and , it can be easily proved that the

equilibria are asymptotically stable when . When
the steady state undergoes Hopf bifurcation and for a
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TABLE I
SUFFICIENT CONDITIONS, OBTAINED FROM (47), TO ACHIEVE SYNCHRONIZATION FOR DIFFERENT DIFFUSIVE GRAPH TOPOLOGIES. FOR EACH GRAPH DEPICTED

IN THE FIRST COLUMN, WE CONSIDER TWO CASES: (1) ONLY THE FIRST SPECIES IN EACH COMPARTMENT ARE ALLOWED

TO “DIFFUSE”, AND (2) BOTH THE FIRST AND SECOND SPECIES “DIFFUSE”

stable limit cycle arises. With this choice, the cocoercive gains
are , . By substituting in (44) we
obtain and the secant condition (45) becomes

(46)
Condition (46) relates the compartmental coupling to the syn-
chronization property of the compartments through the alge-
braic connectivities , , 2, 3.

For simplicity, we assume that those edges that exist all have
the same weight (which can be interpreted as diffusion co-
efficients), i.e. for every , 2, 3,

. Consider for example the case in which only the first
and the second species diffuse. Then condition (46) reduces to

(47)

By substituting the expression for the algebraic connectivity
(for different graph topologies) in the second order inequality

(47) we can find conditions on the number of cells and the dif-
fusion coefficients such that synchronization is guaranteed. In
Table I we list these conditions for a number of relevant graph
topologies.

The resulting relations admit interesting biological interpre-
tations. Let us think of each compartment as a biochemical net-
work inside each cell in a population or “colony” of identical
cells.

Consider the complete graph denoted as in Table I. Now
pick a diffusivity coefficient for which our “synchronization
condition” estimates fail to hold, and suppose that the overall
network does not synchronize. From Table I, we observe that a
sufficient increase in the total number of cells in the colony will
result in synchronization between all the cells. Thus, we may
view the number of cells as an order parameter (or “synchro-
nization bifurcation” parameter). Numerical simulations sub-
stantiate this claim, as shown in Fig. 6.

As another example, consider the star graph . Analyzing
the conditions in Table I, we see that, for this type of graph, the
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Fig. 8. System-observer interpretation for two Goodwin oscillators unidirec-
tionally coupled.

number of cells does not play a role in the conditions for syn-
chronization. Instead, it is only required now that be beyond a
given threshold.

The ring graph and the line graph lead to a quite dif-
ferent qualitative picture. First, note that we obtain two sepa-
rate conditions for and . If is sufficiently large (e.g., in
the case of first and second species coupled, for

and for ), then we have an upper bound on
the number of cells, instead of a lower bound. Thus, for either
line or ring topologies, in which the graph diameter increases
with the number of cells, we see that a large number of cells,

, leads to more restrictive conditions for synchronization. In
Fig. 7, this phenomenon is illustrated through simulations. In-
deed, numerous bounds have been derived in the literature [29],
[30] which show that, as the diameter is increased to infinity, the
algebraic connectivity of a graph tends to zero.

B. Synchronization Conditions and Observer Design

To illustrate the idea introduced in Remark 3, we consider
two Goodwin oscillators and a directed link coupling the first
species. This special interconnection structure gives rise the fol-
lowing system-observer dynamics:

The term (where is the weight of the link), that
was interpreted as diffusion of the first species concentrations,
is now the output injection to the observer (see Fig. 8). Then
the synchronization condition (47) reduces to

and can be interpreted as a sufficient condition for the observer
error to converge to zero. We conclude that if

then the errors as , , 2, 3.

VIII. CONCLUSION

Synchronization properties for networks of nonlinear systems
have been investigated combining the input-output properties of
the subsystems with the information about the network struc-
ture. The proposed model is motivated by cellular networks
where signaling occurs both internally, through interactions of
species, and externally, through intercellular signaling. Results
for state-space models as well as biochemical applications have
been derived as corollaries of the main result.
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