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45.1 Introduction

The notion of input-to-state stability (ISS) was introduced in [21]. Together with several variants, also

discussed in this article, it provides theoretical concepts that describe various desirable stability features

of a mapping u(·) �→ (·) from (time-dependent) inputs to outputs (or internal states). Prominent among

these features are that inputs that are bounded, “eventually small,” “integrally small,” or convergent,

should lead to outputs with the respective property. In addition, ISS and related notions quantify in

what manner initial states affect transient behavior. The discussion in this article focuses on stability

notions relative to globally attractive steady states, but a more general theory is also possible, that allows

consideration of more arbitrary attractors, as well as robust and/or adaptive concepts. The reader is

referred to the cited literature, as well as the textbooks [5,7,8,12,14,15,20], for extensions of the theory

as well as applications, The paper [26] may also be consulted for further references and an exposition of

many extensions of the concepts and results discussed in this chapter.
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45.1.1 Operator and Lyapunov Stability

Broadly speaking, there are two main competing approaches to system stability: the state-space approach

usually associated with the name of Lyapunov, and the operator approach, of which George Zames was

one of themain proponents and developers andwhichwas the subject ofmajor contributions by Sandberg,

Willems, Safonov, and others. In the operator approach, one studies the i/o mapping:

�

x0, u(·)
�

�→ y(·),
R

n×
�

Lq(0,+∞)
�m →

�

Lq(0,+∞)
�p

,

that sends initial states and input functions into output functions. This includes the special case when the

output is the internal state of a system. The notation Lq refers to spaces of functions whose qth power is

integrable; typical choices are q= 2 or q=∞. This approach permits the use of Hilbert or Banach space

techniques, and elegantly generalizes to nonlinear systemsmany properties of linear systems, especially in

the context of robustness analysis. The state-space approach, in contrast, is geared to the study of systems

without inputs, but is better suited to the study of nonlinear dynamics, and it allows the use of geometric

and topological ideas. The ISS notion combines these dual views of stability.

45.1.2 The Class of Systems

This chapter considers systems with inputs and outputs in the usual sense of control theory [24]:

ẋ(t) = f (x(t), u(t)), y(t)= h(x(t))

(the arguments “t” is often omitted). There are n state variables, m input channels, and p output channels.

States x(t) take values in Euclidean space R
n, and the inputs (also called “controls” or “disturbances”

depending on the context) are measurable locally essentially bounded maps u(·) : [0,∞)→ R
m. Output

values y(t) take values in R
p, The map f : Rn×R

m → R
n is assumed to be locally Lipschitz with f (0, 0)=

0, and h : Rn → R
p is continuous with h(0)= 0. These two properties mean that the state x = 0 is an

equilibrium when the input is u= 0, and the corresponding output is y = 0. Many of these assumptions

can beweakened considerably, and the cited references should be consulted formore details. The solution,

defined on some maximal interval [0, tmax(x
0, u)), for each initial state x0 and input u, is denoted as

x(t, x0, u), and in particular, for systems with no inputs

ẋ(t) = f (x(t)),

just as x(t, x0). The zero-system associated to ẋ = f (x, u) is by definition the system with no inputs

ẋ = f (x, 0). Euclidean norm is written as |x|. For a function of time, typically an input or an output, �u�,
or �u�∞ for emphasis, is the (essential) supremum or “sup” norm (possibly +∞, if u is not bounded).

The norm of the restriction of a signal to an interval I is denoted by �uI�∞ (or just�uI�).

45.1.3 Notions of Stability

It is convenient to introduce “comparison functions” to quantify stability. A classK∞ function is a function

α : R≥0 → R≥0 which is continuous, strictly increasing, unbounded, and satisfies α(0)= 0 and a class KL

function is a function β : R≥0×R≥0 → R≥0 such that β(·, t) ∈K∞ for each t and β(r, t) decreases to zero

as t →∞, for each fixed r.

For a system with no inputs ẋ = f (x), there is a well-known notion of global asymptotic stability

(GAS), or “0-GAS” when referring to the zero-system ẋ = f (x, 0) associated to a given system with inputs

ẋ = f (x, u)) due to Lyapunov, and usually defined in “ε-δ” terms. It is an easy exercise to show that this
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standard definition is in fact equivalent to the following statement:

(∃ β ∈ KL) |x(t, x0)| ≤ β
�

|x0|, t
�

, ∀ x0, ∀ ≥ 0.

Observe that, since β decreases on t, in particular:

|x(t, x0)| ≤ β
�

|x0|, 0
�

, ∀ x0, ∀ t ≥ 0,

which provides the Lyapunov-stability or “small overshoot” part of the GAS definition (because β
�

|x0|, 0
�

is small whenever
�
�x0

�
� is small, by continuity of β(·, 0) and β(0, 0)= 0), while the fact that β→ 0 as t →∞

gives

|x(t, x0)| ≤ β
�

|x0|, t
�

−→
t→∞

0, ∀ x0,

which is the attractivity (convergence to steady state) part of the GAS definition.

In [23, Proposition 7], it is shown that for each β ∈KL there exist two class K∞ functions α1, α2 such

that:

β(r, t) ≤ α2

�

α1(r)e
−t

�

, ∀ s, t ≥ 0,

which means that the GAS estimate can be also written in the form:

|x(t, x0)| ≤ α2

�

α1(|x0|)e−t
�

and thus suggests a close analogy between GAS and an exponential stability estimate |x(t, x0)| ≤
�
�x0

�
� e−at .

In general, 0-GAS does not guarantee good behavior with respect to inputs. To explain why this is

relevant, let us briefly recall the case of linear systems. A linear system in control theory is the one for

which both f and h are linear mappings:

ẋ = Ax+Bu, y = Cx

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n. It is well-known that a linear system is 0-GAS (or “internally

stable”) if and only if the matrix A is a Hurwitz matrix, that is to say, all the eigenvalues of A have

negative real parts. Such a 0-GAS linear systemautomatically satisfies all reasonable i/o stability properties:

bounded inputs result in bounded state trajectories as well as outputs, inputs converging to zero imply

solutions (and outputs) converging to zero, and so forth [24]. But the 0-GAS property is not equivalent, in

general, to i/o, or even input/state, stability of any sort. The implication that 0-GAS implies i/o stability

is in general false for nonlinear systems. For a simple example, consider the following one-dimensional

(n= 1) system, with scalar (m= 1) inputs:

ẋ =−x+ (x2+ 1)u.

This system is clearly 0-GAS, since it reduces to ẋ =−x when u≡ 0. On the other hand, solutions

diverge even for some inputs that converge to zero. For example, take the control u(t)= (2t+ 2)−1/2

and x0 =
√

2, This results in the unbounded trajectory x(t)= (2t+ 2)1/2. This is in spite of the fact that

the unforced system is GAS. Thus, the converging-input converging-state property does not hold. Even

worse, the bounded input u≡ 1 results in a finite-time explosion. This example is not artificial, as it arises

in feedback-linearization design, mentioned below.

45.1.4 Gains for Linear Systems

For linear systems, the three most typical ways of defining i/o stability in terms of operators

�

L2, L∞
�

→
�

L2, L∞
�

are as follows. The statements below should be read, more precisely, as asking that there should exist

positive c and λ such that the given estimates hold for all t ≥ 0 and all solutions of ẋ = Ax+Bu with



✐ ✐

✐ ✐

45-4 Control System Advanced Methods

x(0)= x0 and arbitrary inputs u(·). The estimates are written in terms of states x(t), but similar notions

can be defined for more general outputs y = Cx.

“L∞→ L∞” : c
�
�x(t, x0, u)

�
� ≤

�
�x0

�
� e−λt + sup

s∈[0,t]
|u(s)|

“L2 → L∞” : c
�
�x(t, x0, u)

�
� ≤

�
�x0

�
� e−λt +

� t

0
|u(s)|2 ds

“L2 → L2” : c

� t

0

�
�x(s, x0, u)

�
�
2
ds ≤

�
�x0

�
�+

� t

0
|u(s)|2 ds

(the missing case L∞→ L2 is less interesting, being too restrictive).

For linear systems, these estimates are all equivalent in the following sense: if an estimate of one type

exists, then the other two estimates exist too, although the actual numerical values of the constants c,λ

appearing in the different estimates are not necessarily the same: they are associated to various types of

norms on input spaces and spaces of solutions, such as “H2” and “H∞” gains, [4]. It is easy to see that

existence of the above estimates is simply equivalent to the requirement that the A matrix be Hurwitz,

that is to say, to 0-GAS, the asymptotic stability of the unforced system ẋ = Ax.

45.1.5 Nonlinear Coordinate Changes

A “geometric” view of nonlinear dynamics suggests that notions of stability should be invariant under

(nonlinear) changes of variables: under a change of variables, a system which is stable in some technical

sense should remain stable, in the same sense, when written in the new coordinates. This principle leads

to the ISS notion when starting from the above linear notions, as elaborated next. In this article, a change

of coordinates is any map

T : R
n→R

n

such that the following properties hold: T(0)= 0 (this fixes the equilibrium at x = 0), T is continuous,

and it admits an inverse map T−1 : Rn→R
n, which is well-defined and continuous as well. In other

words, T is a homeomorphism which fixes the origin. One could add the requirement that T should be

differentiable, or that it be differentiable at least for x �= 0, but the discussion to follow does not require

this additional condition. Now suppose that a system ẋ = f (x) is exponentially stable:

|x(t, x0)| ≤ c |x0|e−λt ∀ t ≥ 0 (some c,λ > 0)

and that a change of variables is performed:

x(t)= T(z(t)).

Consider, for this transformation T , the following two functions:

α(r) := min
|x|≥r

|T(x)| and α(r) :=max
|x|≤r

|T(x)| ,

which are well-defined because T and its inverse are both continuous, and are both functions of class K∞
(easy exercise). Then,

α(|x|) ≤ |T(x)| ≤ α(|x|), ∀ x ∈ R
n

and therefore, substituting x(t, x0)= T(z(t, z0)) in the exponential stability estimate:

α(|z(t, z0)|) ≤ c α(|z0|) e−λt ,

where z0 = T−1(x0). Thus, the estimate in z-coordinates takes the following form:

|z(t, z0)| ≤ β
�

|z0|, t
�

,

where β(r, t)= α−1
�

cα
�

re−λt
��

is a function of class KL. (As remarked earlier, any possible function of

class KL can be written in this factored form, actually.)
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In summary, the concept of GAS is rederived simply by making coordinate changes on globally

exponentially stable systems. The same considerations, applied to systems with inputs, lead to ISS and

related notions. In addition to the state transformation x(t)= T(z(t)), there is now also a transformation

u(t)= S(v(t)), where S is a change of variables in the space of input values R
m. Arguing analogously as

for systems without inputs, one arrives to the following three concepts:

L∞→ L∞ � α
�|x(t)|

�

≤ β(
�
�x0

�
� , t)+ sup

s∈[0,t]
γ(|u(s)|),

L2 → L∞ � α
�|x(t)|

�

≤ β(
�
�x0

�
� , t)+

� t

0
γ(|u(s)|) ds

L2 → L2
�

� t

0
α
�|x(s)|

�

ds ≤ α0(
�
�x0

�
�)+

� t

0
γ(|u(s)|) ds

(x(t) is written instead of the more cumbersome x(t, x0, u)). If more general outputs y = h(x) instead of

states are the object of interest, these notions can be modified in several ways, as discussed later in the

chapter. Unless otherwise stated, the convention when giving an estimate like the ones above is that there

should exist comparison functions (α, α0 ∈ K∞, β ∈ KL) such that the estimates hold for all inputs and

initial states. These three notions will be studied one at a time.

45.2 ISS and Feedback Redesign

The “L∞→ L∞” estimate, under changes of variables, leads to the concept of ISS: there should exist some

β ∈ KL and γ ∈ K∞ such that

|x(t)| ≤ β(
�
�x0

�
� , t)+ γ

��u�∞
�

(ISS)

holds for all solutions (meaning that the estimate is valid for all inputs u(·), all initial conditions x0,

and all t ≥ 0). Note that there is now no function “α” is the left-hand side because, redefining β and

γ, one can assume, without loss of generality, that α is the identity: if α(r)≤ β(s, t)+ γ(t) holds, then

also r ≤ α−1(β(s, t)+ γ(t))≤ α−1(2β(s, t))+ α−1(2γ(t)); since α−1(2β(·, ·)) ∈ KL and α−1(2γ(·)) ∈ K∞,

an estimate of the same type, but now with no “α,” is obtained. In addition, note that the supremum

sups∈[0,t] γ(|u(s)|) over the interval [0, t] is the same as γ(�u[0,t]�∞)= γ(sups∈[0,t](|u(s)|)), because the

function γ is increasing, so one may replace this term by γ(�u�∞), where �u�∞ = sups∈[0,∞) γ(|u(s)|)
is the sup norm of the input, because the solution x(t) depends only on values u(s), s ≤ t (so, one could

equally well consider the input that has values≡ 0 for all s > t).

Note that a potentially weaker definition might be that the ISS estimate should hold merely for all

t ∈ [0, tmax(x
0, u)). However, this potentially different definition turns out to be equivalent. Indeed, if

the estimate holds a priori only on such a maximal interval of definition, then, since the right-hand

is bounded on [0,T], for any T > 0 (recall that inputs are by definition assumed to be bounded on

any bounded interval), it follows that the maximal solution of x(t, x0, u) is bounded, and therefore that

tmax(x
0, u)=+∞ (e.g., Proposition C.3.6 in [24]). In other words, the ISS estimate holds for all t ≥ 0

automatically, if it is required to hold merely for maximal solutions.

Since, in general, max{a, b} ≤ a+ b ≤max{2a, 2b}, one can restate the ISS condition in a slightly

different manner, namely, asking for the existence of some β ∈KL and γ ∈ K∞ (in general, different

from the ones in the ISS definition) such that

|x(t)| ≤max
�

β(|x0|, t), γ
��u�∞

��

holds for all solutions. Such redefinitions, using “max” instead of sum, are also possible for each of the

other concepts to be introduced later.
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x

≈ |x0|

≈ ||u||∞

FIGURE 45.1 ISS combines overshoot and asymptotic behavior.

Intuitively, the definition of ISS requires that, for t large, the size of the state must be bounded by some

function of the sup norm—that is to say, the amplitude—of inputs (because β(
�
�x0

�
� , t)→ 0 as t →∞). On

the other hand, the β(
�
�x0

�
� , 0) term may dominate for small t, and this serves to quantify the magnitude

of the transient (overshoot) behavior as a function of the size of the initial state x0 (Figure 45.1).

The ISS superposition theorem, discussed later, shows that ISS is, in a precise mathematical sense, the

conjunction of two properties, one of them dealing with asymptotic bounds on
�
�x0

�
� as a function of the

magnitude of the input, and the other one providing a transient term obtained when one ignores inputs.

45.2.1 Linear Case, for Comparison

For internally stable linear systems ẋ = Ax+Bu, the variation of parameters formula gives immediately

the following inequality:

|x(t)| ≤ β(t)
�
�x0

�
�+ γ �u�∞ ,

where

β(t)=
�
�etA

�
� → 0 and γ= �B�

� ∞

0

�
�esA

�
� ds < ∞.

This is a particular case of the ISS estimate, |x(t)| ≤ β(|x0|, t)+ γ
��u�∞

�

, with linear comparison func-

tions.

45.2.2 Feedback Redesign

The notion of ISS arose originally as a way to precisely formulate, and then answer the following question.

Suppose that, as in many problems in control theory, a system ẋ = f (x, u) has been stabilized by means of

a feedback law u= k(x) (Figure 45.2), that is to say, k was chosen such that the origin of the closed-loop

system ẋ = f (x, k(x)) is globally asymptotically stable. (See e.g. [25] for a discussion of mathematical

u x

x = f (x, υ)

u = k(x)

FIGURE 45.2 Feedback stabilization, closed-loop system ẋ = f (x, k(x)).
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u

d
υ

x

x = f (x, υ)

u = k(x)

FIGURE 45.3 Actuator disturbances, closed-loop system ẋ = f (x, k(x)+ d).

aspects of state feedback stabilization.) Typically, the design of k was performed by ignoring the effect of

possible input disturbances d(·) (also called actuator disturbances). These “disturbances” might represent

true noise or perhaps errors in the calculation of the value k(x) by a physical controller, or modeling

uncertainty in the controller or the system itself.What is the effect of considering disturbances? In order to

analyze the problem, d is incorporated into the model, and one studies the new system ẋ = f (x, k(x)+ d),

where d is seen as an input (Figure 45.3). One may then ask what is the effect of d on the behavior of the

system.

Disturbances d may well destabilize the system, and the problem may arise even when using a routine

technique for control design, feedback linearization. To appreciate this issue, take the following very

simple example. Given is the system

ẋ = f (x, u)= x+ (x2+ 1)u.

In order to stabilize it, substitute u= ũ/(x2+ 1) (a preliminary feedback transformation), rendering the

system linear with respect to the new input ũ: ẋ = x+ ũ, and then use ũ=−2x in order to obtain the

closed-loop system ẋ =−x. In other words, in terms of the original input u, the feedback law is

k(x)= −2x

x2+ 1
,

so that f (x, k(x))=−x. This is a GAS system. The effect of the disturbance input d is analyzed as follows.

The system ẋ = f (x, k(x)+ d) is

ẋ =−x+ (x2+ 1) d.

As seen before, this system has solutions that diverge to infinity even for inputs d that converge to

zero; moreover, the constant input d ≡ 1 results in solutions that explode in finite time. Thus k(x)=
−2x/(x2+ 1) was not a good feedback law, in the sense that its performance degraded drastically once

actuator disturbances were taken into account.

The key observation for what follows is that, if one adds a correction term “−x” to the above formula

for k(x), so that now

k̃(x)= −2x

x2+ 1
− x,

then the system ẋ = f (x, k̃(x)+ d) with disturbance d as input becomes, instead

ẋ = −2x− x3+ (x2+ 1) d

and this system is much better behaved: it is still GAS when there are no disturbances (it reduces to ẋ =
−2x− x3) but, in addition, it is ISS (easy to verify directly, or appealing to some of the characterizations

mentioned later). Intuitively, for large x, the term −x3 serves to dominate the term (x2+ 1)d, for all

bounded disturbances d(·), and this prevents the state from getting too large.
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d

~

x = f (x, u)

u = k(x)

FIGURE 45.4 Different feedback ISS-stabilizes.

45.2.3 A Feedback Redesign Theorem for Actuator Disturbances

This example is an instance of a general result, which says that whenever there is some feedback law that

stabilizes a system, there is also a (possibly different) feedback so that the system with external input d

(Figure 45.4) is ISS.

Theorem 45.1: [21]

Consider a system affine in controls

ẋ = f (x, u)= g0(x)+
m

�

i=1

uigi(x)
�

g0(0)= 0
�

and suppose that there is some differentiable feedback law u= k(x) so that

ẋ = f (x, k(x))

has x = 0 as a GAS equilibrium. Then, there is a feedback law u= k̃(x) such that

ẋ = f (x, k̃(x)+ d)

is ISS with input d(·)

The proof is very easy, once the appropriate technical machinery has been introduced: one starts by

considering a smooth Lyapunov function V for GAS of the origin in the system ẋ = f (x, k(x)) (such a

V always exists, by classical converse theorems); then k̂(x) := −(LGV (x))T =−(∇V (x)G(x))T , where G

is the matrix function whose columns are the gi , i = 1, . . . ,m and T indicates transpose, provides the

necessary correction term to add to k. This term has the same degree of smoothness as the vector fields

making up the original system. Somewhat less than differentiability of the original k is enough for this

argument: continuity is enough. However, if no continuous feedback stabilizer exists, then no smooth

V can be found. (Continuous stabilization of nonlinear systems is basically equivalent to the existence

of what are called smooth control-Lyapunov functions, see e.g. [25].) In that case, if only discontinuous

stabilizers are available, the result can still be generalized, see [17], but the situation is harder to analyze,

since even the notion of “solution” of the closed-loop system ẋ = f (x, k(x)) has to be carefully defined.

There is also a redefinition procedure for systems that are not affine on inputs, but the result as stated

above is false in that generality, and is much less interesting; see [22] for a discussion.

The above feedback redesign theorem is merely the beginning of the story. The reader is referred to

the book [15], and the references given later, for many further developments on the subjects of recursive

feedback design, the “backstepping” approach, and other far-reaching extensions.
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45.3 Equivalences for ISS

This section reviews results that show that ISS is equivalent to several other notions, including asymptotic

gain (AG), existence of robustness margins, dissipativity, and an energy-like stability estimate.

45.3.1 Nonlinear Superposition Principle

Clearly, if a system is ISS, then the system with no inputs ẋ = f (x, 0) is GAS: the term �u�∞ vanishes,

leaving precisely the GAS property. In particular, then, the system ẋ = f (x, u) is 0-stable, meaning that

the origin of the system without inputs ẋ = f (x, 0) is stable in the sense of Lyapunov: for each ε > 0, there

is some δ > 0 such that
�
�x0

�
� < δ implies

�
�x(t, x0)

�
� < ε. (In comparison function language, one can restate

0-stability as: there is some γ ∈K such that
�
�x(t, x0)

�
�≤ γ(

�
�x0

�
�) holds for all small x0.)

On the other hand, since β(
�
�x0

�
� , t)→ 0 as t →∞, for t large one has that the first term in the ISS

estimate |x(t)| ≤max
�

β(|x0|, t), γ
��u�∞

��

vanishes. Thus, an ISS system satisfies the following “AG”

property: there is some γ ∈K∞ so that:

lim
t→+∞

�
�x(t, x0, u)

�
� ≤ γ

��u�∞
�

, ∀ x0, u(·) (AG)

(see Figure 45.5). In words, for all large enough t, the trajectory exists, and it gets arbitrarily close to

a sphere whose radius is proportional, in a possibly nonlinear way quantified by the function γ, to

the amplitude of the input. In the language of robust control, the estimate (AG) would be called an

“ultimate boundedness” condition; it is a generalization of attractivity (all trajectories converge to zero,

for a system ẋ = f (x) with no inputs) to the case of systems with inputs; the “lim sup” is required

since the limit of x(t) as t →∞ may well not exist. From now on (and analogously when defining

other properties), we will just say “the system is AG” instead of the more cumbersome “satisfies the

AG property.”

Observe that, since only large values of t matter in the limsup, one can equally well consider merely

tails of the input u when computing its sup norm. In other words, one may replace γ(�u�∞) by

γ(limt→+∞ |u(t)|), or (since γ is increasing), limt→+∞γ(|u(t)|).

x(0)

x(t)

γ (||u||)

FIGURE 45.5 Asymptotic gain property.
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The surprising fact is that these two necessary conditions are also sufficient. This is summarized by the

ISS superposition theorem:

Theorem 45.2: [29]

A system is ISS if and only if it is 0-stable and AG.

The basic difficulty in the proof of this theorem is in establishing uniform convergence estimates for

the states, that is, in constructing the β function in the ISS estimate, independently of the particular input.

As in optimal control theory, one would like to appeal to compactness arguments (using weak topologies

on inputs), but there is no convexity to allow this. The proof hinges upon a lemma given in [29], which

may be interpreted [6] as a relaxation theorem for differential inclusions, relating GAS of an inclusion

ẋ ∈ F(x) to GAS of its convexification.

A minor variation of the above superposition theorem is as follows. Let us consider the limit property

(LIM):

inf
t≥0
|x(t, x0, u)| ≤ γ(�u�∞), ∀ x0, u(·) (LIM)

(for some γ ∈ K∞).

Theorem 45.3: [29]

A system is ISS if and only if it is 0-stable and LIM.

45.3.2 Robust Stability

In this article, a system is said to be robustly stable if it admits a margin of stability ρ, that is, a smooth

function ρ ∈K∞ so the system

ẋ = g(x, d) := f (x, dρ(|x|))
is GAS uniformly in this sense: for some β ∈KL,

�
�x(t, x0, d)

�
�≤ β(

�
�x0

�
� , t)

for all possible d(·) : [0,∞)→ [−1, 1]m. An alternative way to interpret this concept (cf. [28]) is as

uniform GAS of the origin with respect to all possible time-varying feedback laws Δ bounded by ρ:

|Δ(t, x)| ≤ ρ(|x|). In other words, the system

ẋ = f (x,Δ(t, x))

(Figure 45.6) is stable uniformly over all such perturbations Δ. In contrast to the ISS definition, which

deals with all possible “open-loop” inputs, the present notion of robust stability asks about all possible

closed-loop interconnections. One may think of Δ as representing uncertainty in the dynamics of the

original system, for example.

Theorem 45.4: [28]

A system is ISS if and only if it is robustly stable.
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u x

x = f (x, u)

Δ

FIGURE 45.6 Margin of robustness.

Intuitively, the ISS estimate |x(t)| ≤max
�

β(|x0|, t), γ
��u�∞

��

says that the β term dominates as long

as |u(t)| � |x(t)| for all t, but |u(t)| � |x(t)| amounts to u(t)= d(t).ρ(|x(t)|) with an appropriate function

ρ. This is an instance of a “small gain” argument, see below. One analog for linear systems is as follows: if

A is a Hurwitz matrix, then A+Q is also Hurwitz, for all small enough perturbations Q; note that when

Q is a nonsingular matrix, |Qx| is a K∞ function of |x|.

45.3.3 Dissipation

Another characterization of ISS is as a dissipation notion stated in terms of a Lyapunov-like function. A

continuous function V : Rn → R is said to be a storage function if it is positive definite, that is, V (0)= 0

and V (x) > 0 for x �= 0, and proper, that is, V (x)→∞ as |x| →∞. This last property is equivalent to

the requirement that the sets V−1([0,A]) should be compact subsets of R
n, for each A > 0, and in the

engineering literature it is usual to call such functions radially unbounded. It is an easy exercise to show

that V : Rn → R is a storage function if and only if there exist α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|) ∀ x ∈ R
n

(the lower bound amounts to properness and V (x) > 0 for x �= 0, while the upper bound guarantees

V (0)= 0). For convenience, V̇ : Rn×R
m → R is the function

V̇ (x, u) := ∇V (x) · f (x, u),

which provides, when evaluated at (x(t), u(t)), the derivative dV (x(t))/dt along solutions of ẋ = f (x, u).

An ISS-Lyapunov function for ẋ = f (x, u) is by definition a smooth storage function V for which there

exist functions γ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(|x|)+ γ(|u|), ∀ x, u. (L-ISS)

Integrating, an equivalent statement is that, along all trajectories of the system, there holds the following

dissipation inequality:

V (x(t2))−V (x(t1)) ≤
� t2

t1

w(u(s), x(s)) ds,

where, using the terminology of [31], the “supply” function is w(u, x)= γ(|u|)− α(|x|). For systems with

no inputs, an ISS-Lyapunov function is precisely the same object as a Lyapunov function in the usual

sense.

Theorem 45.5: [28]

A system is ISS if and only if it admits a smooth ISS-Lyapunov function.
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Since−α(|x|)≤−α(α−1(V (x))), the ISS-Lyapunov condition can be restated as

V̇ (x, u)≤−α̃(V (x))+ γ(|u|), ∀ x, u

for some α̃ ∈K∞. In fact, onemay strengthen this a bit [19]: for any ISS system, there is a always a smooth

ISS-Lyapunov function satisfying the “exponential” estimate V̇ (x, u)≤−V (x)+ γ(|u|).
The sufficiency of the ISS-Lyapunov condition is easy to show, and was already in the original

paper [21]. A sketch of the proof is as follows, assuming for simplicity a dissipation estimate in the

form V̇ (x, u)≤−α(V (x))+ γ(|u|). Given any x and u, either α(V (x))≤ 2γ(|u|) or V̇ ≤−α(V )/2. From

here, one deduces by a comparison theorem that, along all solutions,

V (x(t))≤max
�

β(V (x0), t), α−1(2γ(�u�∞))
�

,

where the KL function β(s, t) is the solution y(t) of the initial value problem

ẏ =−1

2
α(y)+ γ(u), y(0)= s.

Finally, an ISS estimate is obtained from V (x0)≤ α(x0).

Theproof of the converse part of the theorem is basedupon first showing that ISS implies robust stability

in the sense already discussed, and then obtaining a converse Lyapunov theorem for robust stability for the

system ẋ = f (x, dρ(|x|))= g(x, d), which is asymptotically stable uniformly on all Lebesgue-measurable

functionsd(·) : R≥0 → B(0, 1). This last theoremwas given in [16], and is basically a theoremonLyapunov

functions for differential inclusions. The classical result of Massera [18] for differential equations (with

no inputs) becomes a special case.

45.3.4 Using “Energy” Estimates Instead of Amplitudes

In linear control theory, H∞ theory studies L2 → L2-induced norms, which under coordinate changes

leads to the following type of estimate:

� t

0
α
�|x(s)|

�

ds ≤ α0(|x0|)+
� t

0
γ(|u(s)|) ds

along all solutions, and for some α, α0, γ ∈ K∞. Just for the statement of the next result, a system is said

to satisfy an integral–integral estimate if for every initial state x0 and input u, the solution x(t, x0, u) is

defined for all t > 0 and an estimate as above holds. (In contrast to ISS, this definition explicitly demands

that tmax =∞.)

Theorem 45.6: [23]

A system is ISS if and only if it satisfies an integral–integral estimate.

This theorem is quite easy to prove, in view of previous results. A sketch of the proof is as follows. If the

system is ISS, then there is an ISS-Lyapunov function satisfying V̇ (x, u)≤−V (x)+ γ(|u|), so, integrating
along any solution:

� t

0
V (x(s)) ds ≤

� t

0
V (x(s)) ds+V (x(t))≤ V (x(0))+

� t

0
γ(|u(s)|) ds

and thus an integral–integral estimate holds. Conversely, if such an estimate holds, one can prove that

ẋ = f (x, 0) is stable and that an AG exists.
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45.4 Cascade Interconnections

One of the main features of the ISS property is that it behaves well under composition: a cascade

(Figure 45.7) of ISS systems is again ISS, see [21]. This section sketches how the cascade result can

also be seen as a consequence of the dissipation characterization of ISS, and how this suggests a more

general feedback result. For more details regarding the rich theory of ISS small-gain theorems, and their

use in nonlinear feedback design, the references should be consulted. Consider a cascade as follows:

ż = f (z, x),

ẋ = g(x, u),

where each of the two subsystems is assumed to be ISS. Each system admits an ISS-Lyapunov function

Vi . But, moreover, it is always possible (see [27]) to redefine the Vi ’s so that the comparison functions for

both are matched in the following way:

V̇1(z, x)≤ θ(|x|)− α(|z|),
V̇2(x, u)≤ θ̃(|u|)− 2θ(|x|).

Now it is obvious why the full system is ISS: simply use V := V1+V2 as an ISS-Lyapunov function for

the cascade:

V̇ ((x, z), u) ≤ θ̃(|u|)− θ(|x|)− α(|z|).
Of course, in the special case in which the x-subsystem has no inputs, this also proved that the cascade

of a GAS and an ISS system is GAS.

More generally, one may allow a “small gain” feedback as well (Figure 45.8). That is, one allows

inputs u= k(z) as long as they are small enough:

|k(z)| ≤ θ̃−1((1− ε)α(|z|)).
The claim is that the closed-loop system

ż = f (z, x),

ẋ = g(x, k(x))

is GAS. This follows because the same V is a Lyapunov function for the closed-loop system; for (x, z) �= 0:

θ̃(|u|)≤ (1− ε)α(|z|) � V̇ (x, z)≤−θ(|x|)− εα(|z|) < 0.

A far more interesting version of this result, resulting in a composite system with inputs being itself

ISS, is the ISS small-gain theorem due to Jiang et al. [10].

u
x z

FIGURE 45.7 Cascade.

x

k

z

FIGURE 45.8 Adding a feedback to the cascade.
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45.5 Integral ISS

Several different properties, including “integral-to-integral” stability, dissipation, robust stabilitymargins,

and AG properties, were all shown to be exactly equivalent to ISS. Thus, it would appear to be difficult

to find a general and interesting concept of nonlinear stability that is truly distinct from ISS. One such

concept, however, does arise when considering a mixed notion which combines the “energy” of the input

with the amplitude of the state. It is obtained from the “L2 → L∞” gain estimate, under coordinate

changes, and it provides a genuinely new concept [23].

A system is said to be integral-input-to-state stable (iISS) provided that there exist α, γ ∈K∞ and

β ∈ KL such that the estimate

α
�|x(t)|

�

≤ β(|x0|, t)+
� t

0
γ(|u(s)|) ds (iISS)

holds along all solutions. Just as with ISS, one could state this property merely for all times t ∈ tmax(x
0, u).

Since the right-hand side is bounded on each interval [0, t] (because, inputs are by definition assumed

to be bounded on each finite interval), it is automatically true that tmax(x
0, u)=+∞ if such an estimate

holds along maximal solutions. So forward-completeness (solution exists for all t > 0) can be assumed

with no loss of generality.

45.5.1 Other Mixed Notions

A change of variables starting from a system that satisfies a finite operator gain condition from Lp to Lq,

with p �= q both finite, leads naturally to the following type of “weak integral-to-integral” mixed estimate:

� t

0
α(|x(s)|) ds ≤ κ(|x0|)+ α

�� t

0
γ(|u(s)|) ds

�

for appropriate K∞ functions (note the additional “α”). See [3] for more discussion on how this estimate

is reached, as well as the following result:

Theorem 45.7: [3]

A system satisfies a weak integral-to-integral estimate if and only if it is iISS.

Another interesting variant is found when considering mixed integral/supremum estimates:

α(|x(t)| ≤ β(|x0|, t)+
� t

0
γ1(|u(s)|) ds+ γ2(�u�∞)

for suitable β ∈ KL and α, γi ∈ K∞. One then has:

Theorem 45.8: [3]

A system satisfies a mixed estimate if and only if it is iISS.

45.5.2 Dissipation Characterization of iISS

Recall that a storage function is a continuous V : Rn → R which is positive definite and proper. A smooth

storage function V is an iISS-Lyapunov function for the system ẋ = f (x, u) if there are a γ ∈ K∞ and an
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α : [0,+∞)→ [0,+∞) which is merely positive definite (i.e., α(0)= 0 and α(r) > 0 for r > 0) such that

the inequality

V̇ (x, u)≤−α(|x|)+ γ(|u|) (L-iISS)

holds for all (x, u) ∈ R
n×R

m. To compare, recall that an ISS-Lyapunov function is required to satisfy an

estimate of the same form but where α is required to be of class K∞; since every K∞ function is positive

definite, an ISS-Lyapunov function is also an iISS-Lyapunov function.

Theorem 45.9: [2]

A system is iISS if and only if it admits a smooth iISS-Lyapunov function.

Since an ISS-Lyapunov function is also an iISS one, ISS implies iISS. However, iISS is a strictly weaker

property than ISS, because α may be bounded in the iISS-Lyapunov estimate, which means that V may

increase, and the state become unbounded, even under bounded inputs, so long as γ(|u(t)|) is larger than
the range of α. This is also clear from the iISS definition, since a constant input with |u(t)| = r results in

a term in the right-hand side that grows like rt.

An interesting general class of examples is given by bilinear systems

ẋ =
�

A+
m

�

i=1

uiAi

�

x+Bu

for which the matrix A is Hurwitz. Such systems are always iISS (see [23]), but they are not in general

ISS. For instance, in the case when B= 0, boundedness of trajectories for all constant inputs already

implies that A+�m
i=1 uiAi must have all eigenvalues with nonpositive real part, for all u ∈ R

m, which is

a condition involving the matrices Ai (e.g., ẋ =−x+ ux is iISS but it is not ISS).

The notion of iISS is useful in situations where an appropriate notion of detectability can be verified

using LaSalle-type arguments. There follow two examples of theorems along these lines.

Theorem 45.10: [2]

A system is iISS if and only if it is 0-GAS and there is a smooth storage function V such that, for some

σ ∈ K∞:

V̇ (x, u) ≤ σ(|u|)
for all (x, u).

The sufficiency part of this result follows from the observation that the 0-GAS property by itself already

implies the existence of a smooth and positive-definite, but not necessarily proper, function V0 such that

V̇0 ≤ γ0(|u|)− α0(|x|) for all (x, u), for some γ0 ∈ K∞ and positive-definite α0 (if V0 were proper, then it

would be an iISS-Lyapunov function). Now one uses V0+V as an iISS-Lyapunov function (V provides

properness).

Theorem 45.11: [2]

A system is iISS if and only if there exists an output function y = h(x) (continuous and with h(0)=
0), which provides zero-detectability (u≡ 0 and y ≡ 0⇒ x(t)→ 0) and dissipativity in the following
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sense: there exists a storage function V and σ ∈K∞, α positive definite, so that:

V̇ (x, u)≤ σ(|u|)− α(h(x))

holds for all (x, u).

The paper [3] contains several additional characterizations of iISS.

45.5.3 Superposition Principles for iISS

There are also AG characterizations for iISS. A system is bounded energy weakly converging state (BEWCS)

if there exists some σ ∈K∞ so that the following implication holds:
� +∞

0
σ(|u(s)|) ds <+∞ ⇒ lim inf

t→+∞
�
�x(t, x0, u)

�
�= 0 (BEWCS)

(more precisely: if the integral is finite, then tmax(x
0, u)=+∞ and the lim inf is zero). It is bounded energy

frequently bounded state (BEFBS) if there exists some σ ∈K∞ so that the following implication holds:
� +∞

0
σ(|u(s)|) ds <+∞ ⇒ lim inf

t→+∞
�
�x(t, x0, u)

�
� <+∞ (BEFBS)

(again, meaning that tmax(x
0, u)=+∞ and the lim inf is finite).

Theorem 45.12: [1]

The following three properties are equivalent for any given system ẋ = f (x, u):

• The system is iISS

• The system is BEWCS and 0-stable

• The system is BEFBS and 0-GAS

45.6 Output Notions

Until now, the chapter discussed only stability of states with respect to inputs. For systems with outputs

ẋ = f (x, u), y = h(x), several new notions can be introduced.

45.6.1 Input-to-Output Stability

If one simply replaces states by outputs in the left-hand side of the estimate defining ISS, there results the

notion of input-to-output stability (IOS): there exist some β ∈KL and γ ∈ K∞ such that
�
�y(t)

�
� ≤ β(|x0|, t)+ γ

��u�∞
�

(IOS)

holds for all solutions, where y(t)= h(x(t, x0, u)). (Meaning that the estimate is valid for all inputs u(·), all
initial conditions x0, and all t ≥ 0, and imposing as a requirement that the system be forward complete,

that is, tmax(x
0, u)=∞ for all initial states x0 and inputs u.) As earlier, x(t), and hence y(t)= h(x(t)),

depend only on past inputs (“causality”), so one could have used just as well simply used the supremum

of |u(s)| for s ≥ t in the estimate.

A system is bounded-input bounded-state stable (BIBS) if, for some σ ∈ K∞, the following estimate

|x(t)| ≤ max
�

σ(|x0|), σ(�u�∞)
�

holds along all solutions. (Note that forward completeness is a consequence of this inequality, even if it is

only required on maximal intervals, since the state is upper bounded by the right-hand side expression.)
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An IOS-Lyapunov function is any smooth function V : Rn → R≥0 so that, for some αi ∈ K∞:

α1(|h(x)|)≤ V (x)≤ α2(|x|), ∀ x ∈ R
n, u ∈ R

m

and, for all x, u:

V (x) > α3(|u|) ⇒ ∇V (x) f (x, u) < 0.

One of the key results for IOS is as follows:

Theorem 45.13: [30]

A BIBS system is IOS if and only if it admits an IOS-Lyapunov function.

45.6.2 Detectability and Observability

Recall (see [24] for precise definitions) that an observer for a given system with inputs and outputs

ẋ = f (x, u), y = h(x) is another system which, using only information provided by past input and output

signals, provides an asymptotic (i.e., valid as t →∞) estimate x̂(t) of the state x(t) of the system of interest

(Figure 45.9).

One may think of the observer as a physical system or as an algorithm implemented by a digital

computer. The general problem of building observers is closely related to “incremental” ISS-like notions,

a subject not yet studied enough. This chapter will limit itself to an associated but easier question. When

the ultimate goal is that of stabilization to an equilibrium, say x = 0 in Euclidean space, sometimes a

weaker type of estimate suffices: it may be enough to obtain a norm-estimator which provides merely an

upper bound on the norm |x(t)| of the state x(t); see [9,11,19].

Suppose that an observer exists for a given system. Since x0 = 0 is an equilibrium for ẋ = f (x, 0), and

also h(0)= 0, the solution x(t)≡ 0 is consistent with u≡ 0 and y ≡ 0. Thus, the estimation property

x̂(t)− x(t)→ 0 implies that x̂(t)→ 0. Now consider any state x0 for which u≡ 0 and y ≡ 0, that is,

so that h(x(t, x0, 0))≡ 0. The observer output, which can only depend on u and y, must be the same x̂

as when x0 = 0, so x̂(t)→ 0; then, using once again the definition of observer x̂(t)− x(t, x0, 0)→ 0, it

follows that x(t, x0, 0)→ 0. In summary, a necessary condition for the existence of an observer is that the

“subsystem” of ẋ = f (x, u), y = h(x), consisting of those states for which u≡ 0 produces the output y ≡ 0,

must have x = 0 as a GAS state (Figure 45.10); one says in that case that the system is zero detectable.

(For linear systems, zero detectability is equivalent to detectability or “asymptotic observability” [24]:

two trajectories than produce the same output must approach each other. But this equivalence need not

hold for nonlinear systems.) In a nonlinear context, zero detectability is not “well-posed” enough: to

get a well-behaved notion, one should add explicit requirements to ask that small inputs and outputs

imply that internal states are small too (Figure 45.11), and that inputs and outputs converging to zero

u
x

xy

FIGURE 45.9 Observer provides estimate x̂ of state x; x̂(t)− x(t)→ 0 as t →∞.

u ≡ 0 y ≡ 0
⇒ →x 0

FIGURE 45.10 Zero detectability.
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u ≈ 0 y ≈ 0
⇒ ≈x 0

FIGURE 45.11 Small inputs and outputs imply small states.

u → 0 y → 0→x 0

FIGURE 45.12 Converging inputs and outputs imply convergent states.

as t →∞ implies that states do, too (Figure 45.12). These properties are needed so that “small” errors

in measurements of inputs and outputs processed by the observer give rise to small errors. Furthermore,

one should impose asymptotic bounds on states as a function of input/output bounds, and it is desirable

to quantify “overshoot” (transient behavior). This leads us to the following notion.

45.6.3 Dualizing ISS to OSS and IOSS

A system is input/output to state stable (IOSS) if, for some β ∈KL and γu, γy ∈ K∞,

x(t) ≤ β(|x0|, t)+ γ1

��
�u[0,t]

�
�
∞

�

+ γ2

��
�y[0,t]

�
�
∞

�

(IOSS)

for all initial states and inputs, and all t ∈ [0,Tξ,u). Just as ISS is stronger than 0-GAS, IOSS is stronger

than zero detectability. A special case is when one has no inputs, output to state stability:

|x(t, x0)| ≤ β(|x0|, t)+ γ
��
�y|[0,t]

�
�
∞

�

and this is formally “dual” to ISS, simply replacing inputs u by outputs in the ISS definition. This duality

is only superficial, however, as there seems to be no useful way to obtain theorems for OSS by dualizing

ISS results. (Note that the outputs y depend on the state, not vice versa.)

45.6.4 Lyapunov-Like Characterization of IOSS

To formulate a dissipation characterization, we define an IOSS-Lyapunov function as a smooth storage

function so that

∇V (x) f (x, u)≤−α1(|x|)+ α2(|u|)+ α3(|y|)
for all x ∈ R

n, u ∈ R
m, y ∈ R

p. The main result is

Theorem 45.14: [13]

A system is IOSS if and only if it admits an IOSS-Lyapunov function.

45.6.5 Norm-Estimators

A state-norm-estimator (or state-norm-observer) for a given system is another system

ż = g(z, u, y), with output k : R�×R
p → R≥0

evolving in some Euclidean space R
�, and driven by the inputs and outputs of the original system. It is

required that the output k should be IOS with respect to the inputs u and y, and the true state should be

asymptotically bounded in norm by some function of the norm of the estimator output, with a transient

(overshoot) which depends on both initial states. Formally
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• there are γ̂1, γ̂2 ∈ K and β̂ ∈ KL so that, for each initial state z0 ∈ R
�, and inputs u and y, and every

t in the interval of definition of the solution z(·, z0, u, y):

k
�

z(t, z0, u, y), y(t)
�

≤ β̂(|z0|, t)+ γ̂1

��
�u|[0,t]

�
�
�

+ γ̂2

��
�y|[0,t]

�
�
�

;

• there are ρ ∈K, β ∈ KL so that, for all initial states x0 and z0 of the system and observer, and every

input u:
�
�x(t, x0, u)

�
�≤ β(|x0| + |z0|, t)+ ρ

�

k
�

z(t, z0, u, yx0,u), yx0,u(t)
��

for all t ∈ [0, tmax(x
0, u)), where yx0,u(t)= y(t, x0, u).

Theorem 45.15: [13]

A system admits a state-norm-estimator if and only if it is IOSS.

45.7 The Fundamental Relationship among ISS, IOS, and IOSS

The definitions of the basic ISS-like concepts are consistent and related in an elegant conceptual manner,

as follows:

A system is ISS if and only if it is both IOS and IOSS.

In informal terms:

External stability and detectability ⇐⇒ Internal stability

as it is the case for linear systems. Intuitively, consider the three possible signals in Figure 45.13

The basic idea of the proof is as follows. Suppose that external stability and detectability hold, and

take an input so that u→ 0. Then y→ 0 (by external stability), and this then implies that x→ 0 (by

detectability). Conversely, if the system is internally stable, then it is i/o stable and detectable. Suppose

that u→ 0. By internal stability, x→ 0, and this gives y(t)→ 0 (i/o stability). Detectability is even easier:

if both u(t)→ 0 and y(t)→ 0, then in particular u→ 0, so x→ 0 by internal stability. The proof that ISS

is equivalent to the conjunction of IOS and IOSS must keep careful track of the estimates, but the idea is

similar.

45.8 Response to Constant and Periodic Inputs

Systems ẋ = f (x, u) that are ISS have certain noteworthy properties when subject to constant or, more

generally periodic, inputs.

Let V be an ISS-Lyapunov function that satisfies the inequality V̇ (x, u)≤−V (x)+ γ(|u|) for all x, u,

for some γ ∈ K∞. To start with, suppose that ū is any fixed bounded input, and let a := γ(�ū�∞), pick any

initial state x0, and consider the solution x(t)= x(t, x0, ū) for this input. Letting v(t) := V (x(t)), it follows

that v̇(t)+ v(t)≤ a so, using et as an integrating factor, v(t)≤ a+ e−t(v(0)− a) for all t ≥ 0. In particular,

if v(0)≤ a it will follow that v(t)≤ a for all t ≥ 0, that is to say, the sublevel set K := {x | V (x)≤ a}
is a forward-invariant set for this input: if x0 ∈ K then x(t)= x(t, x0, ū) ∈ K for all t ≥ 0. Therefore,

u → 0 y → 0→x 0

FIGURE 45.13 Convergent input, state, and/or output.
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MT : x0 �→ x(T , x0, ū) is a continuous mapping from K into K , for each fixed T > 0, and thus, provided

that K has a fixed-point property (every continuous map M : K → K has some fixed point), then for each

T > 0 there exists some state x0 such that x(T , x0, ū)= x0. The set K indeed has the fixed-point property,

as does any sublevel set of a Lyapunov function. To see this, note that V is a Lyapunov function for the

zero-input system ẋ = f (x, 0), and thus, if B is any ball which includes K in its interior, then the map

Q : B→ K which sends any ξ ∈ B into x(tξ, ξ), where tξ is the first time such that x(t, ξ) ∈ K is continuous

(because the vector field is transversal to the boundary of K since ∇V (x).f (x, 0) < 0), and is the identity

on K (that is, Q is a topological retraction). A fixed point of the composition M ◦Q : B→ B is a fixed

point of M.

Now suppose that ū is periodic of period T , ū(t+T)= ū(t) for all t ≥ 0, and pick any x0 which is a

fixed point for MT . Then the solution x(t, x0, ū) is periodic of period T as well. In other words, for each

periodic input, there is a solution of the same period. In particular, if ū is constant, one may pick for each

h > 0 a state xh so that x(h, xh, ū)= xh, and therefore, picking a convergent subsequence xh → x̄ gives

that 0= (1/h)(x(h, xh, ū)− xh)→ f (x̄, ū), so f (x̄, ū)= 0. Thus one also has the conclusion that for each

constant input, there is a steady state.
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