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ABSTRACT We introduce a class of chemical reaction networks for which all moments can be computed by
finite-dimensional linear differential equations. This class allows second and higher order reactions, subject
to certain assumptions on structure and/or conservation laws.

INDEX TERMS Systems biology, stochastic systems.

I. INTRODUCTION

CHEMICAL systems are inherently stochastic, as reac-
tions depend on random (thermal) motion. This moti-

vates the study of stochastic models, and specifically
the Chemical Master Equation (CME), a discrete-space
continuous-time Markov process that describes stochastic
chemical kinetics. Exact studies using the CME are difficult,
and several moment closure tools related to ‘‘mass fluctua-
tion kinetics’’ and ‘‘fluctuation-dissipation’’ formulas can be
used to obtain approximations of moments [8], [1], [3], [6].
We introduce a class of nonlinear networks for which
exact computation is possible. For steady-state distributions,
see also [7].

II. PRELIMINARIES
We start by reviewing standard concepts regarding master
equations for biochemical networks, see for instance [6].
We assume that temperature and volume Ω are constant, and
the system is well-mixed.

We consider a chemical reaction network consisting of m
reactions which involve the n species Si, i∈{1, 2, . . .n}.
The reactions Rj , j ∈{1, 2, . . . ,m} are specified by com-
binations of reactants and products: Rj :

∑n
i=1 aijSi→∑n

i=1 bijSi where the aij and bij are non-negative inte-
gers, the stoichiometry coefficients, and the sums are under-
stood informally, indicating combinations of elements. The
n × m stoichiometry matrix Γ = {γij} has entries:
γij = bij − aij , i= 1, . . . , n, j= 1, . . . ,m. Thus, γij counts
the net change in the number of units of species Si
each time that reaction Rj takes place. We will denote
by γj the jth column of Γ: γj = bj − aj where
aj = (a1j , . . . , anj)

′ and bj = (b1j , . . . , bnj)
′ (prime indi-

cates transpose) and assume that no γj = 0 (that is, every
reaction changes at least one species). In general, for every
v ∈ Zn≥0, we denote ⊕v = ⊕(v1, . . . , vn) := v1 + . . .+ vn.
In particular, for each j ∈ {1, . . . ,m}, we define the order
of reaction Rj as Aj = ⊕aj =

∑n
i=1 aij (the total number

of units of all species participating in the reaction).

Stochastic models of chemical reaction networks are
described by a column-vector Markov stochastic process
X = (X1, . . . , Xn)′ which is indexed by time t ≥ 0 and
takes values in Zn≥0. Thus, X(t) is a Zn≥0-valued random
variable, for each t ≥ 0. Abusing notation, we also write
X(t) to represent an outcome of this random variable on a
realization of the process. The state of the system at time t
is: Xi(t) = ki = number of units of species i at time t. Let
pk(t) = P [X(t) = k] for each k ∈ Zn≥0. Then p(t) =
(pk)k∈Zn

≥0
is the discrete probability density (also called the

‘‘probability mass function’’) ofX(t). This note is concerned
with the computation of moments of this density.

A Chemical Master Equation (CME) (also known as a
Kolmogorov forward equation) is a system of linear differ-
ential equations for the pk’s, of the following form. Suppose
given m functions ρj : Zn≥0 → R≥0, j = 1, . . . ,m,
with ρj(0) = 0. These are the propensity functions for the
respective reactions Rj . An intuitive interpretation is that
ρj(k)dt is the probability that reaction Rj takes place, in a
short interval of length dt, provided that the state was k at the
beginning of the interval. The CME is (see [2] for existence
and uniqueness results):

dpk
dt

=
m∑
j=1

ρj(k − γj) pk−γj −
m∑
j=1

ρj(k) pk, k ∈ Zn≥0 (1)

where, for notational simplicity, we omitted the time argu-
ment ‘‘t’’ from p, and where we make the convention that
ρj(k − γj) = 0 unless k ≥ γj (coordinatewise inequality).
There is one equation for each k ∈ Zn≥0, so this is an infinite
system of linked equations. When discussing the CME, we
will assume that an initial probability vector p(0) has been
specified, and that there is a unique solution of (1) defined for
all t ≥ 0. A different CME results for each choice of propen-
sity functions, a choice that is dictated by physical chemistry
considerations. Here we will restrict attention to the most
standard model, mass-action kinetics propensities. For each
k = (k1, . . . , kn)′ ∈ Zn≥0, we let (recall that aj denotes
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the vector (a1j , . . . , anj)
′):
(
k
aj

)
=
∏n
i=1

(
ki
aij

)
where

(
ki
aij

)
is the usual combinatorial number ki!/(ki − aij)!aij !, which
we define to be zero if ki < aij . The most commonly
used propensity functions, and the ones best-justified from
elementary physical principles, are ideal mass action kinetics
propensities, defined as follows:

ρj(k) = κaj

(
k

aj

)
, j = 1, . . . ,m. (2)

The m non-negative constants κaj are arbitrary, and they
represent quantities related to the volume, shapes of the reac-
tants, chemical and physical information, and temperature.
Notice that ρj(k) can be expanded into a polynomial in which
each variable ki has an exponent less or equal to aij . In other
words, ρj(k) =

∑
cj≤aj κcj k

cj (‘‘≤’’ is understood coordi-
natewise, and by definition kcj = k

c1j
1 . . . k

cnj
n and r0 = 1 for

all integers), for suitably redefined coefficients κcj ’s. Often
one uses the simplification

ρj(k) = κj k
aj , j = 1, . . . ,m . (3)

(Approximate x(x− 1) . . . (x− r+ 1)≈xr.) Suppose given
a function M :Zn≥0→R (to be taken as a monomial
when computing moments). The expectation of the random
variable M(X) is E [M(X(t))] =

∑
k∈Zn

≥0
pk(t)M(k)

because P [X(t) = k] = pk(t). Let us define, for any
γ ∈ Zn≥0, the new function ∆γM given by (∆γM)(k) :=
M(k+ γ)−M(k). With these notations,

d

dt
E [M(X(t))] =

m∑
j=1

E
[
ρj(X(t)) ∆γjM(X(t))

]
(4)

(see [6] for more details). We next specialize to a monomial
function: M(k) = ku = ku1

1 ku2
2 . . . kun

n where u ∈ Zn≥0.
There results (∆γjM)(k) =

∑
ν∈S(u,j) dνk

ν for appropri-
ate coefficients dν , where

S(u, j) :=

{
ν ∈ Zn≥0

∣∣∣∣ ν = u− µ, u ≥ µ 6= 0

µi = 0 for each i such that γij = 0

}
(inequalities ‘‘≥’’ in Zn≥0 are understood coordinatewise).
Thus, for (3) and (2) respectively:

d

dt
E [X(t)u] =

m∑
j=1

∑
ν∈S(u,j)

dνκj E
[
X(t)ν+aj

]
. (5)

d

dt
E [X(t)u] =

m∑
j=1

∑
cj≤aj

∑
ν∈S(u,j)

dνκcj E
[
X(t)ν+cj

]
. (6)

III. NEW RESULTS
For each multi-index u ∈ Zn≥0, we defineR0(u) = {u},

R1(u) := {ν + aj , 1 ≤ j ≤ m, ν ∈ S(u, j)}

if using (5), or

R1(u) := {ν + cj , 1 ≤ j ≤ m, cj ≤ aj , ν ∈ S(u, j)}

if using (6), and, more generally, for any ` ≥ 1,R`+1(u) :=
R1(R`(u)) where, for any set U , R`(U) :=

⋃
u∈U R`(u).

Finally, we set R(u) :=
⋃∞
i=0Ri(u). Each set R`(u) is

finite, but the cardinality #(R(u)) may be infinite. It is finite

if and only if there is some L ≥ 0 such that R(u) =⋃L
i=0Ri(u), or equivalentlyRL+1(u) ⊆

⋃L
i=0Ri(u).

Equation (5) (or (6)) says that the derivative of the
u-th moment can be expressed as a linear combination of the
moments in the setR1(u). The derivatives of these moments,
in turn, can be expressed in terms of the moments in the
setR1(u′), for each u′ ∈ R1(u), i.e., in terms of moments in
the setR2(u). Iterating, we have the following:
Main Lemma. Suppose that N := #(R(u)) < ∞, and
R(u) = {u = u1, . . . , uN}. Then, writing

x(t) := (E [Xu1(t)] , . . . ,E [XuN (t)])
′
,

there is an A ∈ RN×N such that ẋ(t) = Ax(t) for all t ≥ 0.
This motivates the following problem: characterize those

chemical reaction networks for which #(R(u)) < ∞ for
all u∈Zn≥0. One simple sufficient condition is that all reac-
tions be of order 0 or 1, i.e. ⊕aj ∈{0, 1}. In that case, since
µ 6= 0 in the definition of S(u, j), it follows that ⊕aj ≤ ⊕ µ
for every index j. Therefore, ⊕(ν+ aj) = ⊕ u+ ⊕ aj −
⊕ µ≤ ⊕ u for all u, and the same holds for ν + cj if
cj ≤ aj . So all elements in R(u) have degree ≤ ⊕u,
hence #(R(u)) < ∞. We will generalize to ‘‘weighted L1

norms’’ β1v1 + . . .+ βnvn.
Considering the difference inclusion z(t+ 1) ∈ R1(z(t)),

z(0) = u, the following definition is natural.
Definition. A function V : Zn≥0 → R≥0 will be called

a Lyapunov-like function with respect to a given chemical
network if the following two properties hold:

1) for each u, v ∈ Zn≥0: v ∈ R1(u) ⇒ V (v) ≤ V (u)
[nondecreasing property],

2) for each α ≥ 0: Vα := {v |V (v) ≤ α} is finite
[properness].

Theorem. For every chemical network, the following two
statements are equivalent:
• There exists a Lyapunov-like function.
• #(R(u)) <∞ for all u ∈ Zn≥0.
Proof. Sufficiency is clear: pick any u, and let α := V (u);

iterating on the nondecreasing property, V (v) ≤ α for all
v ∈R(u), meaning thatR(u)⊆Vα, and thus #(R(u))<∞.

To prove the converse, assume that#(R(u))<∞ for all u.
Define V (u) := maxw∈R(u)⊕w. Since #(R(u))<∞,
it follows that V (u) <∞. As u ∈ R(u), it follows from the
definition of V that ⊕u ≤ V (u). Now pick any u, v so that
v ∈ R1(u). Since R(v) ⊆ R(u), it follows that {⊕w,w ∈
R(v)} ⊆ {⊕w,w ∈ R(u)}. Therefore V (v) ≤ V (u)
(nondecreasing property). Now pick any α≥ 0, which we
may take without loss of generality to be a nonnegative
integer, and any element v ∈ Vα. Since⊕v≤V (v), it follows
that ⊕v≤α. So Vα is a subset of the set of all nonnegative
vectors v such that ⊕v≤α, which has

(
α+n
n

)
elements.

The nonincrease requirement means, using the definition
ofR1(u), that

V (u− µ+ cj) ≤ V (u) (7)

for all cj ≤ aj (1 ≤ j ≤ m) under definition (2) for
propensities, or just for cj = aj if propensities have the
simplified form (3), and every µ for which u ≥ µ 6= 0 and
µi = 0 for every i such that γij = 0. Pick any reaction index j
and for this index pick any species index i such that the
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species Si changes, that is, γij 6= 0. Now pick u = µ = ei,
the canonical unit vector with a ‘‘1’’ in the ith position (this
choice of µ is allowed, since it is false that γij = 0) and
apply (7). A necessary condition for decrease is:

γij 6= 0 ⇒ V (cj) ≤ V (ei) (8)

for all cj ≤ aj , or for cj = aj in the case (3).
We now consider the special case of Lyapunov-like func-

tions which can be extended to an additive map V : Zn → R.
In this case, (8) is equivalent to (7). To see that (8) implies (7),
pick any u, any reaction index j, and every µ for which
u ≥ µ 6= 0 and µi = 0 for every i such that γij = 0. Since
µ 6= 0 and µ ≤ u, there is some species index i such that
γij 6= 0 and µi 6= 0, i.e. µ ≥ ei. Applying (8) with this i :

V (u−µ+ cj) ≤ V (u) +V (ei−µ) +V (cj − ei) ≤ V (u),

where we used that V (µ− ei)≥ 0. A map V :Zn≥0→R≥0
that extends to an additive function V :Zn→R is necessarily
of the form V (u) = βu = β1u1 + . . . + βnun for
some β = (β1, . . . , βn) ∈ Zn≥0 and it automatically satisfies
the properness property provided that all βi 6= 0, which we
assume from now on. Thus, #(R(u)) < ∞ will be satisfied
for all u if V has this form and satisfies (8). This condition
can be made a little more explicit in the linear case. Let
∆j := {i | γij 6= 0}. Then a linear Lyapunov-like func-
tion amounts to solving a linear program: find β such
that i ∈ ∆j ⇒ βaj ≤ βi.

A. SPECIAL CASE: MULTI-LAYER
FEEDFORWARD NETWORKS
Ageneral class for which there is a linear Lyapunov-like func-
tion, and hence #(R(u)) <∞ for all u, is that of multi-layer
feedforward networks with linear reactions in the first layer.
These are defined as follows.Wefind it convenient to separate
degradations frommore general reactions. So we will assume
that there are reactions Rj , j ∈ {1, 2, . . . ,m}, which are
partitioned into p ≥ 1 layers: R1, . . . ,Rp. Species Si,
i ∈ {1, 2, . . . , n}, are also partitioned into p layers
S1, . . . ,Sp. In addition, we allow additional ‘‘pure degrada-
tion’’ reactions Dj : Sij → 0, j ∈ {1, . . . , d} (so the total
number of reactions ism′ = m+ d).

We assume that the reactions Rj that belong to the
first layer R1 are all of order zero or one, i.e. they have
⊕aj ∈ {0, 1}. (This first layer might model several inde-
pendent separate chemical subnetworks; we collect them all
as one larger network.) More generally, for reactions at any
given layer π the only species that appear as reactants in
nonlinear reactions are those in layers < π and the only ones
that can change are those in layer π, that is:

if Rj ∈ Rπ :

{
aij 6= 0 and ⊕ aj > 1 ⇒ Si ∈

⋃
1≤s<π Sπ

γij 6= 0 ⇒ Si ∈ Sπ .

(9)

This means that except for order zero or one reactions, every
reaction Rj at layer 1 < π ≤ p has the form:

ai1jSi1 + . . . aiqjSiq
→ ai1jSi1 + . . . aiqjSiq + biq+1jSiq+1

+ . . . biq+q′ jSiq+q′

with Si1 , . . . , Siq in layers < π and Siq+1 , . . . , Siq+q′ in
layer π.We claim that there is a linear Lyapunov-like function

for any such network, Note that, for a degradation reaction
Dj : Sij → 0, the entry γij of the stoichiometry vector
is nonzero (and equal to −1) only when i = ij , and for
this index we have aij = 1. Thus the linear Lyapunov
condition simply requires βi ≤ βi and hence is automatically
satisfied no matter what is the choice of β. Thus we may
ignore degradations and assume from now on that only the
reactions Rj are present. We prove the claim by induction on
the number of layers p. If p= 1, all reactions have order 0 or 1,
so we can take βi = 1 for all i. Arrange the species indices so
that Sr+1, . . . , Sn are the species in Sp; these do not appear
any reactions belonging to Rπ for π < p. So layers Rπ for
π < p and species in Sπ for π < p define a network with
p − 1 layers, and we may assume by induction that a linear
V0 has been defined for that network. This means that we
have a vector of positive numbers β0 = (β1, . . . , βn−r) such
that the linear Lyapunov condition holds for this subnetwork,
which means, for any extension to a vector β = (β0, ?) with
n components (since the coefficients of aj are zero for indices
r+1, . . . , n) that βaj ≤ βi whenever i ∈ ∆j , when j, i index
reactions and species in the first p− 1 layers.
So all that is needed is to define the additional coefficients

βi, i ∈ {r + 1, . . . , n}, such that the inequality βaj ≤ βi
holds for all pairs (i, j) such that (1)Rj ∈ Rp or Si ∈ Sp and
(2) γij 6= 0. We show that it suffices to pick all these βi equal
to a common value β̄ := maximum of β0a0j over all reactions
Rj ∈ Rp, where a0j is the restriction of the vector aj to its
first r components.
IfRj ∈ Rp and Si 6∈ Sp, the second condition in (9) (with

π = p) says that (2) is not satisfied. Thus, we only need to
consider Si ∈ Sp, i.e. i ∈ {r + 1, . . . , n}. Suppose first that
⊕aj > 1. The first condition in (9) (with π = p) insures
that aij = 0 for all such i. Thus, aj = (a0j , 0) where the
vector 0 has length n − r. it follows that βaj = β0a0j ≤ β̄.
Next, suppose that ⊕aj ≤ 1. If ⊕aj = 0, then aj = 0 ≤ β̄.
So assume ⊕aj = 1 and pick the unique index i′ such that
ai′j = 1. IfSi′ ∈ Sπ , with π < p, then once again aij = 0 for
all i ∈ {r+ 1, . . . , n} and βaj = β0a0j ≤ β̄. Finally, assume
that aj = ei with i ∈ {r + 1, . . . , n}. Now β̄ = βaj ≤ β̄ is
trivially satisfied.

B. EXAMPLES
Let us start with the system shown in [4] to have moment
closure: R1 : 0→ S1, R2 : S1 → S1 + S2, R3 : S1 + S2 →
S1+S2+S3, D1 : S1 → 0, D2 : S2 → 0, D3 : S3 → 0. This
is a three-layer system with one reaction in each layer, plus
degradations. As we said, we may ignore degradations, so we
consider: a1 = (0, 0, 0)′, a2 = (1, 0, 0)′, a3 = (1, 1, 0)′,
and we have ∆1 = {1}, ∆2 = {2}, ∆3 = {3}. We must
find a positive vector β = (β1, β2, β3) such that βai ≤ βi,
i ∈ {1, 2, 3}, i.e., β1 ≤ β2 and β1 + β2 ≤ β3. We may pick
β = (1, 1, 2).

Here is a more complicated example involving several
reversible first order reactions as well as some dimeric and
trimeric reactions: R1 : S1 → S2, R2 : S2 → S1,
R3 : S3 → S4, R4 : S4 → S3, R5 : 2S1 +S2 +S3 → 2S1 +
S2+S3+S5, R6 : S1+3S5 → S1+3S5+S6.We have three
layers: R1 = {R1, R2, R3, R4}, R2 = {R5}, R3 = {R6},
and S1 = {S1, S2, S3, S4}, S2 = {S5}, S3 = {S6}. Using
ei to denote canonical unit vectors: aj = ej , j ∈ {1, 2, 3, 4},
a5 = (2, 1, 1, 0, 0, 0)′, a6 = (1, 0, 0, 0, 3, 0)′, and
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∆1 = ∆2 = {1, 2}, ∆3 = ∆4 = {3, 4}, ∆5 = {5},∆6 = {6}.
We must find a positive vector β such that βa1 ≤ β1,
βa1 ≤ β2, βa2 ≤ β1, βa2 ≤ β2, βa3 ≤ β3, βa3 ≤ β4,
βa4 ≤ β3, βa4 ≤ β4, βa5 ≤ β5, βa6 ≤ β6, i.e. so that
β1 = β2, β3 = β4, 2β1 + β2 + β3 ≤ β5, and β1 + 3β5 ≤ β6.
These constraints can be satisfied with β1 = β2 = β3 =
β4 = 1, β5 = 4, β6 = 13.

C. SPECIAL CASE: CONSERVED VARIABLES
In some applications, one is interested in computing the
moments E [X(t)u] only for trajectories X(t) which remain
in some specified subset C ⊆ Zn≥0. When this subset has the
form

C = C1 × Zn2

≥0 ⊂ Zn1

≥0 × Zn2

≥0 (10)

and the subset C1 is finite, the right-hand side of equation (6)
(or (5)) can be simplified.

For example, suppose that the first two species S1 and S2

indicate the activity of a specified gene (inactive and active,
respectively), with S1 and S2 reacting according to S1→S2,
S2→S1, and no other reactions involve a change in
S1 and S2. (This does not rule out reactions such as S1→
S1+S3 which wouldmodel transcription from the active con-
formation, since such a reaction does not change S1 nor S2.)
It is the case thatX1(t) +X2(t) remains constant in time, so
X1(t)+X2(t) = X1(0)+X2(0) for all t. Moreover, given the
biological motivation for these equations, we are only inter-
ested in the cases where (X1(0), X2(0)) = (1, 0) or= (0, 1).
Thus, we have thatX1(t) +X2(t) = 1 for all t. This restricts
the components (X1(t), X2(t)) of X(t) to take values in the
finite set C1 = {(1, 0), (0, 1)}, and hence all moments can
be assumed to have the first two exponents equal to one:

E [Xu1
1 Xu2

2 Xu3
3 . . . Xun

n ] = E [X1X2X
u3
3 . . . Xun

n ] .

More generally, for any positive integers r and L, let
LL,r := {0, . . . , L}r. Then, for any finite subset C ⊂ Zr≥0,
there is some integer L with the property that for each
v ∈ Zr≥0 there exists {pd ∈ R, d ∈ LL,r} so that kv =∑
d∈LL,r

pdk
d for all k ∈ C. In other words, every monomial

can be expressed as a linear combination of monomials with
exponents≤ L. To prove this, observe that the set F of func-
tions C → R is a finite-dimensional vector space (canonically
identified with R#(C), where #(C) is the cardinality of C).
Introduce for each i the subspace Fi,r of F spanned by the
monomial functions k 7→ kd, d ∈ Li,r. Since F0,r ⊆ F1,r ⊆
F2,r ⊆ . . . is a nondecreasing sequence of subspaces, there
is some L such that FL′,r = FL,r for all L′ > L (in fact,
one may take L = #(C) − 1). Now given any set as in (10)
with #(C1) < ∞, we apply above observation to C1, and so
all momentsXu1

1 Xu2
2 Xu3

3 . . . Xun
n can be written as a linear

combination of moments for which the first n1 exponents
are ≤ L. The remaining reactions could be a feedforward
network, and now moments are all determined by a finite set
of linear differential equations, so long as we only care about
initial conditions in a finite invariant set.

A simple example is as follows. We consider the following
set of chemical reactions: R1 : S1

u−→ S2, R2 : S2
k2−→ S1,

R3 : 0
k3u−−→ S3, R4 : S2 + S3

k4−→ S2 where we think
of ‘‘u’’ as an external input. This is basically the incoherent
feedforward loop considered in [5] to study adaptation and

the fold-change detection property in stochastic systems.
The only difference is that there we used separate creation
and degradation reactions 0 → S2 → 0 (the first with
rate u), but here, in order to impose a conservation law,
we think of S2 as being an active form of a kinase (the
input controlling the change to active form), which can be
constitutively de-activated by a reverse reaction. The effect
of u on S3 is incoherent, in the sense that u promotes
formation of S3, as well as degradation, because the larger u,
the larger the active concentration of S2, which degrades S3.
We have ρ1 = uS1, ρ2 = k2S2, ρ3 = k3u, ρ4 =
k4S2S3, and a1 = (1, 0, 0), a2 = (0, 1, 0), a3 = (0, 0, 0),
a4 = (0, 1, 1), γ1 = (−1, 1, 0), γ2 = (1,−1, 0),
γ3 = (0, 0, 1), γ4 = (0, 0,−1), andX1(t) +X2(t) is constant
along all solutions. Suppose e.g. X1(0) +X2(0) = 2. Let
us obtain a linear differential equation for the mean
ofX3(t). Using these notations: xi = E

[
Xi

2X3

]
, i = 0, 1, 2,

yi = E
[
Xi

2

]
, i = 1, 2. We are interested in x0(t).

We conclude that:
ẏ1 = 2u− k2y1 − y1u
ẏ2 = k2y1 + 2u+ 3y1u− 2y2u− 2k2y2
ẋ0 = k3u− k4x1
ẋ1 = k3y1u− k4x2 − k2x1 + 2x0u− x1u
ẋ2 = αx1 + 2x0u− βx2 + k3y2u+ 3x1u− 2x2u.

where α = k2 + 2k4 and β = 3k4 + 2k2.
More abstractly, given any finite continuous-time

Markov chain with n1 states qi and transition rates λij ,
we may introduce n1 species Si and reactions Si → Sj
with rate λij . The stoichiometric matrix consists of columns
with exactly one entry equal to 1 and one entry equal
to −1, so the sum X1(t) + . . . + Xn1

(t) is conserved
(see e.g. Section 4.8 in [6]). Thus, starting from an initial
condition with X1(0) + . . .+Xn1

(0) = 1 we have that at
all times we have precisely one Xi(t) = 1. This provides
an embedding of the Markov Chain: state is qi at time t if
Xi(t) = 1. This construction is of interest when reaction
parametersκi in a network are described by functions of finite
Markov chains (Hidden Markov Models) and the network is
of a feedforward type, to conclude that finite-dimensional
ODE’s exist for moments.
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