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Every dichotomy on a 2k-point set in RN can be implemented by a 
neural net with a single hidden layer containing k sigmoidal neurons. 
If the neurons were of a hardlimiter (Heaviside) type, 2k - 1 would be 
in general needed. 

1 Introduction and Definitions 

The main point of this note is to draw attention to the fact mentioned in 
the title, that sigmoids have different recognition capabilities than hard- 
limiting nonlinearities. One way to exhibit this difference is through a 
worst-case analysis in the context of binary classification, and this is done 
here. Results can also be obtained in terms of VC dimension, and work 
is in progress in that regard. For technical details and proofs, the reader 
is referred to Sontag (1989). 

Let N be a positive integer. A dichotomy (S-, S+) on a set S RN 
is a partition S = S- US, of S into two disjoint subsets. A function 
f : IRN + pi will be said to implement this dichotomy if it holds that 

f(u) > 0 for u E S+ and f(u> < 0 for u E S- 

Let 6 : R + R be any function. We shall say that f is a single hidden layer 
neural net with k hidden neurons of type 6 [or just that f is a ”(k ,  @-net”] 
if there are real numbers wo, wl, . . . , ‘Wk, 7 1 , .  . . , Tk, and vectors v1, . . . , v k  E 
RN such that, for all u E RN, 

where the dot indicates inner product. 
For fixed 6, and under mild assumptions on 6, such neural nets can be 

used to approximate uniformly arbitrary continuous functions on com- 
pacts. See, for instance, Cybenko (1989) and Hornik et al. (1989). In 
particular, they can be used to implement arbitrary dichotomies. 
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In neural net practice, one often takes B to be the sigmoid 
1 

1 + e-" 
= ~ 

or equivalently, up to translations and change of coordinates, the hyper- 
bolic tangent Q(z) = tanh(z). Another usual choice is the hardlimiter or 
Heaviside function 

which can be approximated well by tanh(yz) when the ''gain'' y is large. 
Most analysis has been done for 31, but backpropagation techniques typ- 
ically use the sigmoid (or equivalently tanh). 

It is easy to see that arbitrary dichotomies on an 1-element set can be 
implemented by ( I  - 1,'H)-nets, but that some dichotomies on sets of 1 
elements cannot be implemented by nets with less than 1 - 1 Heaviside 
hidden neurons. 

We consider functions 8 : R + R that satisfy the following two prop- 
erties: 

(S1) t ,  := limz++m B(s) and t-  := limz+-m B(z) exist, and t ,  # t-. 
(S2) There is some point c such that B is differentiable at c and 

Note that the function 31 does not satisfy (S2) ,  but the sigmoid of course 
does. The main result will be stated for these. 

Q'(c) = p # 0. 

2 Main Result and Remarks 

Theorem 1. Let 8 satisfy ( S l )  and (S2), and let S be any set of cardinality 
1 = 2 k .  Then, any dichotomy on S can be implemented by some ( k ,  8)-net. 

Thus, using sigmoids we can reduce the number of neurons from 
2k - 1 to k ,  a factor of 2 improvement. Of course this result should not 
really be surprising, since for Heaviside functions there are fewer free 
degrees of freedom [because 31(yz) = H(z)  for any y > 01, and in fact its 
proof is very simple. The idea is to first classify using a net with k - 1 
Heaviside hidden neurons plus a direct connection from the inputs to the 
output, and then replacing these direct connections by just one nonlinear 
hidden neuron. The differentiablity assumption allows this replacement, 
since it means that at low gains any linear map can be approximated. 

To conclude this note, we wish to remark that there are "universal" 
functions B satisfying (Sl)-(S2) and as differentiable as wanted, even real- 
analytic, such that, for each N and each dichotomy on any finite set 
S RN, this dichotomy can be implemented by a (1, @-net. Of course, 
the function B is so complicated as to be purely of theoretical interest, but 
it serves to indicate that, unless further restrictions are made on (Sl)-(S2), 
much better bounds can be obtained. 
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