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Abstract— This paper makes some remarks concerning
model-based estimation methods for the rate of a nonhomo-
geneous Poisson processes that describes events arising from
modeling biological phenomena in which discrete events are
measured. We describe an approach based on observers and
Kalman filters as well as preliminary simulation results, and
compare these to other methods (not model-based) in the
literature.

I. INTRODUCTION

This work is motivated by questions arising from modeling
biological phenomena in which discrete measurements such
as “spikes” or “tumbles” are measured, and the objective is
to estimate the underlying rate λ(t) of a nonhomogeneous
Poisson processes (NHPP) that describes these events. In
such problems, often a small number of realizations is
available (for example, through single-cell measurements
of a number of neurons or of a population of bacteria).
Current microfluidic (for bacteria) or electrode (for neurons)
technology allows one to assume that internal variables
(voltages, protein concentrations) in these systems behave
reasonably identically, so that the only source of randomness
is in a jump process driven by these internal variables. In
this paper, we outline an approach based on observers and
Kalman filters, providing simulation results and comparing
these to other methods (not model-based) in the literature. A
follow-up paper will further develop theory.

We remark that superficially analogous problems have
been studied in which a diffusion (stochastic differential
equation) describes the evolution of internal parameters and
a nonhomogeneous Poisson process is observed, see for
example [15], [2]. However, our problem is substantially
different, because no randomness is assumed in the internal
variables, but repeated realizations are observed.

In the statistics and signal processing literature, this prob-
lem has been studied for certain special classes of signals.
There are many ways to pose mathematically the estimation
problem that we are interested in. For example, one could
look for a maximum likelihood (ML) estimate of parameters,
if a parametric model class is assumed for λ(t). This amounts
essentially to a maximum a posteriori (MAP) estimate with
a uniform distribution on parameters as prior [5]. However,
there is no natural probabilistic structure in our applications
to suggest the most natural prior; even a conjugate prior to
the given Poisson model would not be necessarily justified.
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On the other hand, often the ultimate objective is control,
in which case estimates of current states (and specifically of
the current λ(t)) are more important than estimates of the
entire history. This suggests the use of observers, or more
generally Kalman filters, as done routinely in control theory,
to obtain estimates that asymptotically improve. This method
will be discussed in the next Section.

Numerous papers, see for example [8], [1], [7] study
models of systems whose rate varies over time, and propose
nonparametric techniques for estimating the cumulative in-
tensity function of NHPP, Λ(t) =

∫ t
0
λ(s)ds, on the time

interval [0, T ]. In [7] the authors propose a piecewise-linear
estimator of the cumulative intensity function between the
time values t(1), t(2), · · · , t(n), which represent the order
statistics of the superposition of the k realizations, as

Λ̃(t) =
i

k
+

t− t(i)
k(t(i+1) − t(i))

,

where λ(t) > 0,∀t ∈ (0, T ], and λ(t) is continuous for
almost all t ∈ (0, T ]. The cumulative intensity function
Λ(t) is estimated from k (overlapping or non-overlapping)
realizations on (0, T ], with ni, i = 1, 2, · · · , k being the
number of observations in the i−th realization, and n =∑k
i=1 ni being the total number of observations. For this

estimator, a strong consistency result and an asymptotically
valid 100(1− α)% confidence interval for Λ(t),∀t ∈ (0, T ]
were shown, as

Λ̃(t)→ Λ(t),

with probability one as k →∞,∀t ∈ (0, T ], and

Λ̂(t)− zα/2

√
Λ̂(t)

k
< Λ(t) < Λ̂(t) + zα/2

√
Λ̂(t)

k
,

where zα/2 is the 1 − α/2 fractile of the standard normal
distribution. However these methods fail to provide good
estimates of the derivative of Λ(t), shown on the right panel
of Fig. 1. Our interest, recall, is on λ(t), computed with this
method as 1

k(t(i+1)−t(i))
.

Similar results can be obtained by finely sampling the time
axis, and for every time point on the grid, finding the closest
spike, and then computing the average wait time until a spike
occurs across all realizations. Then the rate λ(t) can be found
for every time point on the grid by computing the inverse of
the average wait time at that time point, shown on Fig. 2a.

Another possibility is to use what we will call “the naive
method,” in which one observes the average number of events
r in a bin containing a time t, and estimates the rate λ(t) as
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(a) Cumulative Intensity function (b) Rate of a Poisson Process

Fig. 1: Piecewise linear estimator of the Cumulative Intensity
function that uses k=8 realizations. mesh size= 10−4, n =
143, i.e ni = {16, 22, 23, 16, 19, 20, 15, 12}, i = 1, · · · , 8

(a) (b)

Fig. 2: Modified piecewise-linear method, k = 20 realiza-
tions (a), and Naive (piecewise constant) method, k = 20,
M = 50 (b)

r
bt , where b is a predetermined bin size. As an example of an
application of this method, we obtain an estimate as shown
in Fig. 2b. In general, finding an optimal bin size is a difficult
problem (see [11]). Many other methods have been proposed.
The method developed in [9] deals with the estimation of an
arrival rate function λ(t) = a+ bt, t ∈ [0, T ] by dividing the
entire time interval into M equispaced subintervals (bins),
and observing an average number of events in each. The
authors propose several methods for finding the estimates
â and b̂, namely, ordinary least squares, iterative weighted
least squares and maximum likelihood method, and elaborate
on the effect of the time interval length T, and number
of measurement subintervals M , but do not provide the
optimal length of the subinterval. This method works well
for slowly changing λ(t), however it fails in cases of fast-
varying signals and would not be a good starting choice,
especially in cases where we have some prior information
about the signal we are estimating.

II. PROBLEM FORMULATION AND AN OBSERVER DESIGN

Let Nt be a counting process with rate λ(t), i.e Nt is a
Poisson random variable with rate y(t) =

∫ t
0
λ(s)ds. The

probability of having j events until time t is

Py(t)(Nt = j) = P (j events on [0, t]) =
y(t)je−y(t)

j!
.

Observe that, E[Nt] = var[Nt] = y(t).

Fix an integer k > 0, which denotes the number of
realizations of a counting process Nt and consider k IID
N ’s. For a fixed t, each N t

i , i = 1 . . . k, is an IID random
variable with rate y(t) that gives the number of events until
time t for a realization i. Let

Nk(t) :=
1

k
(N t

1 +N t
2 +N t

3 + · · ·+N t
k),

be the average number of events (across all realizations) until
time t.

Then
E[Nk(t)] = y(t),

var[Nk(t)] =
1

k2
var(N t

1 +N t
2 +N t

3 + · · ·+N t
k) =

y(t)

k
.

The random variables Nk(t) are computed from the data,
and we can rewrite them in the form

Nk(t) = y(t) + (Nk(t)− y(t)).

Our goal is to find an estimate of λ(t). The schematic
representation of the problem is shown on Fig. 3.

Fig. 3: The schematic representation of the problem formu-
lation

Fig. 4: Exact problem formulation in terms of key system
variables. ∆k(t) := Nk(t)−

∫ t
0
λ(s)ds

Fig. 5: Problem formulation using an approximation of ∆k(t)
with Brownian motion, in case when k is sufficiently large

Denote
∆k(t) := Nk(t)− y(t),

so that
Nk(t) = y(t) + ∆k(t),
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which is represented on Fig. 4. By the Central Limit Theo-
rem, for large k, ∆k(t) ∼ N(0, y(t)k ). Using the fact that N
is a process with independent increments, and the fact that
the Ni are IID, one can show that ∆k is approximately a
Brownian motion, ∆k ≈ Bk (Fig. 5). Purely formally, we
define

ξk(t) :=
dBk(t)

dt
,

and think of ξk(t) as a white noise, normally distributed with
zero mean and variance, var[ξ(t)] = var[Nk(t)]

t = y(t)
kt . (In

this conference paper, we focus on algorithms. Follow-up
work will discuss a proper mathematical formulation.)
Thus,

Nk(t) = y(t) + ∆k(t) ≈ y(t) +Bk(t),

Ṅk(t) ≈ λ(t) + ξk(t).

See Fig. 6.

Fig. 6: Formally writing ξk(t) = dBk(t)
dt , where Bk was

introduced on Fig. 5.

Suppose now that we have a deterministic system,

ẋ = f(x),

which we will at first assume is linear

ẋ = Fx.

The observation that is available for estimation is a non-
homogeneous Poisson random process Nt, whose rate is
λ(t) = h(x(t)) = Gx. We assume that λ(t) is always
positive. This will be guaranteed if the matrix F is Metzler,
G > 0, and x(0) has positive coordinates. The objective is
to obtain an estimate of the state x, or more specifically, of
the rate λ(t).

Assume next that we have access to k realizations of the
process, with the same x(0), so that the rate of the process,
λ(t) is the same in every realization.

Let’s rewrite the full state-space model for the approximate
system on Fig. 6 as:

dx

dt
= Fx,

Ṅk(t) = Gx+ ξ,
(1)

with unknown initial condition x(0). Notice that if we
estimate (x,Nk), we will have in particular an estimate of
λ(t) = Gx(t). In order to more compactly describe the

extended system (1), we introduce the state z1 =

[
x
Nk

]
,

with the output y being equal to the last variable Nk(t).
Since Nk(t) will typically be very noisy, we do not want
our estimator to compute numerical derivatives, so the
output that we would like to feed as the input to the state

estimator is Nk(t), which contains colored noise.

The extended system can be written in the form:

dz1
dt

= F1z1 +G1ξ ,

F1 =

[
F 0
G 0

]
∈ R(n+1)×(n+1) , G1 =

[
0n
1

]
.

(2)

The output of this system corresponds to the last state of (2),
namely

y1(t) = Hz1(t) , with H =
[
0n 1

]
. (3)

If we would attempt to build a Kalman filter for the estima-
tion of the state z1, in (2), we would encounter a singular
problem with zero output noise covariance matrix. To avoid
this case, we apply the method developed in [3], [4], [10],
and look for the derivative of y1:

ẏ1 = H1z1(t) + v1(t),

where H1 =HF1, v1(t) =HG1ξ, and E[v1(t)vT1 (t)] =
HG1G

T
1H

Tm(t) with cov[ξ(t)ξT (t)] = m(t). Now the
estimate of z1(t) is ẑ1 obtained as

˙̂z1 = F1ẑ1 + L(t)(ẏ1 − ˙̂y1) = F1ẑ1 + L(t)(ẏ1 −H1ẑ1),
(4)

where L = L(t) is time varying gain. Since differentiation
introduces the noise in the filtering problem, introduce the
following change of variables

g(t) = ẑ1 − Ly1. (5)

Then,
ġ(t) = ˙̂z1 − L̇(t)y1(t)− L(t)ẏ1(t)

If we differentiate g

ġ = ˙̂z1 − Lẏ1 − L̇y1
ġ = (F1 − LH1)g(t) + [F1L− LH1L− L̇]y1(t),

(6)

from where we can find ẑ1(t) = g(t) + L(t)y1(t).
In order to find the time-varying gain L(t), we now solve a
routine Kalman filtering problem for (4).
Define the observation error as e(t) = z1(t) − ẑ1(t), so its
derivative is

ė(t) = ż1(t)− ˙̂z1 = F1z1 +G1ξ − F1ẑ1 − Lẏ1 + L ˙̂y1,

Therefore,

ė(t) = (F1 − LHF1)e(t)− (LHG1 −G1)ξ(t) (7)

where ˙̂y1 =HF1ẑ1. Denote the covariance of e(t) by Σ :=
E[e(t)eT (t)], and Var[e(t)] = E[(e(t)− ē(t))(e(t)− ē(t))T ],
with ē(t) = E[e(t)]. Also, cov[ξ(t)ξT (t)] = m(t), where
ξ(t) is the white noise, E[ξ(t)] = 0. The covariance matrix
Σ satisfies the Riccati equation:

Σ̇ = (F1 − LHF1)Σ + Σ(F1 − LHF1)T

+ (LHG1 −G1)(LHG1 −G1)Tm(t)
(8)
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with

Lopt =

[ΣFT1 H
T +G1G

T
1H

Tm(t)](HG1G
T
1H

T )−1m(t)−1
(9)

L̇opt = Σ̇FT1 H
T (HG1G

T
1H

T )−1m(t)−1

− ΣFT1 H
T (HG1G

T
1H

T )−1
( ṁ(t)

m2(t)

) (10)

In the computation of the optimal gain L(t) from the Riccati
equation we use m(t), which we will estimate from the
sample variance, which, in turn is estimated from the data.
However in the expression (6), the derivative of m(t) will
appear through the term L̇(t), but this numerical derivative
does not affect the estimate directly.

In the next Section, we first consider simple Luenberger
observers, by picking any constant stabilizing L, and show
that results also look satisfactory. For the Luenberger ob-
server design we observe the system defined by (2) and (3),
and ignore the noise, ξ. The results for the full Kalman filter
design will be provided in a follow-up paper.

III. EXAMPLES

In this section we will demonstrate the advantage of
model based methods in cases where we have some prior
information about the system or about the inputs acting
upon the system. Consider an output λ(t) generated by the
following system with a known frequency ω0 :

ẋ0 = 0 , x0(0) = 2.5,

ẋ1(t) = x2 , x1(0) = 0.15,

ẋ2(t) = −ω2
0x1 , x2(0) = 0.25,

λ(t) = x0(t) + x2(t),

where the initial conditions are such that λ(t) > 0 (∀t), and
ω0 = 10. If we use the prior information of the frequency,
an oscillatory estimator for this system can be represented
as

ẋ =
[
ẋ0 ẋ1 ẋ2

]T
= Fx , F =

0 0 0
0 0 1
0 −w2

0 0

 ,
λ(t) = Gx , G =

[
1 0 1

]
,

Ṅ = Gx,
(11)

where we introduced another state, N, to represent the
counting process. The extended system is now

ż1 =
[
ẋ0 ẋ1 ẋ2 Ṅ

]T
= F1z1 ,

F1 =

[
F 0
G 0

]
=


0 0 0 0
0 0 1 0
0 −w2

0 0 0
1 0 1 0

 ,
with the output

ẏ1 = Hz1 , H =
[
0 0 0 1

]
.

Thus, we can build an observer for the system as

dẑ1
dt

= F1ẑ1 + L(y1 −Hẑ1). (12)

We picked the observer gains L so that the observer poles are
arbitrarily chosen as −10,−9,−8 and −7. The simulation
results and comparison with the piecewise constant estimator
are shown on Fig. 7. We have challenged the “naive method”
by increasing and decreasing the bin size, b, while keeping
the same number of realizations k as in our model-based
approach, and the simulation results do not indicate any
improvement of the naive, piecewise constant method, in
comparison to the observer based method.

(a) Observer Method, k = 50 (b) Naive method, k=50 M=100

Fig. 7: Comparison of estimates obtained using piecewise
constant estimator and a model-based oscillatory observer

A. A biological example

This work was motivated by current work we are
pursuing with experimental collaborators in the design
of microfluidics devices that will allow the same inputs
to be fed to a population of chemotactic bacteria, and
microscope-based observations of tumbling events will
be used for estimation of the tumbling rate (a function
of chemotactic protein concentrations). Since this data is
not available yet, we use here experimental data from the
paper [6], which measured the actual rates through FRET
(Fluorescence Resonance Energy Transfer) techniques
for a particular strain of E. coli bacteria. Since FRET
measurements are very noisy, we first low-pass filtered this
data in order to simulate λ(t) and generate artificial events.
We see numerically that a simple observer-based method
recovers the FRET measurement with roughly the same
amount of noise. (Of course, if FRET data is available, there
would be no need for our observers. The goal, however,
is to study similar questions for other bacterial species for
which FRET measurements, which require extensive genetic
modifications, are not available.) Note that since we did not
have a priori information about the nature of the output, we
have tested the zeroth order observer, which is essentially
an observer designed to estimate constant signals, and also
a first order or linear observer which would be optimal for
linear or piecewise linear signals. The results are depicted
on Figures 8, 9, and 10. As expected the linear observer
shows satisfactory results.
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(a) (b)

Fig. 8: (a) Input (ligand concentration) and (b) Measured
output and a filtered output used for the estimation process

(a) (b)

Fig. 9: Estimation using the observer method of zeroth
order (i.e. constant estimator) (a), and first order (i.e. linear
estimator) (b). k = 50

To further motivate our work, we will use the developed
approach to test for the scale-invariance property, namely
scale invariance of the complete output trajectory with re-
spect to a rescaling of input magnitudes [13], [6], for various
bacterial species and classes of inputs. To illustrate, we
will use the “gold standard” model for E. coli chemotactic
pathway from [12], to generate the artificial events, as
before, and test for scale invariance using the following two
experiments: in the first experiment we preadapt the system
to a constant ligand concentration L1 = 200, and use the
preadapted values as the initial conditions when this system
is presented with an input L2 = 200 + 100 sin(5t); in the
second experiment the inputs are scaled by a factor p = 2.
The values are selected according to the results presented in
[12], so that the system should exhibit the scale invariance
property. The oscillatory estimator model presented above,
can help in detecting the scale invariance property from the
“spike” data. The results and the comparison with the naive
method are shown on Figures 11 and 12.

B. A simple nonlinear observer model of an E. Coli chemo-
tactic pathway

As we have seen in the previous examples, the naive
method does not take advantage of the known input signal.
Consider a system given by

ẋ = f(x, u),

y = h(x, u),
(13)

(a) M = 50 (b) M = 100

Fig. 10: Naive piece-wise constant estimator with subinterval
width M

Fig. 11: Detection of scale invariance property using the
oscillatory estimator. k=100 realizations.

Fig. 12: Detection of scale invariance property using the
naive estimator. The estimator is not able to correctly re-
construct the underlying output, regarless of the number of
realizations.

where y(t) ∈ R1 corresponds to the measured output
(“activity”) in a simple but realistic model of the E. coli
chemotactic pathway, see for example [6], [12], [14], [13].
Here, x(t) ∈ Rn is the unknown internal state, and u(t) is
a known input signal. As before, we introduce the extended
(n + 1)−dimensional system that models the counting pro-
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cess by adding an integrator:

ẋ = f(x, u),

ż = h(x, u).
(14)

Specifically, we take a simplified version of the model
from [12], by picking the Hill coefficients in the model equal
to 1, and all coefficients set to unity. Thus, we consider the
following model:

ẋ =
1

2
− 1

1 + u
x

ż =
1

1 + u
x

,
(15)

with output z. An observer for this n− dimensional system
can be obtained as follows:

˙̂x =
1

2
− 1

1 + u
x̂

˙̂z =
1

1 + u
x̂

− L(ẑ − z).
(16)

Define the errors

e1(t) = x̂(t)− x(t),

e2(t) = ẑ(t)− z(t).
(17)

Then,

ė1(t) = ˙̂x− ẋ(t) =
u(x− x̂)

(x+ u)(x̂+ u)
=

−ue1
(x+ u)(x̂+ u)

.

ė2(t) = ˙̂z − ż(t) = −
( 1

1 + u
x

− 1

1 + u
x̂

)
− L(ẑ − z)

=
e1u

(x+ u)(x̂+ u)
− Le2.

(18)
It can be shown that if 0 < α ≤ u(t) ≤ β ∀t, then both
x̂(t) and x(t) are bounded, and e1(t)→ 0 and e2(t)→ 0 as
t→∞.

For the system defined by (15) we have applied an input
signal given by u(t) = 2+sin(5t)+0.5sin(t)−0.2cos(3t−20)
and generated k = 20 realizations of the process, shown on
left panel of Figure 13. Then we applied the observer-based
method described above to estimate the output of the process.
We assumed that the model has an initial state x0 = 3 and
that the observer initial state was picked to be 0. The results
indicate that the observer performs extremely well.

IV. CONCLUSION

We proposed a model-based approach to designing ob-
servers for jump processes driven by a deterministic system,
and numerically compared their performance to that of
various other techniques. Our approach is shown to perform
well in identifying rates produced by several classes of linear
systems as well as a model of E. coli chemotaxis. Theoretical
analysis and comparisons of these algorithms are the subject
of current work.

(a) (b)

Fig. 13: Spikes (events) used as an input to the observer (a),
and comparison between the true output and an estimate ob-
tained by using a nonlinear observer (b). k = 20 realizations
were used. L was picked to be 1.
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