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SUMMARY

The immune system must discriminate between
agents of disease and an organism’s healthy cells.
While the identification of an antigen as self/non-
self is critically important, the dynamic features of
antigen presentationmay also determine the immune
system’s response. Here, we use a simple mathe-
matical model of immune activation to explore the
idea of antigen discrimination through dynamics.
We propose that antigen presentation is coupled to
two nodes, one regulatory and one effecting the im-
mune response, through an incoherent feedforward
loop and repressive feedback. This circuit would
allow the immune system to effectively estimate the
increase of antigenswith respect to time, a key deter-
minant of immune reactivity in vivo. Ourmodelmakes
the prediction that tumors growing at specific rates
evade the immune system despite the continuous
presence of antigens indicating disease, a phenome-
non closely related to clinically observed ‘‘two-zone
tolerance.’’ Finally, we discuss a plausible biological
instantiation of our circuit using combinations of reg-
ulatory and effector T cells.

INTRODUCTION

In vertebrates, the innate andadaptive immunesystemscombine

to provide a finely orchestrated multicomponent host defense

mechanism that protects against infective pathogens and also

helps to identify and eliminate malignantly transformed cells

(Kindt et al. 2013; Abbas et al., 2016). A prerequisite for success-

ful immune action is the ability to distinguish agents of disease

from an organism’s own healthy cells. A central role in this

discriminatory ability is played by antigens, which are molecules

capable of inducing an immune response. Non-self-antigens

appear not only in pathogens but also inmalignantly transformed

cells because of their overexpression of normal proteins,

mutated proteins, or oncogenic viruses. In its normal functioning,

the immune system is trained not to react improperly to self-anti-

gens. This paradigm of ‘‘self/non-self pattern’’ recognition traces

back to Burnet (1957a) and related ideas in Talmage (1957).

The static view, however, is not entirely consistent with a num-

ber of phenomena which hint at a role for discrimination based

on the antigen’s dynamic features, as suggested by the following

examples: (1) The presence of commensal bacteria (microbiome)

is stably tolerated by the immune system despite the presence of

bacterially derived, non-self molecules that exist in intimate

proximity to the host (Pradeu, 2012). (2) Slow-growing tumors

are known to evade the immune system (Grossman and

Berke, 1980) despite their expression of non-self antigens.

(3) Decreased activation of natural killer cells is observed under

chronic receptor activation (Pradeu et al., 2013) despite the

continued presence of antigens. (4) There is reduced capacity

of a host to respond to the pro-inflammatory stimuli of bacterial

signatures such as lipopolysaccharides after a first exposure to

the same type of stimulus, a phenomenon called endotoxin toler-

ance in macrophages (also known as deactivation, desensitiza-

tion, adaptation, or reprogramming) (West and Heagy, 2002).

Notably, autoimmune diseases also offer examples of the im-

mune system responding to changes in antigen presentation.

For example, Pradeu (2012) argues that many autoimmune dis-

eases appear during puberty, when relatively fast changes occur

in the physiology of the host, or due to a sudden exposure to

chemical or biological agents, and, conversely, allergy treatment

by slow desensitization through antigen exposure leads to toler-

ance (Burks et al., 2012). These examples suggest that, to under-

stand the immune response, one might want to also consider

dynamic features of antigen presentation as a complement to

discrimination mechanisms that are only based on a static

response that depends on the presence or absence of antigen.

During the past 30 or so years, a number of authors, most

notablyGrossman andBerke (1980) andPradeu (2012), have pro-

posed the necessity of incorporatingdynamics of antigen presen-

tation when attempting to understand the body’s decision to

initiate the immune response. They support this line of reasoning

by experimental observations that (1) lymphocytes mount a sus-

tained responseonlywhen facedwith a sufficiently steep increase

in their level of stimulation (for example, acute antigen presenta-

tion, proliferation rates of infected cells or tumors, stress signals)

and (2) even when a new motif triggers an immune response, its

chronic presence may result in adaptation: downregulation or

even complete termination of the inflammatory response. One

mathematical formulation was introduced by Grossman and

Paul (1992), who postulated the ‘‘tunable activation threshold’’

model for immune responses: effector cells in the innate or adap-

tive systems should become tolerant to continuously expressed
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motifs, or even gradually increasing ones, but should induce an

effector response when a steep change is detected. Among

recent variations upon this theme are the ‘‘discontinuity theory’’

postulated by Pradeu et al. (2013) and the ‘‘growth threshold

conjecture’’ by Arias et al. (2015) (see STAR Methods section A

for details). Here I present an extremely simple, conceptualmath-

ematical model that describes how the immune system may

discriminate between immune challenges based on their dy-

namics. I go on to demonstrate that it can capture a clinically

important behavior, ‘‘two-zone tolerance,’’ in which tumors

growing at specific rates evade the immune system.

RESULTS

Mymodel consists of three ordinary differential equations as I will

describe in detail below. They are:

_u = ðl� kyÞu
_x = �dxx + bu
_y = hðu=xÞ + fðyÞ

(Equations 1A--1C)

The dots indicate time derivatives (see Figure 1). The con-

stants l; k; dx; b, are positive, and they represent reaction con-

stants as discussed below. The function h is continuous, strictly

increasing, and satisfies hð0Þ= 0; for our purposes we could sim-

ply take a linear function, hðpÞ=mp, where m is a constant and

p represents u/x. Qualitatively, the plot of the function f is as in

Figure 1B, left.

We view the system described by Equations 1A–1C as a ‘‘toy

model’’ that encompasses immune suppression as well as

pattern discrimination based on antigen dynamics. The variable

u represents an immune challenge, such as the volume or num-

ber of cells in a tumor, an infection, or the number of antigen-pre-

senting cells (APCs) of a certain type, and the term lu in the

Figure 1. The Model Considered in This Paper, and the Effect of Incoherent Feedforward Loops

(A) The model being considered in this paper. Blunt-end red arrows denote repression, and green arrows denote activation or autocatalytic feedback.

(B) Plot of the nonlinear function f that endows the systemwith bistability (left) and two translates of this plot; open red and filled green circles denote unstable and

stable states, respectively.

(C) Simplified model when feedbacks are ignored, an incoherent feedforward loop (IFFL).

(D) Simulations of system, with input u(t) switching in the middle of the interval from u(t) = 1 to a new constant value u(t) = 2, a shifted ramp u(t) = t, and a shifted

exponential u(t) = et, respectively; also shown are x(t) and y(t). In every case, the horizontal axis is time, t. Parameters used were: dx = b=m= dy = 1; initial

conditions xð0Þ= yð0Þ= 1.

232 Cell Systems 4, 231–241, February 22, 2017



equation for u represents its exponential rate of growth. The var-

iable x represents what I will call an ‘‘intermediate regulatory

node’’ because it is driven by u and in turn regulates y. This

node has an explicit biological correlate, such as the number

of T regulatory (Treg) cells in a defined tumor microenvironment.

Within the model, this variable evolves according to a linear acti-

vation, proportional to the immune challenge, and decays line-

arly (inactivation or degradation). The variable y represents an

agent that can eliminate the challenge u, such as the number

of tumor-specific cytotoxic T cells (CTL) in the same environ-

ment. This elimination is represented by the mass-action term

�kyu in the equation for u. As I will discuss in detail below, the

variable y increases in proportion to the ratio of u to x, which im-

plies that y is driven by the rate of growth of u. The function f(y)

combines both degradation of y and a positive autocatalytic

feedback between the presence of y and its induction, such as

is observed when T cell activation is induced by cytokines; this

function is chosen so as to endow the y component with bistable

behavior, as explained next.

Initial intuition regarding the system can be obtained by

thinking of p= hðu=xÞ as a parameter in the scalar differential

equation (Equation 1C), writing _y =p+ fðyÞ and temporarily

ignoring that, in the full model p is not constant but it depends

on y through a feedback repression of u. Note that, in this

thought exercise, the plot of p+ fðyÞ is a vertical translation by

p of the plot of f. If p is small, then, starting from the initial condi-

tion yð0Þ= 0, the solution y(t) approaches asymptotically a low

value of y, the leftmost stable green-labeled point in the center

plot in Figure 1B. However, once that p has a value large enough

that this first equilibrium disappears (in what is known as a

‘‘saddle-node bifurcation’’) then y(t) will converge, instead, to a

comparatively large value, the green stable point in Figure 1B,

right. This higher equilibrium represents the triggering of a sub-

stantially increased immune response.

Further intuition can be gleaned from another simplification.

Let us think of u as an input to Equations 1B and 1C, once again

ignoring the repression of u by y (see Figure 1C). In addition, let

us take hðu=xÞ=m u=x and let the function f include only degrada-

tion or deactivation but no autocatalytic feedback. Thus, Equa-

tions 1B and 1C simplify to

_x = �dxx + bu
_y = mu

�
x � dyy;

(Equation 2)

where b;m; dx; dy are some positive constants, and u is viewed

as an external stimulus. The resulting system is a type of inco-

herent feedforward loop (IFFL), a ‘‘motif’’ which is ubiquitous in

biological networks (Milo et al., 2002; Alon, 2006) and is statisti-

cally enriched in many intracellular networks (metabolic path-

ways, genetic circuits, kinase-mediated signaling) as well as

the intercellular level. IFFLs are characterized by the existence

of two antagonistic (‘‘incoherent’’) alternative pathways from

the input to the output; these paths can be direct or indirect

(Figure 1C).

For ourmodel, there is an activating, direct pathwithin the IFFL

from the stimulus u (given as a step function, for example, in Fig-

ure 1D, left) to the effector node y. In addition, there is an

inhibitory, indirect path from stimulus u to node y: u activates

regulatory node x, which, in turn, represses y. This structure en-

dows IFFLs with powerful signal processing capabilities, studied

in detail in Alon’s textbook (Alon, 2006). Because the indirect ef-

fect requires an accumulation of x over time, there is typically a

delay in the downregulation of y, leading to a response that con-

sists of a short activity burst followed by a return to a basal value

which is the same regardless of the magnitude of the input, as

shown in Figure 1D, left. The return to a basal value independent

of the excitation magnitude is a phenomenon called ‘‘perfect

adaptation’’ (Alon, 2006; Sontag, 2003) and holds also for ramps

(linearly increasing) inputs u (t); see, for example, Figure 1D, cen-

ter. However, when, instead, we consider an exponentially

growing input, such as the solution uðtÞ= uð0Þent of the differen-

tial equation _u= nu, then the response yðtÞ approaches a con-

stant multiple of the rate n instead of returning to its basal value

(Figure 1D, right). Combining these two observations, we see

that the system has two interesting properties. First, it effectively

estimates the growth constant n if the input is exponentially

growing, and second, it does not respond persistently to sub-

exponential inputs. The STAR Methods includes a formal proof

of this property. In this context, if we take the autocatalytic feed-

back term in f into account, then a large value of u=x, which de-

pends on the steepness of the input u, may trigger an irreversible

transition to a higher state for y, which persists even after the

excitation goes away. An important property of our system,

which will allow us to simplify considerably its mathematical

analysis is that it incorporates a subsystem, the IFFL system

just discussed, that has the ‘‘fold change detection’’ or ‘‘scale

invariance’’ property: if the input is scaled by a positive constant

p, then the same response y is obtained, provided that the reg-

ulatory variable x is also scaled by p. One uses the term ‘‘fold

detection’’ for the initial activity burst, motivated by the response

to an input that switches from uðtÞ= u� for t, 0 to uðtÞ= u+ for

tR0: assuming that xð0Þ is adapted to u�, the initial amplitude

of u=x, which triggers the initial change in response in y, is

ðdx=bÞu+ =u�, and u+ =u� is the fold change in the input. In the

IFFL system Equation 2, an input that is scaled by a positive

constant p leads to the same response y, provided that the reg-

ulatory variable x is also scaled by p, since one has

ðpxÞ
$

= � dxðpxÞ+ bðpuÞ

and

_y =mu
�
x � dyy =mðpuÞ�ðpxÞ � dyy :

In mathematical terms, this says that the equations do not

change under the one-parameter Lie group of transformations

ðu; x; yÞ/ðpu;px; yÞ:

In other words, this system is ‘‘scale-invariant’’ (or, in different

terminology, it is a ‘‘fold change detector’’) (Shoval et al., 2010).

The STAR Methods include a more detailed discussion of scale

invariance for this system. Irrespectively of it being a property

that is very useful in our mathematical analysis, scale invariance

allows a system to detect relative, as opposed to absolute,

changes in input signals and to do so robustly even when inter-

mediates in signaling pathways are varied (Shoval et al., 2010).

In summary, our model combines three central motifs in mod-

ern systems biology: an IFFL for estimating the rate of growth of
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uðtÞ, which is scale-invariant; multi-stable dynamics for y(t); and

feedback control of yðtÞ that represses the input u(t).

In spite of its extreme simplicity, analysis of the model reveals

a key biological implication: an immune challenge, for instance a

tumor, can be eliminated in more than one range of growth rates.

Specifically, we find three thresholds, l1, l2, l3, so that

d if the per-capita rate of growth l of the tumor is less than l1,

then it is eventually eliminated by the immune system;

d when the tumor is more aggressive, l> l1 but l< l2, it

cannot be eliminated (it is ‘‘tolerated’’ by the immune

system);

d for an even more aggressive challenge, with l> l2 but

l< l3, again the tumor is eliminated; and

d if l> l3, again there is no elimination (the tumor

‘‘escapes’’).

Intuitively, in the intermediate range l2 < l< l3, the immune

system goes into ‘‘overdrive,’’ engaging additional resources

through activation of a positive feedback mechanism, and this

level is powerful enough to effectively repress the challenge.

As we mentioned earlier, the impact of growth rates on immune

responses has been a hot topic of discussion in the immunology

literature, and it has been proposed that different rates provide a

way to differentiate among threats based on their aggressivity.

Non-self and potentially dangerous cells presumably reproduce

faster compared to self and also beneficial microorganisms. As

we will discuss, the role of exponential rates in determining im-

mune response has also been the subject of experimental

research, including a recent immunotherapy patent, and the

role of T suppressor cells in providing what we may now view

as the regulatory node in an incoherent feedforward loop has

been well established experimentally as well.

Thepredictionof the existenceof disjoint regionsof tumor elim-

ination, depending on rate of growth, remains to be tested. How-

ever, this behavior is strongly reminiscent of the well-known

phenomenon of two-zone tumor tolerance, which has been

observed in the experimental literature since the mid-1960s

(Gatenby et al., 1981; Kölsch and Mengersen, 1976; Li et al,

2016). This phenomenon is analogous to our predictions, the

onlydifferencebeing thezonesarenowdeterminedby themagni-

tude of an initial tumor inocula in animal subjects instead of tumor

growth rates. Moreover, the model is capable of logarithmic

sensing and scale invariance. These phenomena, and the origins

of two-zone tolerance, will be discussed in detail below.

Mathematical Analysis
A key step in our analysis will be an exact reduction to a certain

two-dimensional system, as such a system is far easier to

analyze than the full three-variable one. Indeed, scale invariance

under the transformations ðu; x; yÞ1ðpu;px; yÞ suggests per-

forming a change of variables in which x is replaced by p= u=x.

As x = u=p, the original variables ðu; x; yÞ can be recovered from

ðu;p; yÞ so the transformation is invertible. Rearranging the order

of equations, we will from now on study the system in these new

coordinates:

_y = hðpÞ+ fðyÞ
_p = p ðdx + l� ky � bpÞ
_u = ðl� kyÞu:

(Equations 3A--3C)

Writing the equations in these new coordinates has a major

advantage for analysis because the equations for y and p are

now decoupled from u, and, therefore, we may study the two-

dimensional ðy;pÞ system using techniques suitable for planar

systems, such as phase planes and nullclines. Information

regarding the asymptotic behavior of u can be inferred from

that of the ðy;pÞ system. Suppose that we have determined

that a solution ðyðtÞ;pðtÞÞ tends to an equilibrium ðy;pÞ with

ps0. This implies that l� ky/l� ky as t/N, and, because

dx + l� ky � bp= 0 at any equilibrium with ps0, asymptotically

uðtÞfent with n= l� ky = bp� dx. This allows us to decide if

uðtÞ converges to zero or infinity (that is, whether the immune

challenge is eliminated or grows without limit):

p < dx=b 0 n < 0 : elimination ðrejectionÞ

p > dx=b 0 n > 0 : proliferation ðescape; toleranceÞ:

Thus, from now on, we study Equations 3A and 3B. Recall the

plot of f is as in Figure 1B and that h is assumed to be strictly

increasing with hð0Þ= 0, which we will later specialize to

hðpÞ=mp. We are only interested in solutions with yðtÞR0

and pðtÞR0.

The equilibria of system (Equations 3A and 3B) are obtained by

simultaneously solving

hðpÞ+ fðyÞ= 0

and

pðdx + l� ky � bpÞ= 0:

When p= 0, the first of these is simply fðyÞ= 0 (because

hð0Þ= 0), and when p> 0, the second gives dx + l� ky � bp= 0.

The y and p nullclines of this system are the subsets of the first

quadrant where _y = 0 and _p= 0; that is,

N1 =
�ðy;pÞ �� yR0;pR0;p= h�1ð�fðyÞÞ�

and

N2 = fp= 0g Wfðy;pÞ j yR0;pR0;p= ð1=bÞðdx + l� kyÞg;

respectively. Note that ðy;pÞ can only belong to N1 if �fðyÞ is

in the range of h, and, in particular, this means that fðyÞ%0,

thus ruling out the values of y for which the plot of f is positive.

Similarly, ðy;pÞ can only belong to N2 if y%ðdx + lÞ=k. The equi-

libria of the system are the points at the intersection of these

two sets.

We are interested in analyzing the behavior of the system for

different values of the parameter l, which quantifies the initial

growth rate of the immune challenge. The only place where l

plays a role is the equation for the line p= ð1=bÞðdx + l� kyÞ, pick-
ing one of its parallel translates (Figure 2).

We assume, for simplicity, there are no more than two positive

intersections between any (green) line p= ð1=bÞðdx + l� kyÞ
and the (blue) y nullcline; this means that the slope �k=b is

not z0. We also assume for the values of l that we analyze

that there is, at most, one intersection, like x
^
, on the decreasing

branch of the blue curve. (If there are such additional intersec-

tions, the theoretical analysis is somewhat more complicated
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but is analogous.) The dashed line is the threshold that deter-

mines the behavior of u: if ðyðtÞ;pðtÞÞ converges to an equilibrium

that has p< dx=b, then uðtÞ/0 as t/N, but if p> dx=b,

then uðtÞ/N.

The Jacobian matrix for the system (Equations 3A and 3B),

evaluated at a generic equilibrium ðy;pÞ, is

J =

�
f 0ðyÞ h0ðpÞ
�kp dx + l� ky � 2bp

�

and, therefore,

J =

�
f 0ðyÞ h0ð0Þ
0 dx + l� ky

�

if p= 0 and

J =

�
f 0ðyÞ h0ðpÞ
�kp �bp

�

if p> 0, where we used that

dx + l� ky � 2bp= � bp

when p> 0 (since the equilibrium condition is dx + l� ky � bp= 0

in that case). Note that these cases correspond, respectively, to

points labeled h and x in Figure 2.

At points with p= 0, the eigenvalues of the upper triangular

matrix J are f 0ðyÞ and dx + l� ky. Referring to the plot of f in

Figure 1B, f 0ðyÞ> 0 at the point h2 and f 0ðyÞ< 0 at the points h1
and h3. This is because the blue curve in Figure 2 is h�1ð�fðyÞÞ
and, therefore, is qualitatively like an upside-down version of

the plot of f so that positive (respectively, negative) f 0 corre-

Figure 2. Nullcline Analysis of Model

(A) Nullclines for the system (Equations 3A and 3B)

on the quadrant y R 0, p R 0. Blue curve is

y-nullcline. Green lines are p-nullclines, shown for

four typical values of l. There are two different

types of equilibria: the h’s are equilibria with p = 0

and the x’s with p > 0. The four points labeled x are

stable for the reduced dynamics, for the respec-

tive l’s, as discussed in the text. The intercepts of

the green lines with the p axis (vertical) are at the

locations p= ð1=bÞðdx + liÞ, i = 1, 2, 3, 4. Red

dashed horizontal line is threshold p= dx=b, dis-

cussed in the text.

(B–E) Directions of movement in each region

determined by the nullclines along with typical

trajectories, respectively, low to high for each of

the values of l represented in (A). The inset in (B)

shows various possibilities for approach of tra-

jectory to the point labeled x.

Related to the STAR Methods.

sponds to negative (respectively, posi-

tive) slope at the equilibrium. Thus, h2 is

unstable. At the point h1, the second

eigenvalue is dx + l� ky = dx + l, which

is positive, so h1 is also unstable

(a saddle point). The stability of h3 de-

pends on the sign of dx + l� ky: h3 is stable if this sign is nega-

tive, that is if

dx + l� ky < 0;

and unstable otherwise. Suppose that all parameters are fixed

except for l. We use Figure 2 to determine stability: if l is such

that the corresponding line

p= ð1=bÞðdx + l� kyÞ

intersects the y axis at a point y0 to the left of h3 (that is, if y0 < y),

then dx + l� ky0 = 0 implies dx + l� ky < 0, and, hence, h3 is sta-

ble. If, on the other hand, l is larger and p= ð1=bÞðdx + l� kyÞ in-
tersects the y axis at a point y0 to the right of h3, then

dx + l� ky0 = 0 implies dx + l� ky < 0, so we conclude that h3 is

unstable. In Figure 2, only for the largest l (top line) is h3 unstable.

We next analyze stability of the equilibrium points for which

p> 0, labeled x or bx in Figure 2. Stability is equivalent to the trace

of J being negative and its determinant positive (Hirsch and

Smale, 1974; Sontag, 1998); that is,

�tr J= bp� f 0ðyÞ> 0

and

ð1=pÞ det J= kh0ðpÞ � bf 0ðyÞ> 0:

Because h is increasing and all constants are positive, these

expressions are both positive when f 0ðyÞ< 0. Remembering

again that the blue curve is an ‘‘upside-down’’ version of f, we

conclude that all intersections x shown in Figure 2 are stable,

with the possible exception of the intersection labeled bx, which
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Box 1. Case Study: A Concrete Mathematical Model Featuring Treg Cells and Cytokines

In aggregate, the results of our model analysis show the role of the underlying IFFL as an estimator of the exponent l of immune

challenge growth and the existence of four regimes, alternating tolerance and rejection, which correspond to different values of l.

In our abstract theoretical arguments, we did not specify the function fðyÞ, except for the requirement that its graph be as in Fig-

ure 1B. We view the model as qualitative and phenomenological, merely as an illustration of behaviors that can arise from, and can

be easily explainable by, simple motifs and not necessarily instantiated by a specific biological system. Nonetheless, it is fair to ask

if there is a plausible biological system that gives rise to an fðyÞ of this form and for which our conclusions hold true.We address this

issue now, using as a guide simplified versions of standard models in immune dynamics such as found in Kuznetsov et al. (1994)

and Kirschner and Panetta (1998) and using simulations to verify for this system the theoretically predicted four-regime behavior.

We will pick hðpÞ=mp, a linear function, and

fðyÞ= Vy2

K + y
� εy2 � dyy:

The term Vy2=ðK + yÞ in this expression can be thought of as representing a cytokine-mediated positive feedback, as discussed in

the STAR Methods. Motivated by a similar term in Khailaie et al. (2013), the term �εy2 can be thought of as representing cell con-

tact-dependent, activation-induced cell death (‘‘fratricide’’) through the Fas receptor/FasL (‘‘death ligand’’) mechanism for T cell

homeostasis suggested by Callard et al. (2003). Finally, the term �dyy represents a linear constitutive deactivation and/or degra-

dation. The resulting system is, therefore,

_u = ðl� kyÞu
_x = �dxx + bu

_y = m
u

x
+

Vy2

K + y
� εy2 � dyy

;

and the reduced system written in ðy;pÞ coordinates is

_y = m p +
Vy2

K + y
� εy2 � dyy

_p = p ðdx + l� ky � bpÞ:

We take the units of time to be days. Cell populations ðu; x; yÞ are in units of 106 cells, but p= u=x is non-dimensional. In this model,

u, x, y represent, respectively, populations of tumor, Treg, and effector T cells. The parameters we used, and corresponding units,

are as follows: m= 10 day–1, V = 0:25 day–1, dx = 0:1 day–1, dy = 0:1 day–1, b = 1 day–1, ε= 10�5 day–1 (106 cells)–1, K = 100 (106 cells),

and k= 10�5 (106 cells)–1 day–1. The particular choice of algebraic forms and parameters is discussed in the STAR Methods; basic

descriptions of the model’s behavior can also be found in the STAR Methods.

Shown in Figures 3A–3D are simulations of the complete closed-loop system, where we now included a carrying capacity term for

the immune challenge: _u= ½lð1� BuÞ � ky�u. When u is small, the termBu is dominated by the other terms, but we include this term

for numerical convenience to avoid blow-up of solutions in the case when u is unstable; in any event, such a term is biologically

realistic. We picked, specifically, B= 10�3 (STAR Methods). As predicted, for increasing l, there are alternating decay and growth

behaviors for uðtÞ. Notably, for the third value, l= 10�1, the immune challenge load uðtÞ only starts decreasing after about 120 days.

This timescale happens to be, purely coincidentally, the start of remission observed in some patients under ipilimumab (CTLA-4

checkpoint blockade therapy; Wolchok 2010). For this model and parameters, Figure 3E shows the asymptotic value of u, the im-

mune challenge, as a function of the parameter l, clearly illustrating the four-regime phenomenon. In the STAR Methods, similar

results are shown to hold for amodel in which the effect of regulatory variables is through an inactivation of a helper cell population.

The existence of disjoint regions of tumor elimination depending on rate of growth is reminiscent of ‘‘sneaking through.’’ The idea of

tumors ‘‘sneaking through’’ from immune control can be traced to the mid-1960s, when Klein (1966) found the ‘‘preferential take of

tumors after small size inocula to a similar degree with that seen with large size inocula, compared to the rejection of medium sized

inocula.’’ Put simply, there is an intermediate region in which tumors can be eliminated. This picture is at least consistent with a

larger initial rate of increase in exposure, leading to tumor suppression, as in our model. These ideas were explored experimentally

in Gatenby et al. (1981) and Kölsch and Mengersen (1976) and are analogous to behavior that can be seen in our model (Figure 4),

but with the important proviso that the numbers represent tumor incidence and that we work with rates of increase instead of initial

tumor size (see STAR Methods for more discussion).

Our analysis is merely a phenomenological toy model which does not specify immune components. Nonetheless, one might spec-

ulate that, as far as T cell activation and deactivation, Tregs may play a role as a regulating intermediate variable x. Tregs are a type

of CD4+ cell that play ‘‘an indispensable role in immune homeostasis’’ (Josefowicz et al., 2012). They arise during maturation in the

thymus from autoreactive cells (‘‘natural Tregs’’) or are induced at the site of an immune response in an antigen-dependent manner

(Continued on next page)
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needs further analysis. At the point bx, the slope of the green line is
�k=b, and the slope of the blue line is the derivative of h�1ð�fðyÞÞ
evaluated at y = y, where hðpÞ+ fðyÞ= 0, so this slope is

�f 0ðyÞ=h0ðpÞ. Since the slope of the green line is larger (less

negative) than the slope of the blue line, we have that

�k=b> � f 0ðyÞ=h0ðpÞ, or, equivalently, kh0ðpÞ � bf 0ðyÞ< 0, so the

determinant of J is negative, whichmeans that bx is a saddle point
and, therefore, unstable.

These theoretical results strongly suggest that, for trajectories

that start with small p= u=x, convergence will be to one of the

points labeled x in Figure 2 or h3 in the case of the line that

does not intersect the blue curve. In other words, if l, the repro-

duction rate of the immune challenge, such as a tumor, is small,

then we will have an intersection below the threshold (Figure 2,

dashed line), meaning that the challenge will be eliminated. For

a larger, but not too much larger, l, the intersection is above

the threshold, so the challenge will be tolerated (it will grow).

For l’s such that there are no intersections with the blue curve,

solutions should converge to h3, which is again under the

threshold, implying a second zone of elimination of the chal-

lenge. Finally, for very large ls, the immune system is not

capable of eradicating the challenge (x is over the threshold),

so escape again occurs. This two-zone tolerance (at both inter-

mediate and large l) is reminiscent of analogous experimental

findings (Box 1). The analysis based on stability of equilibria

can be complemented by numerical simulations, done in Box 1

for an example, as well as a global phase-plane analysis, done

below. A simplified case is analyzed further in the STAR

Methods.

Observe that _y > 0 in those regions of the phase plane where

hðpÞ+ fðyÞ> 0, that is to say, where

p>h�1ð�fðyÞÞ:

Geometrically, this means that the flow of the vector field

defining the system will point to the right at points that lie over

the blue curve (y nullcline); it will point left under the blue curve

and will be exactly vertical (or an equilibrium) on the curve itself.

Similarly for p> 0, _p> 0 in regions of the phase plane where

dx + l� ky � bp> 0;

that is to say, where

p< ð1=bÞðdx + l� kyÞ:

Geometrically, this means that the flow of the vector field

defining the systemwill point up at points that lie under the green

lines (p nullcline); it will point down over the green lines andwill be

exactly horizontal (or an equilibrium) on the lines. At p= 0, the

vector field is horizontal.

In summary, motions are ‘‘northeast,’’ (NE) etc., according to

these rules in each region delimited by the blue curve and the

line dx + l� ky � bp= 0:

1. NE: over blue, under green

2. Southeast (SE): over blue, over green

3. Northwest (NW): under blue, under green

4. Southwest (SW): under blue, over green

Figure 2 shows the directions of movement in each region for

each of the sample nullclines shown earlier as well as what a

typical trajectory might look like, consistent with these directions

of movement and converging to the stable points x or h3. (The

precise approach depends on the functional forms of f and h

and their parameters. The inset in Figure 2B shows several pos-

sibilities.) As l is increased, the equilibrium shown lies under,

above, under, and finally again above the threshold. Box 1 dis-

cusses a specific model where these predictions are verified

and relates our results to experimental evidence of similar

phenomena.

DISCUSSION AND CONCLUSIONS

The study of immune systems and their interactions with tumors

has long been the focus of theoretical and mathematical immu-

nology (Jerne, 1974; Bell et al., 1978). Two influential contribu-

tions were the paper by Stepanova (1979), in which a set of two

ODEs was used to represent tumor and immune system cells,

and the paper by Kuznetsov et al. (1994), in which a similarly sim-

ple model was used to provide an explanation for the sneaking-

through phenomenon, although with escape of small tumors

andwith nomechanism for detection of rates of change of the im-

mune challenge. It is impossible here to review the literature in

this very active area of research; some reviews and textbooks

are Bell et al. (1978), Callard and Yates (2005), Andrew et al.,

(2007), Eftimie et al., (2011),Wodarz andKomarova (2014), dePil-

lis and Radunskaya (2014), and Vodovotz et al. (2016).

In this paper, we proposed a very simple phenomenological

model that recapitulates someof thebasic featuresof interactions

Box 1. Continued

(‘‘induced Tregs’’). They are thought to play a role in limiting cytotoxic T cell responses to pathogens, and Treg– mice have been

shown to suffer from extreme inflammatory reactions. It is known from animal studies that Tregs inhibit the development of auto-

immune diseases, such as experimentally induced inflammatory bowel disease, experimental allergic encephalitis, and autoim-

mune diabetes (Owen et al., 2009). Moreover, the involvement of T suppressor cells (now Tregs) in regulating the immune response

to tumor has a long history; see, for instance, Fujimoto et al. (1976).

Our analysis suggests that the immune system might act as an estimator of the rate of growth of an immune challenge and, more

specifically, the rate of exponential increase. In recent work, Kundig et al. (2008) and Johansen et al. (2008) emphasized the role of

antigen kinetics in determining immune reactivity, with exponentially increasing antigenic stimulation recognized by the immune

system as a pattern associated with pathogens and, thus, leading to strong immune responses. They showed that the dynamics

of immune stimulation (through dendritic cell vaccination and for T cells stimulated in vitro) was by itself a factor in determining the

strength of T cell and anti-tumor responses and obtained a patent for the idea of using exponentially increasing antigen stimulation

(Kundig et al., 2008). See the STAR Methods for more discussion.
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between the immune systems and tumors (or, more generally at

this level of abstraction, other immune challenges) in the context

of the estimation of tumor growth rates. The model leads to

interesting conclusions regarding transitions between tolerance

and elimination and the role of dynamics in self/non-self discrim-

ination and makes contact with several theory and experimental

papers. Obviously, our model represents a purely phenome-

nological, macroscopic, and hugely over-simplified view of a

highly complex, intricate, and still poorly understood network of

interactionsbetweendifferent components of the immunesystem

as well as immune interactions with pathogens and tumors, Para-

phrasing the well known quote, our model is ‘‘as simple as

possible but not simpler’’ to illustrate the particular phenomena

of interest.

Since Paul Ehrlich’s work in 1909, (Ehrlich, 1909) the interplay

with the immune system has been a controversial, although

recently accepted, aspect of cancer biology. These ideas

Figure 3. Simulations of Model

(A–D) Simulations of full system as described in

text, for l = 10–4, 10–2, 10–1, and 1. (In A, u(t)

converges to zero as t/N, but very slowly.)

Parameters as described in text. Initial states are

always u = 1, x = 1, y = 0.

(E) Values of uðNÞ plotted against l, showing four

regimes of elimination, tolerance, elimination, and

escape (zero values shown as 10–2 to fit in log

scale).

Related to the STAR Methods.

were formalized in Burnet’s immune sur-

veillance hypothesis (Burnet, 1957b) as

an interaction between cancers that

continuously arise and their repression

by immune system, resulting in eventual

elimination. Initial interest in this work

was soon temperedby early experiments,

but eventually new data led to a revival of

these ideas in the late 1990s (Dunn et al.,

2002). There is little doubt nowadays

that immunosurveillance acts as a tumor

suppressor, although it is also widely un-

derstood that the immune system can

facilitate tumor progression by ‘‘sculpt-

ing’’ the immunogenic phenotype of tu-

morsas theydevelop. Indeed, onecurrent

paradigm (Dunn et al., 2004) is the so-

called ‘‘three Es of cancer immunoedit-

ing’’ hypothesis: elimination, equilibrium,

and escape. The first of this corresponds

with the classical immunosurveillance

idea: the immune system successfully

eradicates the developing tumor. In the

equilibrium or immune-sculpting phase,

the host immune system and any tumor

cells that have survived the elimination

phase enter into a dynamic quasi-steady

state equilibrium during which the tumor

cell population stays at sub-clinical levels.

Ultimately, however, genetic and epigenetic heterogeneity in tu-

mors, coupledby theDarwinian selectionpressure exertedby the

immune system, lead to the emergence of dominant clones with

reduced immunogenicity which expand and become clinically

detectable, and this is termed the escape phase. Our model

does not directly address the effect of genetic or epigeneticmod-

ifications, and expanding it to do so remains a most interesting

direction for further work.

Clinically, the interactions between the immune system and

tumors are the focus of much current research because of the

promise of novel immunotherapies such as checkpoint inhibitors

(Pardoll 2012). It is worth pointing out the role of dynamical re-

sponses in immunotherapies compared to classical chemo-

therapy and pathway inhibitors, which is emphasized in the

UpToDate physician reference guide, from which we quote

from the September 1, 2015 version: ‘‘patients may have a tran-

sient worsening of disease, manifested either by progression of
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known lesions or the appearance of new lesions, before disease

stabilizes or tumor regresses.’’ (Interestingly, the solution in Fig-

ure 3B has this behavior). This statement helps justify, in our

view, the introduction of dynamic systems concepts into the field

of immunotherapy.
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Ehrlich, P. (1909). Über Den Jetzigen Stand Der Karzinomforschung. Ned.

Tijdschr. Geneeskd. 5, 273–290.

Flaherty, D. (2011). Immunology for Pharmacy, First Edition (Elsevier).

Fujimoto, S., Greene, M.I., and Sehon, A.H. (1976). Regulation of the immune

response to tumor antigens. II. The nature of immunosuppressor cells in tu-

mor-bearing hosts. J. Immunol. 116, 800–806.

Gatenby, P.A., Basten, A., and Creswick, P. (1981). ‘‘Sneaking through’’:

a T-cell-dependent phenomenon. Br. J. Cancer 44, 753–756.

Goentoro, L., and Kirschner, M.W. (2009). Evidence that fold-change, and

not absolute level, of beta-catenin dictates Wnt signaling. Mol. Cell 36,

872–884.

Grossman, Z., and Berke, G. (1980). Tumor escape from immune elimination.

J. Theor. Biol. 83, 267–296.

Grossman, Z., and Paul, W.E. (1992). Adaptive cellular interactions in the im-

mune system: the tunable activation threshold and the significance of sub-

threshold responses. Proc. Natl. Acad. Sci. USA 89, 10365–10369.

Hamadeh, A., Ingalls, B., andSontag, E. (2013). Transient dynamic phenotypes

as criteria for model discrimination: fold-change detection in Rhodobacter

sphaeroides chemotaxis. J. R. Soc. Interface 10, 20120935.
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

A. Comparison to other models
We next briefly discuss our interpretation of some existing models for self/nonself dynamic discrimination in immune systems, and

compare them to the IFFL model.

Tunable Activation Threshold (TAT)
This model was suggested by Grossman and Paul (1992), motivated by the realization that ‘‘self/nonself discrimination may bemuch

more complex than the simple failure of competent lymphocytes to recognize self-antigens’’. The authors argued that for a stimulus

to cause cell activation, the excitation level must exceed an activation threshold, and when engaged in persistent sub-threshold in-

teractions, cells are protected against chance activation. In the TAT model, an activation threshold for an immune cell is dynamically

modulated by an environment-dependent recent excitation history. This history is summarized by an excitation index, which we will

denote as x(t), which computes a sort of weighted average of the cell’s past excitation levels. Given temporal excitation events, which

we denote by u(t), it is assumed that the cell undergoes perturbations that depend on the difference between u(t) and the memory

variable x(t). The key assumption is that such a perturbation, which we write as y(t): = u(t) – x(t), must exceed a fixed critical value,

which we denote by q, in order to cause activation. In other words, it must be the case that uðtÞ � xðtÞ> q, or equivalently,

uðtÞ> xðtÞ+ q (this is how we interpret the statement in Grossman and Paul (1992) that ‘‘the activation threshold equals the excitation

index plus that critical value’’) for activation to occur. Cells maintained at a high level of excitation x(t) therefore are relatively insen-

sitive to activation, thus being in some sense anergic. The authors deduce from their model that ‘‘upon gradual increase in the levels

of excitation.a cell is not likely to be activated.it will become progressively anergic’’ which is intuitively equivalent to our remark

about the lack of continued excitation under slow increases in antigen presentation. With our notations, the model suggested in

Grossman and Paul (1992) is:

_x =auðu� xÞ
for some constant a, and the output would be y = u� x. (No explicit population-based nor signaling mechanism was given.) Notice

that we then can derive a differential equation for y:

_y = uð _u=u� ayÞ
and this means, roughly, that y should approach _u=u, the logarithmic derivative of the input u, so that a ‘‘log sensing’’ property is

satisfied by the output. Moreover, when the input is constant, the output converges to the same value (zero), independently of

the actual value of the input, so we have perfect adaptation. Moreover, we expect y to be small (and thus not exceeding the

threshold q) unless u changes fast in the sense that its logarithmic derivative is large. For example, for uðtÞ increasing linearly, _uwould

be a constant, so _u=u= 0 and therefore yðtÞ/0 as t/N. On the other hand, for an exponentially increasing u(t), y(t) converges to a

value proportional to the exponential rate. These properties are analogous to those satisfied by our model.

Discontinuity theory of immunity
This model was suggested by Pradeu et al. (2013) as a ‘‘unifying theory of immunity’’. Their key hypothesis is that effector immune

responses are induced by an ‘‘antigenic discontinuity’’ by which they mean a ‘‘sudden’’ modification of molecular motifs with which

immune cells interact. The authors present evidence that natural killer (NK) cells and macrophages are activated by transient mod-

ifications, but adapt (ceasing to be responsive) to long-lasting modifications in their environment, and then propose to extend this

principle to other components of the immune system, such as B cells and T cells. They also argue that although tumors give rise

to effector immune responses, ‘‘a persistent tumour antigen diminishes the efficacy of the antitumor response’’. In summary, their

criterion of immunogenicity is the phenomenological antigenic discontinuity and not the nature of the antigen, including both ‘‘dis-

continuities’’ arising from self motifs such as tumors as well as from non-self motifs such as bacterial or viral infections. As examples

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Ordinary Differential Equation

Simulations MATLAB,

Mathworks

Other

Data for Figure 4 Gatenby et al. (1981) and Kölsch

and Mengersen (1976)
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of mechanisms for desensitization theymention receptor internalization, degradation or inactivation of signaling proteins. A concrete

example of the latter is the dephosphorylation triggered by immunoreceptor tyrosine-based inhibition motif (ITIM)-containing recep-

tors antagonizing kinases triggered by immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors. The authors

also mention Treg population dynamics. Using our notations, the model in Pradeu et al. (2013) starts by computing a running average

of the absolute value of consecutive differences in inputs presented at discrete times on a sliding window K time units long:

DuðtÞ : = 1

K

XK
i = 1

juðt � i + 1Þ � uðt � iÞ j

and then taking as the output y =QðDuÞ, where Q is a sigmoidal saturating function. The authors employ

QðxÞ= a

1+ e�mðx�qÞ

but one could equally well (and perhaps easier to justify mechanistically) employ a Hill-type functionQðxÞ=Vxn=ðKn + xnÞ. In contin-

uous time, and assuming that the input is differentiable, we could interpret

DuðtÞzk _u
��
½t�K;t�k 1

=

Z t

t�K

j _uðsÞ jds;

where the right hand term is the total variation of the input on this sliding window. Note the absolute value, which means that, in this

model, activation is symmetrically dependent on increases or decreases of the excitation: decreases may help with ‘‘missing self’’

recognition, in which the expression of a ‘‘self’’ marker suddenly decreases, thus triggering a response. As with our model, slow var-

iations in the input will lead to small y(t), with the threshold function resulting in an ultrasensitive, almost binary, response (provided

that m or n are large, in the two suggested functions Q).

Growth threshold conjecture
This model was suggested by Arias et al. (2015) as ‘‘a theoretical framework for understanding T-cell tolerance’’ based on the hy-

pothesis that ‘‘T cells tolerate cells whose proliferation rates remain below a permitted threshold’’. As in the other works, the authors

postulate that T cells tolerate cognate antigens (irrespectively of their pathogenicity) as long as their rate of production is low enough,

while those antigens that are associated with pathogenic toxins or structural proteins of either infectious agents or aggressive tumor

cells are highly proliferative, and therefore will be targeted as foes by T cells. In summary, once again the postulate is that a strong

immune response will be mounted against fast-growing populations while slow-growing ones will be tolerated. The model in Arias

et al. (2015) is not one of change detection as such, but it is a closed-loop system that includes both detection and a killing effect

on pathogens. To compare with our previous models, let us again denote the pathogen population size (or a density in a particular

environment) by u(t) and the effector cell population by y(t). The authors give for y a second order equation €y = � dy +au, modeled on

a spring-mass system that balances a ‘‘restoring to equilibrium force’’ to its activation by pathogens.We prefer to write the system as

a set of first order ODE’s. Thus, we let x : = _y, and write:

_u = ðl� kyÞu
_x = au� dy
_y = x :

The u equation has an exponential growth term balanced by a kill rate that depends on the effector population. The effector pop-

ulation integrates the amount of x (which we might interpret as an intermediate type of cell); the growth of x is driven by pathogens,

with a negative feedback from y (in essence an integral feedback on x), but there is no obvious biological mechanism for this model.

Observe that when there is no pathogen, this results in a harmonic oscillator for x and y, with sustained oscillations and even negative

values. In any event, the authors computationally obtain a bifurcation-like diagram in the ðl; kÞ plane, dividing this plane into two re-

gions, labeled ‘‘tolerance’’ (of infection, hence, failure of the immune system) and ‘‘intolerance’’. These regions show how to trade off

the growth rate l of the pathogen versus the parameter k, which represents a combination of affinity and clearance rate, and various

conclusions regarding evasion strategies and the role of fever and even Treg cells are qualitatively derived from there.

B. Theory for system without autocatalysis
We collect here mathematical results for the system when h is linear and f only contains linear degradation or inactivation terms. This

system is easier to study theoretically than the system with feedback, and provides much intuition about the general case, besides it

being a local approximation in suitable regimes. The equations are then as follows (wewrite u as the last variable now, becausewewill

separately study the first two equations):

_x = �dxx + bu

_y = m
u

x
� dyy

_u = ðl� kyÞu
(Equations 4A--4C)
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The constants dx; b;m; dy; k are positive, but l is allowed to be negative, for completeness, although the interesting case is lR0. The

scalar functions of time x = xðtÞ, y = yðtÞ, and u= uðtÞ take positive values. It is easy to verify that, for any positive initial conditions,

solutions remain positive for all times.

Wewill separately study the first two equations (Equations 4A and 4B), viewing u= uðtÞ as an external input to the IFFL described by

(Equations 4A and 4B), and viewing y = yðtÞ as an output or response of the system. Later, we ‘‘close the loop’’.

Remark. In the system (Equations 4A–4C), and in particular in the system (Equations 4A and 4B), one may assume without loss of

generality that dx = b=m= 1. This is because we may eliminate these parameters by rescaling variables. Indeed, substituting

x =
b

dx
x� ; y =

m

b
y� ; t =

1

dx
t� ; d�y =

dy

dx
; l� =

l

dx
; k� =

mk

dxb
;

into system (Equations 4A–4C), one obtains:

dx�

dt�
= �x� + u

dy�

dt�
=

u

x�
� d�yy

�

du

dt�
= ðl� ky�Þu

(Equations 5A--5C)

IFFL’s responses to various classes of inputs
Let us consider the system (Equations 4A and 4B), a differentiable function u= uðtÞ viewed as an external input or forcing function, and

any (positive) solution ðxðtÞ; yðtÞÞ corresponding to this input. We are interested first in understanding how the growth rate of the input

affects the asymptotic values of the output variable y.

We denote the derivative of lnuðtÞ with respect to t as follows:

vðtÞ :=
_uðtÞ
uðtÞ

and its limsup and liminf as t/N

m= liminf
t/N

vðtÞ ;m= limsup
t/N

vðtÞ:

We assume that v is bounded, and thus both of these numbers are finite. We also introduce the following function:

pðtÞ :=
uðtÞ
xðtÞ:

Since

_p= _u
�
x � u _x

�
x2 = ðu=xÞ½ _u=u� _x=x�= ðu=xÞ½ _u=u� ð�dxx + buÞ=x�= ðu=xÞ½ _u=u+ dx � bu=x�;

we have that p satisfies the following ODE with input v:

_p=pðdx + v � bpÞ:
Lemma. Let u be a differentiable input to system (Equations 4A and 4B) with dx = b=m= 1. With the above notations,

max
n
0;1+m

o
% liminf

t/N
pðtÞ % limsup

t/N
pðtÞ % maxf0;1+mg

Proof. Since dx = b=m= 1,

_p=pð1+ v � pÞ:
To prove the upper bound, we consider two cases, 1+m< 0 and 1+mR0. In the first case, let ε : = � ð1+mÞ> 0; the definition of m

gives that, for some TR0, 1+ vðtÞ< � ε=2 for all tRT. It follows that _p%pð�ε=2� pÞ for all tRT. Thus, _p< 0 whenever p > 0, from

which it follows that limsupt/NpðtÞ= limt/NpðtÞ= 0. Suppose now that 1+mR0. Pick any ε> 0 and a T =TðεÞR0 such that vðtÞ%m+ ε

for all tRT. For such t, _p=pð1+ v � pÞ%pð1+m+ ε� pÞ. This implies that _p< 0 whenever pðtÞ> 1+m+ ε, which implies that

limsupt/NpðtÞ%1+m+ ε. Letting ε/0, we conclude that limsupt/NpðtÞ%1+m. We next prove the lower bound. Pick any ε> 0

and a T = TðεÞR0 such that vðtÞRm� ε for all tRT. Thus _p=pð1+ v � pÞRpð1+m� ε� pÞ for all tRT. This implies that _p> 0 when-

ever pðtÞ< 1+m� ε (recall that pðtÞ> 0 for all t, since by assumption uðtÞ> 0 and xðtÞ> 0 for all t). Therefore liminft/NpðtÞR1+m� ε,

and letting ε/0 we have liminft/NpðtÞR1+m. Since pðtÞR0 for all t, we also have liminft/NpðtÞRmaxf0; 1+mg. This completes the

proof. In particular, if vðtÞ/n as t/N then m=m= n, so we have as follows.
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Corollary. If vðtÞ/n as t/N then limt/NpðtÞ=maxf0; 1+ ng.
For the original system (Equations 4A and 4B), we have as follows.

Proposition.Consider a solution of (Equations 4A and 4B), with a differentiable uðtÞ> 0 as input and xðtÞ> 0, yðtÞ> 0. Assuming that

v = _u=u is bounded, we have:

m

bdy
max

n
0; dx +m

o
% liminf

t/N
yðtÞ % limsup

t/N
yðtÞ %

m

bdy
maxf0; dx +mg

Proof. We first assume that dx = b=m= 1. Let p : = liminft/NpðtÞ and p : = limsupt/NpðtÞ. Equations 4B can be written as
_y =p� dyy. This is a linear system forced by the input p=pðtÞ. Pick any ε> 0. Then there is some T = TðεÞ such that

p� ε<pðtÞ<p+ ε for all tRT. For such t, _yðtÞ> 0 whenever yðtÞ< ð1=dyÞðp� εÞ and _yðtÞ< 0 whenever yðtÞ> ð1=dyÞðp+ εÞ. It follows

that ð1=dyÞðp� εÞ%yðtÞ%ð1=dyÞðp+ εÞ for all tRT. Letting ε/0 we conclude that

p
�
dy % liminf

t/N
yðtÞ % limsup

t/N
yðtÞ % p

�
dy

and the inequalities followwhen dx = b=m= 1. To deal with general parameters, we recall that (Equations 5A and 5B) are obtainedwith

x = ðb=dxÞx�, y = ðm=bÞy�, t = ð1=dxÞt�, and d�y = ðdy=dxÞ. Note that t�/N if and only if t/N. Thus, the inequalities in the last display hold

for p� = u=x� = ðb=dxÞp, y�, and d�y in place of p, y and dy. Similarly, the inequalities in the Lemma hold for p� = u=x� and

m� = liminf
t/N

v�ðt�Þ;m= limsup
t/N

v�ðt�Þ

where v� = ððdu=dt�Þ=uÞ= ð1=dxÞv, so m� = ð1=dxÞm and m� = ð1=dxÞm. Therefore,

liminf
t/N

yðtÞ = liminf
t�/N

m

b
y�ðt�Þ R

m

b

p�

d�y
=

m

b

p�

dy
�
dx

=
dxm

bdy
p� =

dxm

bdy
max

n
0; 1+m�

o

=
m

bdy
max

n
dx +m

o
:

A similar remark applies to limsup, and the result follows.

Corollary. If vðtÞ/n as t/N then limt/NyðtÞ= ðm=bdyÞmaxf0; dx + ng. Three particular cases are:

d When uðtÞ has sub-exponential growth, meaning that dlnu=dt%0, then limsupt/NyðtÞ%dxm=bdy.

d In particular, if uðtÞ=K0 +C0t is linear, then n= 0 and thus limt/NyðtÞ= dxm=bdy.

d If uðtÞ=C0e
nt is exponential, then limt/NyðtÞ= ðm=bdyÞmaxf0; dx + ng.

In conclusion, when u is constant, or even with linear growth, the value of the output y(t) converges to a constant, which does not

depend on the actual constant value, or even the growth rate, of the input. For constant inputs, this is called the ‘‘perfect adaptation’’

property. If, instead, u grows exponentially, then y(t) converges to a steady state value that is a linear function of the logarithmic

growth rate.

IFFL’s as feedback controllers
As we remarked, in the case of exponential inputs uðtÞ= ent, limt/NyðtÞ= y = ðc=bdyÞmaxf0; dx + ng. Now suppose that, in turn, uðtÞ
satisfies Equation 4C, which means that vðtÞ= l� kyðtÞ, and therefore n= limt/NvðtÞ= l� ky. This gives an implicit equation for

the rate v:

n= l� ky = l� mk

bdy
maxf0; dx + ng:

We now solve this equation.

Denote

FðlÞ= lbdy � mkdx

bdy +mk
:

Suppose first that l%dx. Then, since dx +FðlÞ= ðdx + lÞq (where q= bdy=ðbdy +mkÞ), m=FðlÞ satisfies dx +mR0 and also, rewriting

m=FðlÞ, m is the unique solution of the implicit equation with dx +mR0. There are no solutions with dx +m< 0, because such a solution

would have to satisfy m= l, but dx + lR0. Suppose instead that l> dx. Then m= l is the unique solution of the implicit equation with

dx +m< 0. There are no solutions with dx +mR0, because such a solution would have to satisfy m=FðlÞ and therefore have

dx +m= dx +FðlÞ= ðdx + lÞq< 0, a contradiction. In summary, when lR� dx, the unique solution of the implicit equation is m=FðlÞ,
and when l< � dx it is m= l.

Note that when

mdxk > bdyl
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(which happens automatically when l< 0) the formula n=FðlÞ gives that n< 0, that is, uðtÞ/0 as t/+N. Conversely, if mdxk< bdyl,

then n> 0 and so uðtÞ/N as t/+N. Qualitatively, this makes sense: a large feedback gain k, or a small growth rate l in the absence

of feedback, leads to the asymptotic vanishing of the u variable.

In addition, from the formula y = ðm=bdyÞmaxf0; dx + ng we conclude the following piecewise linear formula for the dependence of

the limit of the output on the parameter l that gives the growth rate of exponentially growing u when there is no feedback:

y =

8><
>:

0 if l< � dx

mðdx + lÞ
bdy +mk

if lR� dx
:

These considerations provide helpful intuition about the closed-loop system, but they do not prove that the above inequality is

necessary and sufficient for stability, nor do they show the validity of this growth rate for the closed-loop system. The reason that

the argument is incomplete is that there is no a priori reason for uðtÞ to have the exponential form uðtÞ=C0e
nt. We next provide a

rigorous argument.

Analysis of the closed-loop system
Theorem. Suppose that ðxðtÞ; yðtÞ; uðtÞÞ is a (positive) solution of Equations 4A–4C, and define

vðtÞ := _uðtÞ=uðtÞ= l� kyðtÞ;

pðtÞ := uðtÞ=xðtÞ;
y by the following formula here:

y =

8><
>:

0 if dx + l< 0

mðdx + lÞ
bdy +mk

if dx + lR0

p=
�
dy
�
m
	
y; and

v =

8><
>:

l if dx + l< 0

l� k
mðdx + lÞ
bdy +mk

if dx + lR0:

Then:

lim
t/N

yðtÞ = y

lim
t/N

pðtÞ = p

lim
t/N

vðtÞ = v:

and

lim
t/N

uðtÞ=



0 if dxmk> bdyl

N dxmk< bdyl

Proof. Substituting vðtÞ= l� kyðtÞ into, we have the surprising and very useful fact that there is a closed system of just two differ-

ential equations for p and y:

_p = pðdx + l� ky � bpÞ
_y = mp� dyy:

(Equations 6A and 6B)

(This system could be viewed as a non-standard predator-prey of system, where y behaves as a predator and p as a prey.) In all

of the real plane, there are two equilibria of this system, one at p= y = 0 and the other at p= dyðdx + lÞ=ðbdy + ckÞ,
y = cðdx + lÞ=ðbdy + ckÞ. The second equilibrium point is in the interior of first quadrant if and only if dx + l> 0.

We start by evaluating the Jacobian matrix of the linearized system. This is:

J=

�
dx + l� ky � 2bp �pk

m �dy

�

which, when evaluated at p= y = 0, has determinant �dyðdx + lÞ and trace dx + l� dy, and when evaluated at ðp; yÞ has trace

�bdyðdx + lÞ
ck+ bdy

� dy
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and determinant dyðdx + lÞ. Thus, when dx + l> 0, the trace is negative and the determinant is positive, so the equilibrium ðp; yÞ is sta-
ble, and ð0;0Þ is a saddle because the determinant of the Jacobian is negative at that point. When instead dx + l%0, the only equi-

librium with non-negative coordinates is ð0;0Þ, and the determinant of the Jacobian is positive there, while the trace is negative, so

this equilibrium is stable.

We note that, in general, if have shown that there is a limit vðtÞ/v as t/N then uðtÞ/0 as t/N if v < 0 and uðtÞ/N as t/N if

v > 0. Indeed, in the first case there is some TR0 so that for tRT, v = _u=u< v=2, meaning that dðe�vt=2uðtÞÞ=dt%0, and hence

e�vt=2uðtÞ%e�vT=2uðTÞ, so uðtÞ%evðt�TÞ=2uðTÞ/0 (since v < 0). Similarly, in the second case we use that there is some TR0 so

that for tRT, v = _u=u> v=2, meaning that dðe�vt=2uðtÞÞ=dtR0, and hence e�vt=2uðtÞRe�vT=2uðTÞ, so uðtÞRevðt�TÞ=2uðTÞ/N

(since v > 0).

Consider first the case dx + l%0. Then _p=pðdx + l� ky � bpÞ%pð�ky � bpÞ< 0 for all p> 0, and therefore pðtÞ/p= 0 as t/N. We

may now view the linear system _y =mp� dyy as a one-dimensional system with input pðtÞ/0, which implies that also yðtÞ/y = 0. In

turn, this implies that v = l� ky/v = l< 0. By the general fact proved earlier about limits for uðtÞ, we know that uðtÞ/0 as t/N. This

completes the proof when dx + l%0.

So we assume from now on that dx + l> 0. We will show that, in this case, all solutions with pðtÞ> 0 and yðtÞ> 0 globally converge to

the unique equilibrium ðp; yÞ. Once that this is proved, it will follow that vðtÞ/v = l� ky. Now, this value of v, for y picked as in (case

dx + lR0), coincides with n=FðlÞ= ðlbdy � mkdxÞ=ðbdy +mkÞ. So v < 0 if mkdx > lbdy and v > 0 if lbdy >mkdx, and this provides the limit

statement for uðtÞ, completing the proof.

We next show global convergence. A sketch of nullclines (see Figure S1 for a numerical example) makes convergence clear, and

helps guide the proof. Consider any PRðdx + lÞ=b and any YRmP=dy and the rectangle ½0;P�3½0;Y �.
On the sides of this rectangle, the following properties hold:

d On the set f0g3ð0;YÞ, _pR0, because _p= 0.

d On the set fPg3ð0;YÞ, _p%0, because _p=pðdx + l� bPÞ%0, by the choice of P.

d On the set ð0;PÞ3f0g, _yR0, because _y =mp> 0.

d On the set ð0;PÞ3fYg, _y%0. because _y =mp� dyY%mP� dyY%0 by the choice of Y.

d At the corner point ð0; 0Þ, _pR0, _yR0, because _p= _y = 0.

d At the corner point ð0;YÞ, _pR0, _y%0, because _p= 0, _y = � dyY < 0.

d At the corner point ðP; 0Þ, _p%0, _yR0, because _p=pðdx + l� bPÞ%0, _y =mP> 0.

d At the corner point ðP;YÞ, _p%0, _y%0, because _p=pðdx + l� bP� kYÞ<pðdx + l� bPÞ%0, _y =mP� kyR0.

These properties imply that the vector field points inside the set at every boundary point and therefore it is forward-invariant, mean-

ing that every trajectory that starts in this set remains there for all positive times (Clarke et al., 1998). The rest of the proof of stability

uses the Poincaré-Bendixson Theorem together with the Dulac-Bendixson criterion. Note that, for any initial condition x= ðpð0Þ; yð0ÞÞ
one can always pick a large enough value of P and Y so that ðpð0Þ; yð0ÞÞ ˛ ½0;P�3½0;Y �. The invariance property guarantees that the

omega limit set u+ ðxÞ is a nonempty compact connected set, and the Poincaré-Bendixson Theorem insures that such a set is one of

the following: (a) the equilibrium ð0;0Þ, (b) a periodic orbit in the interior of the square, or (c) the equilibrium ðp; yÞ (Hirsch and Smale,

1974). Note that a homoclinic orbit around ð0; 0Þ cannot exist, because the unstablemanifold of this equilibrium is the entire y axis. For

the same reason, if x has positive coordinates, u+ ðxÞsð0;0Þ. Therefore, all that we need to do is rule out periodic orbits. Consider the

function 4ðp; yÞ= 1=p. The divergence of the vector field0
BBB@

1

p
ðpðdx + l� ky � bpÞÞ

1

p

�
mp� dyy

	
1
CCCA =

�
dx + l� ky � bp

m� dyy
�
p

�

is

vdx + l� ky � bp

vp
+
vm� dyy

vy
= � b� dy

�
p ;

which has a constant sign (negative). The Dulac-Bendixson criterion (Hirsch and Smale, 1974) then guarantees that no periodic orbits

can exist, and the proof is complete.

C. Perfect adaptation and scale-invariance
A system is said to be perfectly adapting provided that its response returns asymptotically to a pre-stimulus value under constant

stimulation. This property is typically exhibited by sensory systems processing light, chemical, and other signals, and it has been

extensively investigated both experimentally and mathematically (Alon, 2006; Keener and Sneyd, 2009). In particular, when subject-

ing a perfectly adapting system to a step-wise input signal, as shown in Figure S2A, the output of the system settles, after a transient

response, to a basal value which does not depend on themagnitude of the stimulus. The response amplitude and timing, on the other
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hand, typically depends on the input magnitude. This notion can be refined as follows. Suppose that every step has the same relative

or ‘‘fold’’ change, ui + 1=ui = constant, as shown in the figure. For scale-invariant systems, the responses to such steps have the exact

same shape, amplitude, and duration.

The alternative term ‘‘fold change detection’’ is sometimes used for this property, to emphasize the fact that such systems can only

react differently if the fold changes are not the same. To put it in another way, such systems can give different responses if the dif-

ference logui + 1 � logui is nonzero (log sensing) as opposed to ui +1 � ui. The precise mathematical definition of scale-invariance in-

volves arbitrary input signals: responses to arbitrary scaled inputs as in Figure S2B, and not only piecewise constant ones, should be

the same, provided that the internal state starts from a preadapted value. We refer the reader to Shoval et al. (2011) for technical

details.

Scale invariance or fold change detection (FCD) is a strengthening of the Weber-Fechner ‘‘log sensing’’ property, which is some-

times defined as the requirement that the maximum amplitude of responses to two scaled inputs should be the same, but not neces-

sarily their exact shape or even timing. Recent interest in the FCD property was largely triggered by the papers Goentoro and

Kirschner (2009) and Cohen-Saidon et al. (2009), in which fold-change detection behavior was experimentally observed in a Wnt

signaling pathway and an EGF pathway, respectively; these are highly conserved eukaryotic signaling pathways that play roles in

embryonic patterning, stem cell homeostasis, cell division, and other central processes. Later, the paper Shoval et al. (2010) pre-

dicted scale invariant behavior in E. coli chemotaxis, a prediction which was subsequently experimentally verified (Lazova et al.

2011). Similar results are available for other bacterial species, for example R. sphaeroides, for which theoretical predictions made

in Hamadeh et al. (2013) were experimentally confirmed inWadhams and Armitage (2004). A mathematical study of scale invariance,

together with a necessary and sufficient characterization in terms of solutions of a partial differential equation, can be found in (Shoval

et al. (2011). It has been recently shown that all scale invariant systems compute a certain type of differentiation operator, such as

logarithmic derivatives (Lang and Sontag, 2016).

One example of a scale invariant system is the IFFL that underlies our model, which we repeat here for ease of reference:

_x = �dxx + bu

_y = m
u

x
� dyy

where b;m; dx; dy; are some positive constants and uðtÞ is viewed as an external stimulus. For any given input function uðtÞ and initial

values xð0Þ and yð0Þ, the solution of this systemcan be found by first solving the scalar linear ordinary differential equation for xðtÞ, and
then plugging this result together with uðtÞ into the y equation, which is also a linear ODE. For a constant input uðtÞhu0 > 0, there is a

globally asymptotically stable steady state, given by

x =
bu0

dx
; y =

dxm

bdy
:

At steady state, the output y is independent of the particular value of the constant input u0, meaning that the system is perfectly

adapting. Suppose next that ðxðtÞ; yðtÞÞ is any solution of the system corresponding to an input uðtÞ, now not necessarily a step func-

tion. It is then immediate to verify that ðpxðtÞ; yðtÞÞ is a solution corresponding to the input puðtÞ, tR0, for any nonzero constant scaling

factor p:

_x = �dxx + bu

_y = m
u

x
� dyy

Implies

ð _pxÞ = �dxðpxÞ+ bðpuÞ
_y = m

pu

px
� dyy = m

u

x
� dyy:

Thus, this system responds with the same output signal yðtÞ to two inputs which differ only in scale, provided that the initial state

xðtÞ had already adapted to the input at time t < 0. In other words, given a step input that jumps from uðtÞ= u0 for t < 0 at time t = 0 and

an initial state at time t = 0 that has been pre-adapted to the input uðtÞ for t < 0, xð0Þ= bu0=dx, the solution is the same as if, instead, the

input would have been puðtÞ for t > 0, but starting from the respective pre-adapted state pbu0=dx. This means that our IFFL subsystem

is scale-invariant.

It would be very interesting to test experimentally the response to scaled versions of antigen presentation, to verify if such scale

invariance holds, even in an approximate fashion.

D. Details on the model used for simulations
In this section, we explain the terms in the differential equations used in simulations, including the parameters used. Of course, our

model is only a cartoon of a hugely complicated system of interlocking processes. Moreover, even if the model were mechanistic,

which it is not, numbers would depend on the specific tumor or infection tissue being modeled. Thus, these algebraic forms and

numbers are offered only as a plausible scenario.
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As explained in the main text, u represents an immune challenge, specifically a tumor in this case, while x and y might represent

populations of activated and specific T suppressor (CD4+ CD25+ Treg) and cytotoxic T cells (CD8+ cells) respectively. We use as a

guide in our modeling the paper by Kirschner and Panetta (1998), which has become a classic reference for tumor-immune interac-

tions in the presence of cytokines (no regulatory T cells in that model), together with the more recent paper by Khailaie et al. (2013)

which described amodel of immune activation in the presence of both chemokines and also regulatory T cells (no tumor dynamics in

that model).

Treg cells play a central role in cytotoxic T cell regulation. The various Tregmechanisms can be arranged into four groups centered

around four basicmodes of action (Vignali et al., 2008): (1) inhibitory cytokines, including IL-10, IL-35) and TGF-b, (2) cytolysis through

granzyme-A- and granzyme-B-dependent and perforin-dependent killing mechanisms, (3) metabolic disruption through CD25-

dependent cytokine-deprivation-mediated apoptosis, cAMP-mediated inhibition, and adenosine–purinergic adenosine receptor

(A2A)-mediated immunosuppression, and (4) targeting dendritic cells through mechanisms that modulate DC maturation and/or

function.

Cell number units
Since we use parameters from both Kirschner and Panetta (1998) and Khailaie et al. (2013), it is thus important to clarify the units used

in these sources.

Kirschner and Panetta’s paper gives ‘‘volume’’ as the unit for cell populations. Since many of these parameters were in turn

obtained from the foundational paper by Kuznetsov et al. (1994), which provided one of the first differential equation models for in-

teractions between tumors and the immune system, one can compare the two papers, to map their unit to cell numbers. For this

purpose, we can compare the value of the carrying capacity of tumors (‘‘B’’ in the simulations that we provided) in both papers. In

Kirschner and Panetta (1998)B= 10�9, and in Kuznetsov et al. (1994)B= 2310�9. Ignoring the factor of 2, this means that ‘‘volume’’ =

number of cells. This is confirmed by comparing theMichaelis-Menten constant for IL-2 activation g1 (g in the second paper): 2310�7

volume units and 2:019310�7 T cells respectively. Therefore, we will be interpreting cell units in Kirschner and Panetta (1998) as

numbers of cells. In our simulations, we use B= 10�3, because we prefer to switch to units of 106 cells. In Khailaie et al. (2013),

‘‘cell’’ means nondimensional units, cells/ C0, where C0 is an unspecified reference quantity of cells. Now, Figure 5 in Khailaie

et al. (2013) shows stable branches of equilibria under antigen stimulation in ranges of 2 to 30 nondimensionalized T cells, while

in their companion experimental paper (Milanez-Almeida et al., 2015), the same authors provide estimates of T cells in various tissues

in mice in the range 106 to 83106. Thus approximately C0 = 106 cells is consistent with the analysis in Khailaie et al. (2013), and so we

will interpret the numbers in that reference in units of 106 cells.

The autocatalytic term Vy2/(K + y)
This term is intended to model a cytokine-mediated positive feedback loop on effector T cells. Cytokines are molecules that act as

immunomodulating agents and mediate communication among immune systems components and their environment. Their concen-

trations can increase up to 1,000-fold during inflammatory conditions. Examples of cytokines include interleukins such as IL-2 and

IL-6, interferons, and TNF. The role of cytokines in anti-tumor responses, and in particular IL-2, has been the subject of much study

(Dranoff, 2004) and of mathematical modeling since at least the work of Kirschner and Panetta (1998), who proposed a simple dif-

ferential equation model that includes variables for tumor load, effector immune cells, and cytokines. In their model, activated T cells

produce cytokines, specifically IL-2, which in turn enhance lymphocyte activation, growth and differentiation, in particular of the cyto-

toxic T cell (CTL) population. The effect is through a positive feedback that is both autocrine, that is, acting on the cells that produce it,

and paracrine, acting on nearby cells. This role of IL-2 in enhancing T-cell proliferation and differentiation is one reason that IL-2 was

originally named ‘‘T-cell growth factor,’’ although by now many other immunoregulatory functions of IL-2 are known.

The term that represents the effect of the cytokine (IL-2) on y in Kirschner and Panetta (1998) is p1yz=ðg1 + zÞ, where the cytokine z

satisfies the differential equation z0 =p2uy=ðg3 + uÞ � m3z. This equation models IL-2 secretion by activated effector T cells, with a

Michaelis-Menten kinetics to account for self-limiting production of IL-2, together with a degradation rate. To obtain z as a function

of y, we assume that this variable is at equilibrium; on the saturation regime of antigen load uwe obtain z= ðp2=m3Þy. Now substituting

this expression into the differential equation for y, we have the autocatalytic term

ðp1p2=m3Þy2
g1 + ðp2=m3Þy

=
Vy2

K + y

where V =p1 and K =m3g1=p2. If we start, instead, from Khailaie et al. (2013), the corresponding term in the differential equation for _y

is ayz, where z now satisfies a different equation, _z=dy � eyz� fz and the term eyz represents IL-2 consumption rate by T cells.

Nonetheless, under the same equilibrium assumptions we obtain z=dy=ðf + eyÞ, which when substituted into ayz gives

ðad=eÞy2
ðf=eÞ+ y

=
Vy2

K + y

where V = ad=e and K = f=e. In other words, we derived the same functional form as when starting from Kirschner and Panetta (1998).

Plausible parameters values can be obtained from Kirschner and Panetta (1998) or from Khailaie et al. (2013). The parameters used

in Kirschner and Panetta (1998) were p1 = 0:1245, p2 = 5, g1 = 23107, and m3 was arbitrarily picked as 10 from the range 8.31 to 33.27
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using a half-life for IL-2 of 30 to 120 minutes given in Rosenberg and Lotze (1986). Plugging these into the formulas given above, we

obtain V = 0:1245 and K = 106K0, where K0 ranges from 33 to 133. As discussed earlier, we are reading the units in the paper Kirsch-

ner and Panetta (1998) as individual cell counts. When translating to our units of 106 cells, we obtain that K in their model ranges

between 33 and 133. (The argument is: if we rescale variables letting h= y=106, then the corresponding term in _h is

10�6Vð106hÞ2=ð106K0 + 106hÞ=Vh2=ðK0 + hÞ, which means that K =K0 when writing the equation in terms of h.) Using parameters

from Khailaie et al. (2013) gives similar results. As discussed earlier, we are reading the units in that paper as 106 cells. These param-

eters are picked in Khailaie et al. (2013) as follows: a= 0:4, d = 0:01, e= 0:01, f = 1. Plugging these into the formulas given above, these

lead to V = 0:4 andK = 100. In summary, one paper givesK between 33 and 133 and V = 0:1245, and the other paper usesK = 100 and

V = 0:4. We therefore take K = 100 and for V pick an average, V = 0:25 of the two values. Note that the units of K are 106 cells, and the

units of V are day–1.

The fratricide term –εy2

Following the T cell model in Khailaie et al. (2013), we include the term�εy2 for cell-contact-dependent activation-induced cell death

in activated T cells, a process known as ‘‘fratricide’’. Activated T cells express the receptor FasR, also known as apoptosis antigen 1

(APO-1 or APT), cluster of differentiation 95 (CD95) or tumor necrosis factor receptor superfamilymember 6 (TNFRSF6), aswell as the

ligand for this molecule, FasL; fratricide can result from direct cell contact or from cleavage of FasL (‘‘death ligand’’), and the ligation

of FasR by soluble FasL results in apoptotic cell death, mediated by caspase activation (Flaherty, 2011). It is believed that the expo-

sure to tumor antigens in T cells might mediate fratricide (Leisegang et al., 2010). Callard et al. (2003) modeled the fratricide mech-

anism by a nonlinear death term�εy2 and speculate that Fas-mediated apoptosis results in a density-dependent death rate for T cell

homeostasis that does not require competition for resources nor quorum-sensing mechanisms for density estimation. From Khailaie

et al. (2013), we pick ε= 10�5, in units of day–1 (106 cells)–1.

The decay terms –dxx and dyy

These represent linear degradation of activated T and Treg cells. The values dxx = dyy = 0:1 are from (Khailaie et al. 2013). Units of both

are day–1.

The term bu
Stimulation of regulatory cells is a very complex process that involves a wide variety of antigen presenting cells and other mediators.

TRegs are exported from the thymus and recirculate through secondary lymphoid tissues as ‘‘central’’ TReg cells, and get activated

through T cell receptor (TCR) ligation, CD28 co-stimulation and/or interleukin-2 (IL-2), which induce upregulation of expression of

interferon regulatory factor 4 (IRF4), which then orchestrates their differentiation into ‘‘effector’’ TReg cells (Liston and Gray,

2014). We make the simplest possible assumption: the rate of activation is proportional to the immune challenge such as a tumor

population, that is, we postulate a term bu in _x. It is virtually impossible to give a numerical value for the parameter b, since this value

depends on the nature of the immune challenge, spatial relations between antigen presenting cells and T cells, and so forth. Khailaie

et al. (2013) simply use a term + kðtÞ to represent this stimulation (where kðtÞ is the product of antigen stimulation ‘‘b’’ and the supplyN

of naive T cells or resting Treg cells, and introducing an unspecified multiplier to model possibly different effects on T cells compared

to Tregs). This additive input is naturally modeled by b= 1, and we take that simplest possible value. Units are day–1.

The term mu=x

There are various ways to justify this term. We picked a mathematical form for the effect of the immune challenge u and regulatory

elements x on effector cells y that is the simplest possible to model activation by u and repression by x. Let us discuss why this choice

is reasonable phenomenologically. The term ‘‘regulatory T cell’’ (Treg) actually encompasses several subclasses of cells that help in

peripheral tolerance, preventing autoimmune diseases, and down-modulating immune responses. These cells they affectmany other

immune components, from B cells to helper cells (Th1, Th2, Th17) and cytotoxic T cells, through both direct and indirect interactions.

These interactions form an extremely complicated and poorly understood network that includes inhibitory molecules such as CTLA4

and messaging by cytokines (TGF-b, IL-10, IL-35, and others) which result in the suppression of helper cell differentiation and in in-

direct down-regulation of MHC and costimulatory molecules on antigen-presenting cells, thereby reducing T cell activation. The

repression of T cell activation through TCR-MHC is one way to see the negative effect of x on y. Another is the indirect effect

through inhibitory cytokines such as IL-10, TGF-b, and IL-35 that can suppress T cell activation. The simplest mass-action kinetics

model would assume independent effects: activation by u and repression by x, leading to a term of the form h1ðuÞh2ðxÞ driving y

activation. For the effect of u, let us take h1ðuÞ= c1u, for some constant c1. If we assume that x cells (or messenger molecules)

repress through binding to a certain type of receptor, and R represents the number (or fraction, or concentration, depending on units)

of free receptors, then at equilibrium we would have kRx =R0, where R0 quantifies occupied receptors, and from a conservation

R+R0 =RT assuming a constant total number of receptors, we would have that R=RT=ð1+ kxÞ is the number of free (unbound)

receptors, so unless k � 1 we may take h2ðxÞ= c2=x for some constant c2. These arguments will result in the algebraic form

hðx;uÞ=Mu=x. A different justification is as follows. Let us assume that there is an intermediate variable z, which might represent

for example a population of helper T cells (Th cells or CD4+ T cells) which helps activate the cytotoxic T population y and is itself acti-

vated by the immune challenge u and inactivated by the regulatory variable x. The simplest equation would be _z= � m0xz+ bu, where

we are assuming that helper cells are also being activated in a manner proportional to the magnitude of the immune challenge, and
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m0x represents the x-dependent degradation of z. We assume that _y has a term z corresponding to activation by helper cells.

Assuming that this equation is at equilibrium, we may substitute z= ðb=m0Þu=x into the _y equation, giving a term mu=x, where

m= b=m0. (If helper and T cell activations are at similar timescales and the equilibrium assumption is not made, one add may the z

differential equation explicitly. We prefer to keep the model simpler, but see Supplement Section F for simulations using that model.)

Khailaie et al. (2013), include in T cell dynamics a similar mass-action degradation or inactivation term, using a rate constant 0.1.

Following this, we pick the value m0 = 0:1, so that, together with b= 1 we have m= 10. As u and x are both in units of 106 cells,

m has units day–1.

The terms lu and –kyu
The term lu is a standard exponential growth term. We view l as a varying parameter, which quantifies the initial exponential growth

of the immune challenge.

The killing term �kuy in the _u equation represents a simple mass-action suppression of the immune challenge, such as cytotoxic

T cells killing tumor cells. The constant k depends on many factors, such as the type of tumor, size and geometry of tumor microen-

vironment, accessibility of tumor cells to vasculature, and so forth. In the original paper by Kuznetsov et al. (1994), one finds

k= 1:101310�7 in units of day–1 cells–1 which when normalized to units of 106 cells would give the value k= 1:101310�1, This value

seems to be too large formost cancers. For example, based on fits to experimental data, the recent paperWang et al. (2015) obtains a

number which is many orders of magnitude smaller. That paper analyzes the killing by cytotoxic CD8+ T cells of MHCI+ tumor cells in

a B16 mouse metastatic melanoma model, and determines a killing term for such cells of the following form (with different notations

here): �½c=ðε+UÞ�Yu, where Y is the concentration of effector CD8+ T cells in the tumor microenvironment, using units of cells/mm3,

c is a constant that quantifies MHCI positive tumor death rate due to T effectors, and has the value 2:49310�13 in units mm3 day–1,

U is the total number of tumor cells, ε is a ‘‘small number’’ to account for other cells, and u is the number of major histocompatibility

complex class I positive tumor cells. Since ½c=ðε+UÞ�Y has units day–1, if we convert to y in units of 106 cells, we obtain cY = ky where

k = 2:49310�7=ðε+UÞ has units (106 cells–1 day)–1. Depending on the number of cells U in the tumor, this number k could be very

small, and it is certainly less than 2:49310�7. To take another example, Kirschner and Panetta (1998) employ a Michaelis-Menten

killing term �auy=ðg2 + yÞ, with a= 1 and g2 = 105. Given these wide ranges, we pick k= 10�5 for our simulations. Units are

(106 cells)–1 day–1. (A two-zone behavior of tumor elimination can also be found with k= 10�4, k= 10�3, k= 10�2, and k= 10�1, but

shifting the range of l’s at which different behaviors arise.)

Sensitivity to parameters in the function f
We recall the definition of the function f:

fðyÞ= Vy2

K + y
� εy2 � dyy :

Themain requirement for the theoretical analysis in themain text is that f have a cubic form as illustrated in Figure 1, so that then the

nullcline analysis in Figure 2 applies. In other words, f should have one zero at h1 = 0 and two positive zeros h2, h3 so that fðyÞ< 0 for

h1 < y < h2, fðyÞ> 0 for h2 < y < h3, and fðyÞ< 0 for h3 < y. (Observe that signs gets reversed in the nullclines in Figure 2, because of the

negative sign in the formula p= h�1ð�fðyÞÞ.) Writing �fðyÞ= ðy=K + yÞgðyÞ, where

gðyÞ= εy2 +
�
dy � V +Kε

	
y +Kdy

and using that y=ðK + yÞ is positive for y > 0 and zero at y = 0, the requirements on f translate into the requirement that the parabola

gðyÞ have two positive zeros h2, h3 (and be negative in between them), which is equivalent to:�
dy � V +Kε

	2
> 4εdyK and dy � V +Kε< 0

For our parameters, V = 0:25, K = 100, dy = 0:1, ε= 10�5, we have dy � V +Kεz� 0:1490, ðdy � V +KεÞ2z0:0222, and

4εdyK = 4310�4, so that these conditions are satisfied. These requirements imply that the maximal autocatalytic strength V should

be large, and the degradation constant dy and the fratricide constant ε should be small.

E. Nullclines for model and parameters used in text
Figure S3 shows the nullclines for this system for various increasing values of l, as well as some typical solution trajectories, showing

their convergence to values under, over, under, and finally again over the threshold which determines tolerance or rejection of the

immune challenge. This is perfectly consistent with our theoretical predictions.

F. A model with an intermediate population
We consider here that a slightly different model, in which u and x affect the effector variable y only indirectly, through production and

repression respectively of a ‘‘helper cell’’ population. Figure S4 plots simulation results (all parameters exactly the same as in earlier

model), showing that this model leads to similar results as those for the simpler model.
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_u = ½lð1� BuÞ � ky�u
_x = �dxx + bu

_y = z +
Vy2

K + y
� εy2 � dyy

_z = u � ð1=mÞ xz

G. More details on exponential rate detection and two-zone experimental results
In our model, an embedded IFFL acts as an estimator of the rate of exponential increase of the immune challenge. I briefly mentioned

thework of Johansen et al. (2008). Letme discuss here somemore relations to that work. The authors state that ‘‘antigenic stimulation

increasing exponentially over dayswas a stronger stimulus for CD8 T cells and antiviral immunity than a single dose ormultiple dosing

with daily equal doses’’ and concluded that ‘‘at a clonal level, T cells are capable of decoding the kinetics of antigen exposure.’’ They

found that IL-2 activation at constant dosage of antigen is almost zero, at linearly increasing dose is higher, and at exponential doses

is highest, and concluded (Figure 7, caption) that ‘‘exponential in vitro stimulation of CD8 T cells enhances IL-2 production and cyto-

toxicity.’’ These experimental observations are all roughly consistent with activation of the autocatalytic loop in our model under

higher exponential rates. In 2008, K€undig and collaborators, based on this work, obtained a patent (Kundig et al., 2008) for ‘‘Amethod

for enhancing T cell response’’ based on the principle that immunogenicity is enhanced by ‘‘exponentially increasing antigenic stim-

ulation of class I MHC CD8+ T cell response .in a manner independent of the dose of the antigen.’’

Another conclusion of the analysis is the existence of intermediate regions of challenge (e.g., tumor) growth in which the challenge

will be eliminated by the immune system, with challenges in lower as well as in larger regions not being eliminated. This existence of

disjoint regions of tumor elimination depending on rate of growth is strongly reminiscent of two related phenomena, ‘‘sneaking

through’’ and ‘‘two-zone’’ tumor tolerance, which have been much discussed since the mid-1960s. The idea of tumors ‘‘sneaking

through’’ from immune control originated with the findings in Klein (1966) of intermediate regions in which tumors can be eliminated.

Further, Gatenby et al. (1981) argued that this four-region phenomenon specifically depends on T-cell repression (just as in our model

through the regulatory x variable), and framed this role of suppressor T cells on regulating tumor immune response in themore general

idea of low zone tolerance (tolerance to antigens under repeated exposure to small antigen doses). This work was, in turn, motivated

by seminal work by Haubeck and Kölsch (1982), who injected exponentially increasing numbers of irradiated syngeneic ADJ-PC-5

plasmacytoma cells into BALB/c mice, starting with 2 cells at day 1, 4 at day two, and doubling subsequent doses for 15 days until

about 105 were received, and proposed the induction of T suppressor cells (what one now calls Treg cells) as an early event in tumor-

igenesis that regulated CTL activity. To test their ideas, Gatenby et al. (1981) carried out experiments that show sneaking-through

behavior as well as the failure of this behavior when ‘‘suppressor T cells’’ are eliminated, see Figures 4A and 4B respectively. Murine

sarcoma Meth A was administered in varying doses to BALB/c mice, and incidence of tumors was measured in each group of 12-42

mice, at two weeks after the last mouse died from tumor. Similar results on sneaking-through had been reported by Kölsch andMen-

gersen (1976) in previous work in which mastocytoma BM3 injected cells were injected into BALB/c mice, see Figure 4C. Care must

be taken when interpreting these experimental numbers in terms of amodel. The numbers reported are for ‘‘tumor incidence,’’ mean-

ing percentages of mice in which tumors were detected by some predetermined point. If we assume that survival (until mouse sac-

rifice, or indirect death from the tumor) depends probabilistically on tumor size, then we could think of tumor incidence as a proxy for

size. Another difference is that, in these works, the different regions correspond to the magnitude of an initial tumor inocula in animal

subjects, rather than growth rates. Nonetheless, there is a surprisingly strong resemblance between our plots and the experimental

ones. This picture is at least consistent with a larger initial rate of increase in exposure leading to tumor suppression, as in our model.

Also related to these general ideas are the papers McBride and Howie (1986) and Bocharov et al. (2004).
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Figure S1.  Related to the STAR Methods. 

Phase plane for numerical example, with several representative trajectories plotted. Nullclines 
are the 𝑦 axis, corresponding to the stable manifold of (0,0), and the lines given by 𝑦 = (𝛿𝑥 +
𝜆 − 𝛽𝑝)/𝜅 (dashed red line) and 𝑦 = 𝜇𝑝/𝛿𝑦 (dashed magenta line). In this plot, we picked 𝛿𝑥 =

𝛽 = 𝜇 = 𝜆 = 𝛿𝑦 = 1 and 𝜅 = 2, but the qualitative picture is similar for all valid parameter 

values. With these values, trajectories converge to the equilibrium (𝑝, 𝑦) = (2/3,2/3). Shown 
also is an invariant region [0, 𝑃] × [0, 𝑌] with 𝑃 = 𝑌 = 2.5 (green dash-dotted lines and axes).  
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Figure S2.  Related to the STAR Methods. 

A. In a perfectly adapting system, a step-wise input (left) gives rise to different responses that 
settle to the same basal level (top right). If the system has the scale invariance property, these 
responses are identical (bottom right).  B. Scale invariance means that scaled signals should 
result in the same output, provided that the initial state is preadapted to the respective constant 
value for 𝑡 < 0 

  



 

Figure S3.  Related to the STAR Methods. 

A. Phase plane for the system described in the text. Shown are nullclines for several increasing 

values of 𝜆 = 10𝑖, 𝑖 = −4,−3,−2,−1,0 (bottom to top). Log scale in 𝑦 is used in order to 
visualize behavior for different orders of magnitude in 𝜆. Black curve is 𝑦-nullcline 𝑝 =
−(1/𝜇)(𝑉𝑦2/(𝐾 + 𝑦) − 𝜀𝑦2 − 𝛿𝑦𝑦) Solid color curves are 𝑝-nullclines 𝑝 = (1/𝛽)(𝑑 + 𝜆 − 𝜅𝑦) 

(which look curved because of log scale), and 𝑝 ≡ 0. Horizontal dashed line is threshold 𝑝 =
𝛿𝑥/𝛽 that determines if 𝜆 − 𝜅𝑦 is positive or negative. Dashed curves are trajectories, in same 
color as the respective nullclines. Initial state for simulation is in every case 𝑝(0) = 0.5, 𝑦(0) =
0, but only portion of plot for 𝑦 ≥ 100 = 1 is shown. B. Zoomed-in view of two nullclines, for 
𝜆 = 10−4 and 𝜆 = 10−3, to show how steady state falls under/below threshold.  

  



 

 Figure S4.  Related to the STAR Methods. 

A-D. Simulations of system with “helper” intermediate, for 𝜆 = 10−4, 10−2, 10−1, and 1. (In A, 
𝑢(𝑡) converges to zero as 𝑡 → ∞, but very slowly.) Parameters as described in text for Figure 3. 
Initial states are always 𝑢 = 1, 𝑥 = 1, 𝑦 = 0, 𝑧 = 0. Only noticeable difference with simpler 
model is a slight delay in activation of 𝑦. 

 


