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Abstract. Contraction theory provides an elegant way of analyzing the behaviors
of systems subject to external inputs. Under sometimes easy to check hypotheses,
systems can be shown to have the incremental stability property that all trajectories
converge to a unique solution. This property is especially interesting when forc-
ing functions are periodic (a globally attracting limit cycle results), as well as in
the context of establishing synchronization results. The present paper provides a
self-contained introduction to some basic results, with a focus on contractions with
respect to non-Euclidean metrics.

1 Introduction

The most common approach to analyzing global stability properties of nonlinear
dynamical systems is through Lyapunov functions. However, in many applications,
Lyapunov functions are not always easy to find, especially if steady states are not
known a priori. Remarkably, a stronger property than stability, namely the con-
traction (or incremental stability) requirement that all solutions should converge
(exponentially) towards each other, is sometimes easier to work with. Contractive
dynamics result when the logarithmic norm, or matrix measure, of the Jacobian
of the vector field is uniformly negative on the state space. Different norms are
appropriate to different problems, just as different Lyapunov functions have to be
carefully picked. Non-Euclidean norms have been found to be useful in the study of
many bio-molecular problems, see for example [13].

The study of contractions in the context of stability theory dates back at least to
the work of Demidovich ([4]), who established the basic convergence results with
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respect to Euclidean norms, and independently to Yoshizawa ([20, 21]); see [10] for
a historical discussion. In control theory, contraction theory has been popularized
and extended by Slotine and coworkers, see for instance [7], [6], [19] where appli-
cations to nonlinear control, observer problems, and synchronization and consensus
problems in complex networks have been developed, as well as by Nijmejer and
coworkers in the context of nonlinear regulator problems, see for example [11]. In
this latter work, the authors use the phrase “convergent dynamics” to refer to prop-
erty that there exists a (necessarily unique) globally asymptotically stable solution
to which all other solutions converge.

This paper gives a self-contained exposition, with simple proofs, of some basic
results in contraction theory, It seems difficult to find such simple proofs in the liter-
ature, particularly for contractions with respect to non-Euclidean norms. We empha-
size that the presentation is expository, and no substantial new results on contraction
theory are claimed.

Definitions and statements of the main results are provided in Section 2, and
proofs are given in Section 3.

Section 4 briefly discusses the application of contraction theory to the synchro-
nization of coupled identical dynamical systems, following an idea of Slotine and
collaborators (“virtual systems”). Also discussed there is a minor extension in which
simultaneous convergence, not merely synchronization, is achieved.

For periodically forced contractive systems, globally attracting limit cycles arise,
a sort of “entrainment” property. Such a property is false for general systems that
have a well-defined steady-state response to constant inputs, for which even chaotic
behavior may arise under periodic forcing ([16]).

In closing this introduction, we remark that a modern approach to contractive
dynamics steps away from the consideration of Jacobians, and defines contraction
properties by means of “logarithmic Lipschitz constants” directly associated to the
vector field. This elegant approach, nicely surveyed in [14], is powerful and intu-
itive, and allows immediate generalizations to infinite-dimensional problems. How-
ever, in order to verify the property for particular examples, Jacobians must still be
employed.

2 Definitions and Statements of Main Results

We consider in this paper systems of ordinary differential equations, generally time-
dependent:

ẋ = f (t,x) (1)

defined for t ∈ [0,∞) and x ∈ C, where C is a subset of R
n. It will be assumed

that f (t,x) is differentiable on x, and that f (t,x), as well as the Jacobian of f with
respect to x, denoted as J(t,x) = ∂ f

∂x (t,x), are continuous in (t,x). In applications
of the theory, it is often the case that C will be a closed set, for example given
by non-negativity constraints on variables as well as linear equalities representing
mass-conservation laws. For a non-open set C, differentiability in x means that the
vector field f (t, ·) can be extended as a differentiable function to some open set
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which includes C, and the continuity hypotheses with respect to (t,x) hold on this
open set.

We denote by ϕ(t,s,ξ ) the value of the solution x(t) at time t of the differential
equation (1) with initial value x(s) = ξ . It is implicit in the notation that ϕ(t,s,ξ ) ∈
C (“forward invariance” of the state set C). This solution is in principle defined only
on some interval s ≤ t < s + ε , but we will assume that ϕ(t,s,ξ ) is defined for all
t ≥ s. Conditions which guarantee such a “forward-completeness” property are often
satisfied in applications, for example whenever the set C is closed and bounded, or
whenever the vector field f is bounded. (See for example Appendix C in [15] for
more discussion, as well as [1] for a characterization of the forward completeness
property.) Under the stated assumptions, the function ϕ is jointly differentiable in
all its arguments (this is a standard fact on well-posedness of differential equations,
see for example Appendix C in [15]).

We recall (see for instance [9] or [5]) that, given a vector norm on Euclidean space
(|·|), with its induced matrix norm ‖A‖, the associated matrix measure μ is defined
as the directional derivative of the matrix norm in the direction of A and evaluated
at the identity matrix, that is: μ(A) := limh↘0

1
h (‖I + hA‖−1) . For example, if

|·| is the standard Euclidean 2-norm, then μ(A) is the maximum eigenvalue of the
symmetric part of A. Matrix measures, also known as “logarithmic norms”, were
independently introduced by Germund Dahlquist and Sergei Lozinskii in 1959, [3,
8]. The limit is known to exist, and the convergence is monotonic, see [17, 3].

Definition 1. The system (1), or the time-dependent vector field f , is said to be
infinitesimally contracting on a set C ⊆ R

n if there exists some norm in C, with
associated matrix measure μ , such that, for some constant c > 0 (the contraction
rate), it holds that:

μ (J (x,t)) ≤−c, ∀x ∈C, ∀t ≥ 0. (2)

The key result is that infinitesimal contractivity implies global contractivity:

Theorem 1. Suppose that C is a convex subset of R
n and that f (t,x) is infinites-

imally contracting with contraction rate c. Then, for every two solutions x(t) =
ϕ(t,0,ξ ) and z(t) = ϕ(t,0,ζ ) of (1), it holds that:

|x(t)− z(t)| ≤ e−ct |ξ − ζ | , ∀t ≥ 0 . (3)

If A is a non-empty forward-invariant set for the dynamics, then every solution must
approach A . Indeed, take any ζ ∈A and any trajectory x(t) = ϕ(t,0,ξ ); then, with
z(t) = ϕ(t,0,ζ ), dist(x(t),A ) ≤ |x(t)− z(t)| ≤ e−ct |ξ − ζ | → 0 as t → ∞. In par-
ticular, if an equilibrium exists, then it must be unique and globally asymptotically
stable, and the same is true for periodic orbits. More interestingly, periodic orbits
are assured to exist if the vector field is periodic, as would happen for a system with
inputs ẋ = f (x,u) under a periodic input u(·). We discuss this next.

Given a number T > 0, we will say that system (1) is T -periodic if it holds that
f (t + T,x) = f (t,x) ∀t ≥ 0, x ∈ C . Notice that a system ẋ = f (x,u(t)) with input
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u(t) is T -periodic u(t) is itself a periodic function of period T . The basic theoretical
result about periodic orbits is as follows.

Theorem 2. Suppose that:

• C is a closed convex subset of R
n;

• f is infinitesimally contracting with contraction rate c;
• f is T -periodic.

Then, there is a unique periodic solution x̂(t) : [0,∞) → C of (1) of period T and,
for every solution x(t), it holds that |x(t)− x̂(t)| → 0 as t → ∞.

Cascades of contractive systems are again contracting. To state this fact precisely,
let us consider a system of the following form:

ẋ = f (t,x)
ẏ = g(t,x,y)

where x(t)∈C1 ⊆R
n1 and y(t)∈C2 ⊆R

n2 for all t. We write the Jacobian of f with
respect to x as A(t,x) = ∂ f

∂x (t,x), the Jacobian of g with respect to x as B(t,x,y) =
∂g
∂x (t,x,y), and the Jacobian of g with respect to y as C(t,x,y) = ∂g

∂y (t,x,y),
When we say that ẏ = g(t,x,y) is infinitesimally contracting when x is viewed

as a parameter we mean that, with respect to some norm |·|), there is an estimate
μ(C(t,x,y)) ≤−c2 < 0 for all x ∈C1, y ∈C2 and all t ≥ 0.

Theorem 3. Suppose that:

• the system ẋ = f (t,x) is infinitesimally contracting;
• the system ẏ = g(t,x,y) is infinitesimally contracting when x is viewed as a pa-

rameter;
• the mixed Jacobian B(t,x,y) is bounded.

Then, the cascaded system is infinitesimally contracting.

The basic contraction property insures that any solutions of ẋ = f (t,x) exponentially
converge to each other. The following result provides a “robustness margin” that
says that any solution of the original system and any solution of a perturbed system
ẋ = f (t,x)+ h(t) also exponentially converge to each other, provided that h(t) → 0
exponentially. This is a “converging-input converging output” property that provides
a weak type of input-to-state stability.

Theorem 4. Assume that the system ẋ = f (t,x) is infinitesimally contracting. Let
h(t) be a vector function satisfying |h(t)| ≤ Le−kt ∀t ≥ 0 for some k > 0 and L ≥ 0,
Then, there exist constants � > 0 and κ such that the following property holds:
For any solution x(t) = ϕ(t,0,ξ ) of the system ẋ = f (t,x), and any solution z(t) =
ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t),

|x(t)− z(t)| ≤ e−�t (κ + |ξ − ζ |) (4)

for all t ≥ 0.
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In general, the constant κ cannot be dropped from the estimate in Theorem 4. In-
deed, consider this counterexample: compare the solutions x(t) = 0 and z(t) = te−t

of ẋ = −x and ẋ = −x + e−t with ξ = ζ = 0 respectively.
Observe that any solutions of ẋ = f (t,x)+ h1(t) and ẋ = g(t,x)+ h2(t) will also

converge to each other, if h1 and h2 satisfy the properties for h in Theorem 4, since
they both converge to any solution of the system with no h.

3 Proofs of Main Results

Proof of Theorem 1. We give the proof in a generalized form, in which convexity
is replaced by a weaker constraint on the geometry of the space, but the estimate on
trajectories is potentially weaker than in the convex case.

Let K > 0 be any positive real number and assume that a norm in R
n has been

chosen. We will say that a subset C ⊂ R
n is K-reachable if, for any two points x0

and y0 in C there is some continuously differentiable curve γ : [0,1] →C such that:
γ (0) = x0; γ (1) = y0; |γ ′ (r)| ≤ K |y0 − x0| for all r ∈ [0,1]. For convex sets C, we
may pick γ(r) = x0 + r(y0 − x0), so γ ′(r) = y0 − x0 and we can take K = 1. Thus,
convex sets are 1-reachable, and it is easy to show that the converse holds as well.

Note that a set C is K-reachable for some K if and only if the length of a
minimal-length (geodesic) smooth path connecting any two points x and y in C
and parametrized by arc length, is bounded by some multiple K0 of the Euclidean
norm |y− x|2. Indeed, re-parametrizing to a path γ defined on [0,1], we have:
|γ ′ (r)|2 ≤ K0 |y− x|2 . Since in finite dimensional spaces all norms are equivalent, a
suitable K as in the above estimate exists.

Lemma 1. Suppose that C is a K-reachable subset of R
n and that f (t,x) is in-

finitesimally contracting with contraction rate c. Then, for every two solutions
x(t) = ϕ(t,0,ξ ) and z(t) = ϕ(t,0,ζ ) it holds that:

|x(t)− z(t)| ≤ Ke−ct |ξ − ζ | ∀t ≥ 0 . (5)

Observe that Theorem 1 follows trivially from Lemma 1, since for convex sets we
may pick K = 1.

Proof. Given any two points x(0) = ξ and z(0) = ζ in C, pick a smooth curve
γ : [0,1] → C, such that γ (0) = ξ and γ (1) = ζ . Let ψ (t,r) = ϕ(t,0,γ (r)), that
is, the solution of system (1) rooted at ψ (0,r) = γ (r), r ∈ [0,1]. Since ϕ and γ
are continuously differentiable, also ψ (t,r) is continuously differentiable in both
arguments. We define w(t,r) := ∂ψ

∂ r (t,r). It follows that

∂w
∂ t

(t,r) =
∂
∂ t

(
∂ψ
∂ r

)
=

∂
∂ r

(
∂ψ
∂ t

)
=

∂
∂ r

f (ψ (t,r) ,t).

As ∂
∂ r f (ψ (t,r) ,t) = ∂ f

∂x (ψ (t,r) ,t) ∂ψ
∂ r (t,r), ∂w

∂ t (t,r) = J(ψ (t,r) , t)w(t,r), where

J(ψ (t,r) ,t) = ∂ f
∂x (ψ (t,r) ,t). Appealing to Coppel’s inequality (see e.g. [18]), we

have:
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|w(t,r)| ≤ |w(0,r)|e
∫ t

0 μ(J(τ))dτ ≤ K |ξ − ζ |e−ct , (6)

for all x ∈ C, t ≥ 0, and r ∈ [0,1]. By the Fundamental Theorem of Calculus,
we can write ψ (t,1) − ψ (t,0) =

∫ 1
0 w(t,s)ds. Hence, we obtain |x(t)− z(t)| ≤∫ 1

0 |w(t,s)|ds. Now, using (6), the above inequality becomes:

|x(t)− z(t)| ≤
∫ 1

0

(
|w(0,s)|e

∫ t
0 μ(J(τ))dτ

)
ds ≤ K |ξ − ζ |e−ct .

This completes the proof of the lemma.

We remark that in some cases it might be possible to prove a strict contraction (K =
1) even if the domain is not convex, by appealing to the deeper theory of logarithmic
Lipschitz constants (see [14] for definitions and details). If the (lub) logarithmic
Lipschitz constant M[ f ] of the vector field is −c < 0, then an estimate (3) holds. In
general, M[ f ] is an upper bound on the supremum of μ(J(t,x)), with equality to the
supremum in the convex case.

Proof of Theorem 2. We assume now that the vector field f is T -periodic.

Remark 1. Periodicity implies that the initial time is only relevant modulo T . More
precisely:

ϕ(kT + t,kT,ξ ) = ϕ(t,0,ξ ) (7)

for all positive integers k, all t ≥ 0, and all x ∈ C. Indeed, let z(s) = ϕ(s,kT,ξ ),
s ≥ kT , and consider the function x(t) = z(kT + t) = ϕ(kT + t,kT,ξ ), for t ≥ 0. So,

ẋ(t) = ż(kT + t) = f (kT + t,z(kT + t)) = f (kT + t,x(t)) = f (t,x(t)) ,

where the last equality follows by T -periodicity of f . Since x(0) = z(kT ) =
ϕ(kT,kT,ξ ) = ξ , it follows by uniqueness of solutions that x(t) = ϕ(t,0,ξ ) =
ϕ (kT + t,kT,ξ ), which is (7). As a corollary, we also have that

ϕ(kT + t,0,ξ ) = ϕ(kT + t,kT,ϕ(kT,0,ξ )) = ϕ(t,0,ϕ(kT,0,ξ )) (8)

for all positive integers k, all t ≥ 0, and all x ∈ C, where the first equality follows
from the semigroup property of solutions (see e.g. [15]), and the second one from (7)
applied to ϕ(kT,0,ξ ) instead of ξ .

Define now P(ξ ) = ϕ(T,0,ξ ), where ξ = x(0) ∈C.

Lemma 2. Pk(ξ ) = ϕ(kT,0,ξ ) for all positive integers k and ξ ∈C.

Proof. We will prove the Lemma by recursion. In particular, the statement is true
by definition when k = 1. Inductively, assuming it true for k, we have:

Pk+1(ξ ) = P(Pk(ξ )) = ϕ(T,0,Pk(ξ )) = ϕ(T,0,ϕ(kT,0,ξ )) = ϕ(kT + T,0,ξ ).
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Theorem 5. Suppose that:

• C is a closed K-reachable subset of R
n;

• f is infinitesimally contracting with contraction rate c;
• f is T -periodic;
• Ke−cT < 1.

Then, there is an (unique) periodic solution x̂(t) : [0,∞)→C of (1) having period T .
Furthermore, every solution x(t) converges to x̂(t), i.e. |x(t)− x̂(t)| → 0 as t → ∞.

Theorem 2 is a corollary, because the assumption Ke−cT < 1 in Theorem 5 is auto-
matically satisfied when the set C is convex (i.e. K = 1) and the system is infinitesi-
mally contracting.

Proof. Observe that P is a contraction with factor Ke−cT < 1: |P(ξ )−P(ζ )| ≤
Ke−cT |ξ − ζ | for all ξ ,ζ ∈ C, as a consequence of Theorem 1. The set C is a
closed subset of R

n and hence complete as a metric space with respect to the
distance induced by the norm being considered. Thus, by the contraction map-
ping theorem, there is a (unique) fixed point ξ̄ of P. Let x̂(t) := ϕ(t,0, ξ̄ ). Since
x̂(T ) = P(ξ̄ ) = ξ̄ = x̂(0), x̂(t) is a periodic orbit of period T . Moreover, again by
Theorem 1, we have that |x(t)− x̂(t)| ≤ Ke−ct

∣∣ξ − ξ̄
∣∣ → 0. Uniqueness is clear,

since two different periodic orbits would be disjoint compact subsets, and hence at
positive distance from each other, contradicting convergence. This completes the
proof.

Notice that, even in the non-convex case, the assumption Ke−cT < 1 can be dropped,
provided that we assert only the existence of (and global convergence to) a unique
periodic orbit, whose period is kT for some integer k > 1. Indeed, the vector field is
also kT -periodic for any integer k. Picking k large enough so that Ke−ckT < 1, we
have the conclusion that such an orbit exists, applying Theorem 5.

Proof of Theorem 3. We assume that the system ẋ = f (t,x) is infinitesimally con-
tracting with respect to a norm |·|1, with contraction rate c1, that is, μ1(A(t,x)) ≤
−c1 for all x ∈ C1 and all t ≥ 0, where μ1 is the matrix measure associated to |·|1,
the system ẏ = g(t,x,y) is infinitesimally contracting with respect to a norm |·|2
with contraction rate c2, when x is viewed as a parameter in the second system,
that is, μ2(C(t,x,y)) ≤ −c2 for all x ∈ C1, y ∈ C2 and all t ≥ 0, where μ2 is the
matrix measure associated to |·|2, and that the mixed Jacobian B(t,x,y) is bounded:
‖B(t,x,y)‖ ≤ k, for all x ∈ C1, y ∈ C2 and all t ≥ 0, for some real number k, where
“‖·‖” is the operator norm induced by |·|1 and |·|2 on linear operators R

n1 → R
n2 .

We need to show that, under these assumptions, the complete system is infinites-
imally contracting. More precisely, pick any two positive numbers ρ1 and ρ2 such

that c1 − ρ2
ρ1

k > 0 and let c := min
{

c1 − ρ2
ρ1

k,c2

}
. We will show that μ(J) ≤ −c,

where J is the full Jacobian: J =
[

A 0
B C

]
, with respect to the matrix measure μ

induced by the following norm in R
n1+n2 : |(x1,x2)| = ρ1 |x1|1 + ρ2 |x2|2 . Since

(I + hJ)x =
[

(I +hA)x1
hBx1 +(I +hC)x2

]
for all h and x, we have that, for all h and x:

|(I + hJ)x| = ρ1 |(I + hA)x1|+ ρ2 |hBx1 +(I + hC)x2|
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≤ ρ1 |I + hA| |x1|+ ρ2 |hB| |x1|+ ρ2 |I + hC| |x2| ,

where from now on we drop subscripts for norms. Pick now any h > 0 and a unit
vector x (which depends on h) such that ‖I + hJ‖ = |(I + hJ)x|. Such a vector x
exists by the definition of induced matrix norm, and we note that 1 = |x|= ρ1 |x1|2 +
ρ2 |x2|2, by the definition of the norm in the product space. Therefore:

1
h

(‖I + hJ‖−1) =
1
h

(|(I + hJ)x|− |x|)

≤ 1
h

(ρ1 |I + hA| |x1|+ ρ2 |hB| |x1|+ ρ2 |I + hC| |x2|−ρ1 |x1|−ρ2 |x2|)

=
1
h

(
|I + hA|−1 +

ρ2

ρ1
h |B|

)
ρ1 |x1|+ 1

h
(|I + hC|−1)ρ2 |x2|

≤ max

{
1
h

(|I + hA|−1)+
ρ2

ρ1
k ,

1
h

(|I + hC|−1)
}

,

where the last inequality is a consequence of the fact that λ1a1 +λ2a2 ≤max{a1,a2}
for any non-negative numbers with λ1 + λ2 = 1 (convex combination of the ai’s).

Now taking limits as h↘ 0, we conclude that μ(J)≤max
{
−c1 + ρ2

ρ1
k,−c2

}
=−c ,

as desired.

Proof of Theorem 4. We first make some general remarks about perturbed systems.
Consider additive perturbations of the system (1) of the following general form:

ẋ = F(x, t) = f (t,x)+ h(t,x) (9)

where the vector field h(t,x) is defined for t ≥ 0 and x ∈ C, with values in R
n, is

differentiable on x, and h(t,x) and its Jacobian H(t,x) = ∂h
∂x (t,x) are both continuous

in (t,x). We have the following simple observation:

Lemma 3. Assume that the system ẋ = f (t,x) is infinitesimally contracting with con-
traction rate c with respect to a norm |·|. Suppose that the Jacobian of the perturba-
tion satisfies:

‖H(t,x)‖ ≤ ch < c (10)

for all t ≥ 0 and all x ∈C. Then, the perturbed system (9) is infinitesimally contract-
ing with respect to the same norm.

Proof. The Jacobian of the new system is J̃(t,x) = J(t,x)+ H(t,x), and:

μ(J̃(x,t)) ≤ μ (J (x,t))+ μ((H (x, t)) ≤ c̃ := −c + ch

by subadditivity of matrix measures and the fact that the norm always upper-bounds
the matrix measure (see for instance [5, page 31]).

Some comments regarding Lemma 3 are as follows. (i) Suppose that h(t,x) does not
depend on x. Then (10) is trivially satisfied (ch = 0). (ii) Suppose that H(t,x) → 0
as t → ∞, uniformly on x ∈ C. Then the system ẋ = F(t − t0,x) is infinitesimally
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contracting. That is, for any two solutions x(t) = ϕ(t,t0,ξ ) and z(t) = ϕ(t,t0,ζ )
of (9) starting at time t0, we have that:

|x(t)− z(t)| ≤ e−c(t−t0) |ξ − ζ | , ∀t ≥ t0 ≥ 0 .

Indeed, by assumption we have that β (t) := supx∈C ‖H (x,t)‖ → 0 , so we can pick
any t0 > 0 so that ch = β (t0) < c. (iii) Consider any two solutions x(t) = ϕ(t,0,ξ )
and z(t) = ϕ(t,0,ζ ) starting at time t = 0. Since x(t) = ϕ(t, t0,x(t0)) and z(t) =
ϕ(t,t0,z(t0)), it follows that x(t)− z(t) → 0 as t → 0 (but not necessarily satisfying
an estimate |x(t)− z(t)| ≤ e−ct |ξ − ζ |).
Lemma 4. Assume that the system ẋ = f (t,x) is infinitesimally contracting with con-
traction rate c with respect to a norm |·|. Suppose that h and its Jacobian H are ex-
ponentially decreasing, in the sense that, for some k > 0: h(t,x)ekt is bounded and∥∥H(t,x)ekt

∥∥ ≤ ch < c ∀x ∈C, ∀t ≥ 0 . Then, there exist constants � > 0 and κ such
that the following property holds: for any solution x(t) = ϕ(t,0,ξ ) of the system
ẋ = f (t,x), and any solution z(t) = ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t,x), the
estimate (4) is valid for all t ≥ 0.

In the special case that h is independent of x, this proves Theorem 4.

Proof. Consider the following auxiliary system, with p ∈ [0,1]:

ṗ = −kp

ẋ = Fp(t, p,x) = f (t,x) + ph(t,x)ekt

viewed as a cascade. The p-subsystem is infinitesimally contracting with respect to
the standard norm in R. The x-subsystem is infinitesimally contracting when p is

viewed as a parameter. Indeed, with: C(t, p,x) = ∂Fp
∂x (t, p,x) = J(t,x)+ pH(t,x)ekt ,

we have that μ(C(t, p,x)) ≤ −c + ch, as earlier. Moreover, the mixed Jacobian

B(t,x,y) = ∂Fp
∂ p (t, p,x) = h(t,x)ekt is bounded, by assumption. It follows from The-

orem 3 that the auxiliary system is also infinitesimally contracting with some rate �,
and the proof of that result shows that this contraction can be established with re-
spect to a norm of the form: |(p,x)| = ρ1 |p|1 + ρ2 |x|2 for some ρ1 > 0 and ρ2 > 0,
where |p|1 denotes the usual norm in R and |x|2 denotes the original norm on x.

Consider now any solution x(t) = ϕ(t,0,ξ ) of the system ẋ = f (t,x) and any
solution z(t) = ϕ(t,0,ζ ) of the system ẋ = f (t,x)+ h(t,x).

Introduce X(t) := (0,x(t)) and Z(t) := (e−kt ,z(t)). It is clear that X(t) and
Z(t) are the solutions of the auxiliary system corresponding to initial conditions
X(0) = (0,ξ ) and Z(0) = (1,ζ ) respectively. Because the auxiliary system is in-
finitesimally contracting, |X(t)−Z(t)| ≤ e−�t |X(0)−Z(0)| for all t ≥ 0, where
|X(t)−Z(t)| = ρ1e−kt + ρ2 |x(t)− z(t)|2 and |X(0)−Z(0)| = ρ1 + ρ2 |ξ − ζ |2 . So
ρ2 |x(t)− z(t)|2 ≤ e−�t (ρ1 + ρ2 |ξ − ζ |2) . Dividing by ρ2 and dropping the subscript
for norms, we have (4) with κ = ρ1/ρ2.
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4 Synchronization

We remark here on the use of contraction theory to show synchronization of coupled
systems, based on the introduction of “virtual dynamics” by Slotine and collabora-
tors (see for example [12]). For simplicity of notation, we consider time-invariant
dynamics, but the same considerations apply to time-dependent vector fields.

Suppose that we have two diffusion-interconnected identical systems:

ẏ = f (y)+ γ(z)− γ(y)
ż = f (z)+ γ(y)− γ(z)

where we think of γ as a coupling law and assume that γ is globally Lipschitz. Typ-
ically, γ is linear, so that γ(z)− γ(y) = D(z− y) for a matrix D (which is often a di-
agonal matrix). For example, suppose that the systems are linear: ẏ = Ay+D(z− y)
and ż = Az + D(y− z). Each system is individually (when D = 0) asymptotically
stable if and only A is a Hurwitz matrix (all eigenvalues have negative real part).
Using a change of variables (y,z) �→ (y− z,y + z), we may bring this system to a
block-diagonal form with blocks A−2D and A, and thus it is clear that the intercon-
nected system is asymptotically stable if and only both A and A− 2D are Hurwitz
matrices. Moreover, the same proof (the first block corresponds to y− z) shows that
for synchronization (y(t)− z(t)→ 0) it is enough that A−2D be a Hurwitz matrix.

For general, not necessarily linear systems, if the system ẋ = f (x) is infinitesi-
mally contracting, then the decoupled systems (obtained when γ = 0) each satisfies
that all solutions converge to each other.

More interestingly, a synchronization result can be established as follows. Con-
sider the following “virtual system”:

ẋ = f (x)−2γ(x)+ h(t) (11)

(a different system results for each fixed input h(·)) and suppose that the vector
field f − 2h is infinitesimally contracting. Take a particular solution (y(t),z(t)) of
the coupled system. Then, y(t) and z(t) are two solutions of (11), when we pick
h(t) = γ(y(t)) + γ(z(t)). It follows that |z(t)− y(t)| ≤ e−ct → 0 for some c > 0,
showing that the y and z subsystems synchronize. Observe that this fact did not
require the contractivity of f , but only that of f −2γ .

Still for this solution (y(t),z(t)) of the coupled system, we now define h(t) =
γ(z(t))− γ(y(t)). Using the assumption that γ is globally Lipschitz, we have that
|w(t)| ≤ M |z(t)− y(t)| ≤ Me−ct , for some constant M. Now, if f is contracting,
we note that the equation satisfied by y is ẋ = f (x)+ h(t). As h(t) is exponentially
convergent to zero, Theorem 4 implies that y(t)− x(t) → 0 as t → ∞ for every so-
lution of the system ẋ = f (x). Pick any one particular such solution x0(·). Then,
y(t)− x0(t) → 0. We may repeat this argument for an arbitrary (y(t),z(t)), always
comparing to the same x0(·). In summary, we have the following conclusion: if
both f and f − 2η are infinitesimally contracting (not necessarily with respect to
the same norm), then all solutions of the coupled system converge to the diagonal
solution (x0(t),x0(t)).
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The preceding considerations make the following question natural: when does
contractivity of f (which is sufficient to provide a stability property for the isolated
systems) already imply contractivity of f − 2γ (so that synchronization to the un-
coupled solutions occurs)?

We provide next a condition for the case when every Jacobian D = D(x) of γ(x)
is a diagonal non-negative definite matrix. The question is, then, for the Jacobians
A = J(x): when does μ(A) ≤ c imply that also μ(A−2D)≤ c?

Recall that a norm on R
n is said to be monotonic or “axis oriented” if the fol-

lowing property holds for any two vectors in R
n: |yi| ≤ |xi| ⇒ |y| ≤ |x| . The usual

norms (L2, L1, L∞) are monotonic, as is any new norm of the type |x|P = |Px| for a
diagonal positive definite matrix P, if |·| is monotonic.

Theorems 2 and 3 of [2] say that the following properties are equivalent: (1) the
norm is monotonic, (2) |x| depends only on the absolute values of the components
of x, and (3) the associated operator norm satisfies that ‖E‖ = max j{E j j} for any
diagonal matrix E . So ‖I−hD‖= max j{1−hD j j}= 1−hdii for some i, which im-
plies that (1/h)(‖I −hD‖−1) = −dii and thus μ(D) = dii ≤ 0. From subadditivity
of matrix measures, we conclude that, for monotonic norms, μ(A + D)≤ μ(A) ≤ c
and thus, for monotonic norms, we get contractivity of f −2γ from that of f .
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