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An algebraic approach to bounded controllability of linear
systemst

EDUARDO D. SONTAG}

In this paper we present an algebraic approach to the proof that a linear system with
matrices (A4, B) is null-controllable using bounded inputs if and only if it is null-con-
trollable (with unbounded inputs) and all eigenvalues of 4 have non-positive real
parts {continuous time) or magnitude not greater than one (discrete time). We also
give the analogous results for the asymptotic case. Finally, we give an interpretation
of these results in the context of local non-linear controllability.

1. Introduction

Let (A, B)be a pair of real matrices satisfying the usual Kalman reachability
condition : rank (A, AB, ..., A»'B)=n=size of A. Assume that B has m
columns and that the input space is now restricted to a bounded subset U of E™

. which contains 0 in its interior. We wish to know if the corresponding con-

tinuous and discrete time systems (with control space U) are null-controllable
(NC). Since these systems are locally NC, it is clear that a sufficient condition
for NC to hold is for 4 to be a (continuous or discrete) stability matrix. It is
also true, but less obvious, that NC holds even if some eigenvalues of A are
purely imaginary (unitary magnitude in discrete time); the difficulty in
principle is in the control of the possible polynomially unstable modes, using
bounded inputs.

This more general statement has been proved for continuous time scalar
(m=1) systems in Lee and Markus (1968), which also gives a proof in the (con-
tinuous) case with m>1 but with extra assumptions on 4. These assump-
tions were dropped in later works (Brammer 1972, Schmitendorf and Barnish
1980). One goal of this paper is to show that this result can be obtained as a
simple consequence of some general facts (to be developed later) in the module
theoretic theory of linear systems together with a rather interesting lemma
about polynomials. More importantly, the proof given here applies equally
well to (and in fact depends on) the discrete time case. The latter is of interest
in itself and also in terms of the continuous time case, since it provides a result
on sampled controllability. We present also the corresponding results for
agymptotic null-controllability (ANC).

Finally, we shall mention an application to the problem of (local) non-
linear ANC. It is desirable (Sontag 1983 a, b) to include in the definition of
ANC, a statement about magnitudes of controls needed to control small states.
The linear results mentioned above can be translated into one such statement.
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2. Main results
Let AeRnx», BeRn*m,  Associate to {4, B) the continuous (resp., discrete)
time system X with equations

#()[z(t + 1)] = Az(t) + Bu(t) (1)

Let ¢(¢, =, ) denote the state of Z at time £ > 0 which results from z(0) =z and
the application of the control u(:) (discrete or continuous time depending on
the context; in the continuous case, take the controls to be piecewise con-
tinuous). Fix U< R*. An (m-input) system X is in ANC (U) (asymptotically
null-controllable using controls in U) if and only if, for each state x, there is
an input u(-) with w(t)eU for all ¢ and such that (¢, =, u)—>0 as t—o0. If,
moreover, there is for each 2 a w with values in U such that (7T, x, u)=0
for some (finite) 7', thew X is in NC (U). We say that X is null-controllable
(NC) (resp., ANC) if ZeNC (R") (resp., Z€ANC(R")), and that £ is SINC
(small-input NC) (resp. SIANC—small-input ANC) if and only if £ is in
NC(U) (resp., ANC(U)) for every U that is a neighbourhood of 0 in R™.
Finally, a continuous (resp., discrete) time X (or the corresponding A) is

" asystable if and only if each eigenvalue A of 4 has Re A<0 (resp., |A| <1)
. and adegquate if and only if each A satisfies Re A<0 ([A|<1).

Factor the characteristic polynomial of 4 as 7w =mx,m,, where =, collects all
the roots with Re Az 0 (|A| > 1, in discrete time). Let X,=X (A4):= kern,,
4,: X,— X, be the restriction of 4, and B, : B*— X, the (co-)restricted map.
There results a system X, (well-defined up to a choice of basis for X,). Simi-
larly for a system X,. Recall that X is ANC if and only if Z, is reachable.
This is proved by a standard argument, as follows. If X is ANC consider the
induced system in X /R, (R, being the reachable set of X,). It is easy to
see that this system is again ANC; on the other hand, this quotient system
has B=0 and an A4 which is not asystable, a contradiction. For the con-
verse, note that reachability implies that X, is NC and that, in general,
2eANC(U) whenever Z£,eNC(U), provided that 0eU. This is because one
may always apply first a control with values in U sending the X -coordinate
of a given state to 0 (in finite time), and then concatenate this control with
one (of infinite length) constantly zero. '

Regarding NC, recall that this is equivalent in continuous time, to reacha-
bility, and in discrete time to the image of A" being included in the reachable
set (so that it is again equivalent to reachability if 4 is known to be non-
singular, for example for X ).

'The main results on SINC and SIANC are as follows.

Theorem 1
The following statements are equivalent :
(@) X is SINC;
(b) ZeNC(U) for some bounded neighbourhood of 0 in U ;

(¢) XeNC(U) for some bounded U ; and
(2) Z is NC and adequate.
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Theorem 2 \
The following statements are equivalent :

(a) Zis SIANC;

(b) TeANC(U) for some bounded neighbourhood of 0 in U ;
(¢) ZeANC(U) for some bounded U ; and

{d) T is ANC and adequate.

Note that (d) in Theorem 2, is equivalent to asking that £, be reachable
and adequate (i.e., Z, is SINC) so that in particular all eigenvalues A of A4,
have zero real part (|A| =1 for discrete time).

The proofs of the theorems will be given below but first consider the follow-
ing feedback characterization, which is fairly obvious (using the control canoni-
cal form) in the scalar (m =1} case. Choose any norm on matrices Ke Rm*",

Theorem 3

Z is STANC if and only if the following property holds ; for each 8> 0 there
is a K such that |K|| <8 and 4 + BK is asystable.

Proof

Assume Theorems 1 and 2 hold and that the stated property holds. By
continuity (on K) of the eigenvalues of A + BK, ¥ (equivalently, Z,) must be
adequate. And the property clearly implies ANC of Z, so Theorem 2 applies.
Conversely, assume that ¥ is SIANC. Observe that if the result is proved for
X, then it will also be true for X ; this is because, if 4,4+ B, K, is asystable,
then A + BK also is, for K := (0, K,). We use this observation to conclude
that we may assume that T is reachable (since X, is). Consider now the
smooth map

A: G—Rrvn (T, K)—T(A + BK)T- (2)

where G := GL(R")x R»*", geen as a product manifold. We calculate the
differential of A at e:= (I, 0), where I is the identity : consider for any
(8, L)eT,G the curve (e, I+tL); an application of the Baker—Campbell-
Hausdorff formula gives that

d,A(S, L) =[S, A1+ BL : 3)

where [-] denotes the Lie bracket on R"**, It can be proved that every
matrix can be written as [S, L]+ BL, for fixed (A4, B) and varying (S, L},
if and only if (4, B) is reachable (see Hermann and Martin 1977). Thus,
A is a submersion at e. By the implicit function theorem, A is open on a
neighbourhood N of e. Pick 8> 0, and restrict N so that (7, K)eN implies
| K| <B. Since A(N) is an open neighbourhood of A, it must contain some
asystable matrix C. {This last statement can be proved in a variety of ways ;
for instance, by a perturbation of the non-fixed coefficients of the rational
canonical form of 4. It is essential here, of course, that 4 is adequate.)
Thus C=T(A+ BK)T-!, for suitable T' and K such that | K| <8. It follows
that A + BK is also asystable as desired. O
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It is interesting to remark that an argument analogous to the above can be
used to give a proof of the pole-shifting theorem that does not require Hey-
mann’s lemma for the reduction to the scalar case : given a reachable (4, B)
the same argument shows that we may perturb 4 by feedback into a cyclic
matrix ; now we know that there is a u such that (4, Bu) is reachable (see
Wonham 1974, p. 42), and we are back in the scalar case.

We now turn to the proofs of Theorems 1 and 2. Note that (a)=>(b)=(c)
are trivial in both. The implication (d)=(a) in Theorem 2 follows from
Theorem 1: choose U a neighbourhood of zero. "Since £, is SINC, Z,eNC(U),
so by a previous remark we conclude that ZeANC(U), as desired. Consider now
(@)=>(a) in Theorem 1. We claim that it is enough for this to prove the result
for reachable X. Indeed, assume given any adequate system X which is also
NC. In continuous time, X is necessarily reachable. In discrete time, split
A into a direct sum of a nilpotent 4, and a non-singular 4,. The induced
{A4,, B,) is reachable, and hence also SINC if the result has been proved for

- reachable systems. But then ¥ itself is SINC, because any controlling input

for the non-singular subsystem can be concatenated by a finite sequence of
zeros which controls the nilpotent part to zero. Further, we claim that for
(d)=>(a) it is enough to treat the discrete time case (which is the topic of the
next section). For this, assume that % is continuous time, reachable and
adequate. Find a sampling rate d small enough that the induced discrete
time system X, is itself reachable. Since A,=exp (d4) is (discrete time)
adequate, X, satisfies (d) and is therefore SINC. Thus Z is itself SINC, in
fact with sampled (i.e. constant on intervals of length d) controls.

Finally, we prove that (c)=>(d) in Theorems 1 and 2. We shall only give
details for the continuous time case; the discrete case is totally analogous.
Since NC(U) = ANC(U) for all U, all we need to prove is that (¢) in Theorem
2 implies that £ is adequate. We proceed analogously to Lee and Markus
(1968, p. 92). Assume that X is not adequate. Modulo GL(n), we may write
the equations for X in such a way that the first coordinate is

&= Ao, + Zbu, (4)
with some A (real) > 0, or the first two coordinates are

&y = ok, + By + Ebsu,
(5)
Eo= — P, + oz, + Zbu,

with real « >0. Since the U in (¢} in Theorem 2 is bounded, there is a large
enough initial x,(0) in (4) or a pair (x,(0), 2,(0)) with 2,%(0) +x,%(0) large enough
in (5), such that the derivative #, (or the derivative of x,2+ x,?) is positive for
any control with values in U. Thus there are initial vectors 2(0) which cannot
be controlled asymptotically to zero, a contradiction.

3. Proof of sufficiency

We establish in this section the only remaining (and the most interesting)
implication of Theorems 1 and 2 : if T is discrete time, reachable, and adequate
then it is SINC. The proof will proceed by first reducing to the scalar case,
through the introduction of a set of ‘ finite memory ’ input transformations
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which acts on reachable systems. These transformations will be such that
systems in the same orbit will be simultaneously SINC and such that every
system becomes equivalent to & parallel connection of scalar systems. (Note
that the latter requirement would be satisfied by the feedback group, but the
first requirement would not, since the SINC property is not preserved under
feedback.)

Specifying a system (4, B) (with m inputs) amounts (up to isomorphism)
to giving a pair (X, g}, where X is a finitely generated torsion R[z]-module
and ¢g: A—X is a surjective R[z]-linear map (here we denote A : = R[z]™)
(see, for instance, Kalman et al. 1969, chap. 10). We define an equivalence
among reachable systems using their representation as pairs (X, g} : T, ~ X, will
mean that there exist R[z]-linear maps ¥V : A—A and 7' : X—X such that the
following diagram commutes '

v
A—A

Bl 19 (6)
X=X,
T

Another way of expressing this equivalence is the following. For a given
automorphism ¥ of A, there is a T as here if and only if V(kerg,)=kerg,.
Thus two systems are equivalent if and only if the kernels of their g-maps are
isomorphic as submodules of A; if D, is a (square) matrix whose columns
form a basis of kerg;, this amounts to requiring that D; and D, be equivalent
as polynomial matrices.

Note the following facts : (a) Z, isomorphic to X, implies X, ~Z, (isomor-
phism is the same as the existence of a T’ so that (identity, T) is as above) ;
(b) when m=1, X, ~Z, only if they are isomorphic (because in that case V
must be a multiplication by a non-zero scalar r, so that r—1T gives an iso-
morphism) ; (¢) £, ~Z, implies that 4, is similar to A4,, and in particular that
3, is adequate if and only if %, is ; and {d) for each X, there is a X, equivalent
to it which is a parallel connection of scalar systems, i.e. such that the basis
matrix D, of kerg, is diagonal (this by existence of Smith forms, i.e. the
fundamental structure theorem for finitely generated modules over a p..d.).
Finally, we need the following property.

Lemma
Assume that Z; ~X,. Then X, is SINC if and only if Z, is SINC.

Proof

Assume that X, is SINC. Let U, be a neighbourhood of 0 in B™, and
pick an >0 such that {|u| <a}=U, We will prove that Z,eNC(U,). Let
(V, T) give the equivalence X, ~Z,, and write V=XV ;' as a polynomial of
degree r with coefficients in Rm<m,  Pick any 8> 0 such that ||V ||8 <« for
t=1,...,r. (Use any pair of compatible norms on vectors and operators.)
Take U, := {|%| <8} Pick any yeX, and let =:= Ty, 2’ := zz. Since
Z,eNC(U,), there is an « >0 and a w=ZuzzieA of degree less than s such that

282 4 g, (w) =0 (7)
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Applying T to both sides of this équation gives ]
ey 4 golw')=0 (8)

where w' = Vw. Since deg w' <r+3s, (8) shows that w' controls y to 0. Write
w'=2Xu', 2k, From the choice of B it follows that all |u';| <, so that w’ has
values in U,, as desired.

It follows from the above observations that it is enough to prove the result
for systems which are parallel combinations of scalar systems, since all desired
properties are preserved under equivalence. But then, it is only necessary
to treat the scalar case, since a sum of systems is SIANC if and only if each
system is (just apply independent controls on each channel). Consider the
following fact about polynomials.

Proposition 1

Let p(z) be a monic real polynomial all whose roots have magnitude less
than or equal to one. Then, for each §> 0, there exists a monic real polynomial
g(2) =2* 4+ Za;z' such that (1) p divides g, and (2) |a;| <8 for each <. '

Assume for a moment that the above result is true. Let Z=(X,g) be a
(reachable) scalar adequate system. We shall identify X with A/(p), where p
is the characteristic polynomial of 4, and g with the canonical quotient map.
Pick now an UgR, containing a neighbourhood {|u|<«}. Pick any
state z. Let v, i=0, ..., n—1, be such that

2%z = To2i(mod p) _ (9}

Tet M be an upper bound on the |v;|, and let 8 := a(Mn)~t. Apply the above
lemma to these p, B, and let g be as there. Thus, 2¢F= ~Zaz{(mod p). It
follows that

Zrth—l= — (Za,zi)(Zv,2?) = Beyzh(mod p) (10)

where the latter polynomial has degree <n+%—2. Thus z is controllable to
zero using the inputs ¢,. By the choice of B, all the ¢, are in U, as desired. []

Proof of Proposition 1

Without loss of generality, we may assume that 8<1. Note first that it
is sufficient to find a polynomial ¢ with complex coefficients satisfying the
conclusions. This is because if p divides such a ¢, then it also divides ¢,
where q(z) =q,(z) + igo(2) with both ¢, real.© We shall establish the result by
induction on r (degree of p). Introduce’for integers k> 0 and complex num-
bers A with |A] <1, the polynomials ‘

Poale) = 2 — Z(MEHR)z (1)

Note that A is a root of p, ,, and that all its coefficients have magnitude
<1fk. If p(z)=z— A has r=1, pick any & with 1/k <8 ; then ¢:= p, , is as
desired. Assume now that p(z) =(z— A)p’(z), and that there is a monic poly-
nomigh¢’ with non-leading coefficients of magnitude <p and divisible by
p’. Pick now an integer k >deg ¢’ such that 1/k<pB. Let a:= Ak+l, and
take ‘

g"(2) 1= Do ul2FH) (12)
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Note that A is a root of ¢”, so z— A divides ¢". It follows that p divides ¢ : =
¢’q". It only remains to see that all non-leading coefficients of ¢ have magni-
tudes less than B. But, by construction, these coefficients are products
{not sums of products) of the non-zero coefficients of ¢’ and ¢, for which the
magnitudes are less than B. O

4. A (local) non-linear property

We wish to interpret here some of the previous concepts and results in terms
of local properties of non-linear systems. Consider a continucus (resp.,
discrete) time system on E™ of the form

2()[z(t+ 1)]=fz(t), u(t)) (13)

where f is differentiable with {0, 0)=0: f(x, u)=Ax+ Bu+olz, ). Again
assume controls are piecewise continuous in the continuous time case, and
denote solutions by ¢(t, z, u). Let T be the continuous (resp., discrete) time
linear system associated with (4, B).

Proposition 2

Assume that £ is SIANC. There exists then a neighbourhood V of 0
in R" and 2 map g : R, — R, such that (1) g(a) =0(«) a8 «a—0, and (2) for each
zeV there is a control % such that |u(t)| <g(||z||) for all ¢ and such that
d(t, 2, u)—0 as t—c0.

Proof

Through sampling at a suitable frequency, it is again sufficient to prove the
result for discrete time systems. We claim first that, for each 8> 0, there
are an integer N, and N m x n-matrices K,, ¢=0, ..., N —1, such that (a) all
| K;| <B; and (b) AN+ ZA’BK,| <1/4. (It will be convenient here to use the
‘L, norm |z| =Z|z;| on R* and R™, and the corresponding operator norms.)
To prove this claim, consider the canonical basis vectors ¢;, and find an N,
and for each i, a sequence of control values w,, ..., uy_, such that | AVe,+
ZA/Buy| <1/4 and all the |u;|<pB. Then the matrix K; with columns
M, ..., u;® has the desired properties. Consider now the (discrete) system
(13), and take any state . Pick >0 and obtain the K; as above. Apply
the control u(¥ —j) := K,;_yx, j=1,..., N. Then

$(N, z, u)= (AN +ZATBK)x + o(x) (14)

We can then define functions a : R, » R, and N : R, — N, such that the follow-
ing property holds for each 8> 0: For each x with || <a(B) there is a control
u(+) such that ||u(t)| <B|=| for each ¢ and ||$(N(B), z, u)|| <||z[|/2. Define by
induction «, := (1), and oy, : = a{e/k). Modify if necessary the «; so that
they monotonically decrease to 0 and &, <1. Let ¥ be the ball of radius e,
centred at 0. Assume that a state z is such that ||z| <« for some k. Then
there are an N and a control «(-) such that |u(j)| <ap_,|z|/k <[] for all
Jj and such that 2" : = $(N, 2, u) has norm <a,/2. Since in particular |z’|| <«,,
we may repeat the construction and control 2’ to a state ” with norm <e,/4,
uging another control with values of magnitude less than |z|/k. TIterating,
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we obtain by concatenation an infinite length control u(-) with each |Ju(t)| <
|z]l/& and such that ¢(t, x, u)—0 as é—~oo. For a map satisfying the require-
ments of the proposition, take now the piecewise linear map g which is linear in
between the «; and which has values g(a;) 1= «,/(k—1). d

The converse of Proposition 2 is ‘ almost ’ true. Specifically, the existence
of V, g as there implies that the linearization X is adequate. In general, of
course, it does not follow that X is ANC, but if the system (13) is itself linear
(hence the same as X), then the conclusions imply local ANC hence by linearity
global ANC, and so the converse holds. The proof that = must be adequate is
analogous to that of the implication (c)=>(d) in Theorems 1 and 2. We sketch
the case of continuous time systems with at least one positive real A ; the other
cases are si\milar. Choose coordinates so that the first equation of (13) is

&, = Axy + Zbu; +o(x, u) (15)

Pick « > 0 small enough so that ||z|| <« and |u| <« imply all of the following :
jotw, )| <Alzl/z+ [ul, zeV. gJel)<|el. and (1+Zo,Dg(fe])|z] <2
Pick now any non-zero vector of the type a := (a,, 0, ..., 0) with |a| =g, <a.
Find «(-) as in Proposition 2 ; thus |u(t)| <g(e,) <« forall t and z() : = $(¢, a, u)
converges to zero. Without loss of generality, we may assume that w(f) is
continuous on ¢, Pick any ¢tz 0 for which z,(t)=a,. The first equation gives

#,(0) =ay(A +o),

where
¢ 1= [Zbau,lt) +ola, u(t))]/a,.
But
|e| < Zb;|g(a))fay + Alla|/2a, +g(a))/a, < A (16)
Thus #,(t)> 0 whenever x,(t)=a. It follows that z,(-) cannot satisfy z(0)=a
and also converge to zero, a contradiction. ]
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