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Abstract—This paper asks what classes of input signals are suf-
ficient in order to completely identify the input/output behavior of
generic bilinear systems. The main results are that step inputs are
not sufficient, nor are single pulses, but the family of all pulses (of
a fixed amplitude but varying widths) do suffice for identification.

Index Terms—Bilinear systems, identifiability, input/output
equivalence.

I. INTRODUCTION

I N this paper, we address the following question: what types
of input signals are sufficient to completely identify the i/o

behavior of a system? In other words, we look for classes of
inputs with the property that, if a system is stimulated with
the inputs from the set and the corresponding time record of
outputs is recorded, then, on the basis of the collected informa-
tion on inputs and outputs it is possible—at least theoretically,
with no regard to computational effort, and in the absence of
noise—to obtain a system which is equivalent to (Fig. 1).
By “equivalent” we mean that the estimated system will be
completely indistinguishable from the true system in its i/o
behavior, even when presented with inputs that do not belong
to the restricted class used for the identification experiments.
Whether a certain class of inputs is rich enough for identifica-
tion is heavily dependent, of course, on prior assumptions about
the system .

It is often very difficult to perform experiments in which ar-
bitrary input profiles are used. Often, the only possible exper-
iments are those in which steps, i.e. constant inputs, are ap-
plied. For example, in molecular biology, a step input corre-
sponds to subjecting a cell culture to a fixed concentration of
an extracelular ligand such as a drug or growth factor. Some-
times somewhat more complex inputs, such as pulses (keep the
input constant at some level, then change it back to some de-
fault value) can be used, but this is already not easy to imple-
ment, much less more complicated test signals. This presents a
theoretical challenge: how does one know if all possible “identi-
fiable” information about the system can be obtained from such
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Fig. 1. Identifying from i/o data.

a restricted class of experiments? In the case of linear models of
systems, this issue does not arise, because basically any single
input, as long as it is nonzero, for example a single step or a
single pulse, suffices for identification (or several inputs, one for
each input channel, if the system has multiple inputs; for sim-
plicity we restrict here to single-input systems). Note that we are
thinking here of an experimental setup in which observations are
collected over time. If, instead, only steady-state behavior was
observed, and not transients, then one input is not enough, even
for single-input linear systems. In that case, one has to use mul-
tiple inputs, such as steady-state measurements of responses to
periodic signals at different frequencies. There has been work in
the linear systems identification literature regarding conditions
on inputs (persistence of excitation) for transient problems, in
the context of adaptive control [1]. In the nonlinear systems lit-
erature, methods from differential algebra can be employed in
order to characterize classes of inputs that avoid singularities
leading to non-identifiability [2]. The present paper poses some
basic theoretical questions related to the problem.

For nonlinear systems, it is thus an interesting question
whether constant inputs or pulse inputs, or simple combinations
of these input classes, suffice for identification, as they do
for linear systems. In this paper, we show that for a large and
interesting class of nonlinear systems, that of bilinear systems,
constant inputs do not suffice, but pulses do.

Bilinear systems constitute an appealing class of nonlinear
systems [3]–[6]. While for linear systems the evolution of the
states is only allowed to depend on linear functions of the state
variables and inputs, in bilinear systems one also allows a linear
dependence on products between input and state variables.
Bilinear systems can be easily described in linear-algebraic
terms, and a theory, in many respects analogous to the linear
theory, can be developed for the analysis of their input/output
properties. On the other hand, bilinear systems are theoretically
capable of approximating arbitrary input/output behaviors on
finite time-intervals [7]–[9]. They have been used to model
chemical processes, electrical networks, power plants, nuclear
reactors, robotic manipulators, and many other systems in
engineering, chemistry, biology, economics, and other fields
[4]. They can also be employed in order to model and analyze
certain simple enzymatic signaling cascades, when substrates
are not too close to saturation and thus Michaelis-Menten
kinetics can be replaced by bilinear expressions [10], [11].
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Informally (see next section for precise definitions and state-
ments), the main results that we prove are as follows. On the
negative side, we show that step inputs are not enough for iden-
tifying bilinear systems, nor do single pulses suffice. On the pos-
itive side, we show that the family of all pulses (of a fixed am-
plitude but varying widths) do suffice for identification. To be
precise, one must impose certain non-degeneracy conditions on
the classes of systems being considered, and, for the negative
result, one wants to avoid trivial counter-examples in order to
say something interesting. Thus, all results are stated for generic
classes of systems.

Our techniques are based on realization theory. We make
heavy use of ideas originally developed by Kalman for realiza-
tions by linear systems, and refined by Isidori and later Fliess
for bilinear systems.

The organization of this paper is as follows. Section II gives
the basic definitions, and reviews the background from bilinear
realization theory. We provide a self-contained discussion be-
cause, even though the results proved in that section are not new,
it is hard to find references presented as needed here. The main
results are stated in Section III. The proofs of the negative re-
sults are given in Section IV and the proofs of the positive re-
sults are given in Section V. The latter are inspired by Juang’s
very nice paper [12] (we thank David Angeli for bringing this
paper to our attention). Although the bilinear identification al-
gorithm given in [12] involves some ambiguous steps, such as
taking (non-unique) logarithms of matrices, we were able to
adapt many of its basic ideas; we discuss in Section VI connec-
tions to that work. Conclusions and some remarks are presented
in Section VII.

II. PRELIMINARIES

Systems and I/O Equivalence: Our results will be for bilinear
systems, which are defined by affine vector fields on and
hence are described by matrices, but an abstract setup will allow
us to discuss some preliminary facts in more generality. We
consider single-input single-output initialized systems , in the
usual sense of control theory [13]:

(1)

(we will drop the arguments “ ” if clear from the context),
where and are smooth vector fields on a manifold and

is an output function . Inputs can be taken to be
any Lebesgue-measurable, essentially bounded, functions

, but there will be no difference in results if one re-
stricts to, for instance, piecewise continuous inputs. We let be
the set of all inputs. In principle, solutions are unique but only
defined on some maximal interval (which depends on the ini-
tial condition and the input), but for simplicity, and since it is
the case anyway for bilinear systems, we assume that solutions
are defined for all times (forward completeness).
We let , or just if the input is clear from the con-
text, be the solution of (1) at time , and the
corresponding output. When more than one system is being con-
sidered, we use appropriate notations; for example, a system

will be described by equations , ,
.

Given two systems , and an input , we say that are
indistinguishable under if for all

. If for some , we say that
distinguishes among the two systems ; in other words, the
“input/output experiment” consisting of perturbing the system
with this input results in a different time-varying observation
for than for .

Given a subset of inputs, we say that the two systems
are input/output (i/o) equivalent with respect to all inputs in

if no input in is able to distinguish between the two systems
, i.e., provided that for each

and for each . We write in that case.

In the special case in which , we write simply
and simply say that the two systems are i/o equivalent. That is to
say, they cannot be distinguished in any way whatsoever based
on their “back box” input/output behavior.

Let be a class of systems. A subset of inputs is said
to be sufficient for identifying systems in the class if, for any
pair of systems in ,

In other words: whenever is not i/o equivalent to , there must
exist some input in the set which distinguishes among the two
systems .

Linear systems (finite-dimensional, continuous-time) are
those for which is linear, is constant, and is linear, i.e.
systems described by equations

(2)

with , , and . We often refer
interchangeably to a linear system or its corresponding triple
of matrices . Linear systems can be identified by any
single nonzero input on a nontrivial interval, such as a constant
function (a step), or a pulse.

4-Tuples and Bilinear Systems: We consider two slightly dif-
ferent classes of bilinear systems. To define these classes, we
first introduce 4-tuples as follows:

(3)

(the integer is called the dimension of the 4-tuple).
We say that a system (1) is a bilinear system of type I if is

linear, is affine, , and is linear. In other words, the
system equations are:

(4)

where is some 4-tuple as in (3). We use a notation
such as “ ” to refer to a system of type I. With some abuse of
terminology, we also simply write . Note that
linear systems (2) constitute the subclass of bilinear systems of
type I for which .
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We say that a system (1) is a bilinear system of type II if
and are both linear and is linear (but the initial state may
be nonzero). In other words, the system equations are:

(5)

where is a 4-tuple as in (3). Once again, we do
not differentiate between a system of type II and its associated
4-tuple when the meaning is clear from the context.

The key idea of the negative results is, taking the second class
of systems as an example, as follows. Constant inputs

allow one to determine the moments for all
integers , and for all . When , we can identify the triple

up to a change of state variables. However, this is not
enough information for identifying , which is a free parameter
after a basis has been chosen in state space.

Similarity: We say that two 4-tuples and
are similar if they have the same dimension and

there exists an invertible matrix such that the following
equalities hold:

(6)

Note that, for linear systems , this reduces to
the familiar equivalence relation in linear systems theory.

We say that two bilinear systems (both of type I or both
of type II) are similar (or “internally equivalent”), and we write

if there is a change of variables such that the equations
of get transformed into those of . For systems of type I, this
means that

for all and , and also ; thus, is the
same as saying that the 4-tuples and are
similar. An analogous statement holds for systems of type II.

An easy calculation shows that , and a
converse holds as well, under certain minimality assumptions,
as discussed below.

Checking I/O Equivalence: For analytic systems,
input/output equivalence can be verified by checking cer-
tain algebraic equalities, and there is no need to test all possible
inputs, as we discuss next.

For any smooth vector field on , and any smooth func-
tion , the Lie derivative is defined
as the function , where is the gra-
dient of . (In differential-geometric terms, is simply the
value of the vector field on , when vector fields are viewed as
derivations on spaces of smooth functions.) More generally, if

are vector fields, the iterated derivative
is defined recursively by the formula .

Suppose that and are two systems (1) for which the vector
fields and are analytic and the function is also analytic.
Then, if and only if

(7)

for all sequences and all . (When
, (7) says that .) This is true because the

expressions in (7) are the coefficients of the Fliess generating
series of the input/output behavior associated to the respective
systems, and the i/o behavior is in one-to-one correspondence
with the coefficients of the series, see [14], Lemma 2.1.

For bilinear systems of types I or II, i/o equivalence amounts
to an equality of vectors. Indeed, take first systems of type I.
In this case, , , and .
Therefore, one can see inductively that:

where and . In particular, for , we
have that for all sequences with ,
and for all sequences
with .

Generally, given two 4-tuples and , let
us say that they are i/o equivalent if

(8)

for all sequences of matrices picked out of and , in-
cluding the “empty” sequence . (It suffices to check
sequences of length , where are the respective state-
space dimensions; cf. [15]–[20].)

Then the preceding discussion proves:
Lemma 2.1: Two systems and of type I are i/o equivalent

if and only if the corresponding 4-tuples are i/o equivalent.
For bilinear systems of type II, the same conclusion holds, in

this case because

Lemma 2.2: Two systems and of type II are i/o equivalent
if and only if the corresponding 4-tuples are i/o equivalent.

Canonical Systems and Uniqueness: A 4-tuple
as in (3) will be said to be canonical provided that the following
two properties hold:

1) There is no proper subspace of that contains and is
invariant under and .

2) There is no nonzero subspace of that is contained in the
nullspace of and is invariant under and

.
The first property can be equivalently expressed by saying that
the set of vectors of the form

(9)
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ranging over all matrix products with (including
, i.e., ), or equivalently over all products of length at

most , must span all of . This property is often called
“span-reachability” because, for bilinear systems, it amounts to
the requirement that the set of states reachable from the origin
span all of the state-space. Similarly, the second property can be
equivalently expressed by the dual property that the span of the
vectors

(prime indicates transpose) be all of (once again, length
suffices), and is an observability property for bilinear

systems. Canonical 4-tuples are also called “minimal” because
[15]–[20] they have minimal dimension among all other 4-tu-
ples which are i/o equivalent in the sense of (8); moreover, if
a 4-tuple is not canonical, then [15]–[20] there is
some 4-tuple which is canonical and is so that (8)
holds. (We do not need in this paper the interpretations in terms
of reachability and observability, nor the minimality result.) In
the identification literature, “canonical” is often also referred to
as “identifiable.” We will call a bilinear system (of type I or
II) canonical if the corresponding 4-tuple is canonical.

A very special case is that of linear systems (2), i.e. systems
of type I with ). Such a system is canonical
if and only if it is reachable and observable in the usual sense of
control theory [13]. The controllability matrix and the
observability matrix are defined respectively by:

(prime indicates matrix transpose). The system is canonical
iff both matrices have full rank .

Similarity and I/O Equivalence: We already remarked that
for any two bilinear systems (both of the

same type). Conversely, if both systems and are canonical,
. Thus:

(10)

This is a standard fact about bilinear systems [15]–[20] (strictly
speaking, these references deal with discrete-time systems such
as , but the algebraic statement
about 4-tuples is the same as in the continuous-time case). The
proof is, in fact, completely analogous to the proof for linear
systems [13]. For completeness, we provide a proof here:

Lemma 2.3: Suppose that the two 4-tuples and
are canonical and i/o equivalent. Then they are sim-

ilar. Moreover, the similarity transformation in (6) is unique.
Proof: Pick any . By the span-reachability property

(9) for , there are real numbers , where denotes
sequences of length at most (including the
“empty” sequence) such that , where we denote

for . Now define
.

There are many possible representations of a vector as a
linear combination of the spanning set in (9) for , so
to see that is well-defined as a mapping we need to verify that
if then .

By linearity, it is enough to show that
. Suppose that . Then also

for any other index , or equivalently
, where is the concatenation of the se-

quences and . Now, i/o equivalence of the two given 4-tu-
ples implies that for all indices, and so also

. This holds for any index , so,
using the observability of , we conclude that ,
as desired. The mapping is obviously linear (by definition),
and it is onto because of the reachability of , which
means that every can be written as for some

’s. To prove that is one-to-one, we simply reverse the argu-
ment used to prove that was well-defined. Uniqueness follows
by the same argument.

By picking among all the possible linear combinations the
one whose coefficients have minimal Euclidean norm, one ob-
tains an explicit expression for :

where # denotes matrix pseudoinversion, is a matrix listing
the products in (9) of length , and lists the vectors in
the same order for the second 4-tuple. For linear systems

, the equivalence becomes

(11)

where is the usual reachability matrix ([13], Theorem 27).
Generic Sets of Systems: We will make statements about

“generic” classes of systems, so we must define this term care-
fully. Genericity can be defined in many ways, for example in
probabilistic terms (a set is generic if it has “probability one”)
or, as usual in mathematics, in terms of open dense sets. In order
to provide the strongest possible results, we combine both defi-
nitions and say here that a subset of an Euclidean space is
generic provided that:

• the set has full measure, that is, the complement has
Lebesgue measure zero, and

• the set is open (and dense) in .
When dealing with sets of 4-tuples (3), we view such sets as
subsets of with .

When talking about genericity of classes of systems of type
I or II, we mean genericity of the sets of associated 4-tuples.
Specifically, if we let be the class of -dimensional bilinear
systems of type I, then we think of as , and similarly
for the class of -dimensional bilinear systems of type II.

III. STATEMENTS OF MAIN RESULTS

For any and any , let denote the class of all
functions of the form

for
for

where is a constant. Note that in the special case when ,
becomes the class of constant functions. (There is a small

ambiguity in that we have not specified the domain of the inputs.
We can view these inputs as defined on some interval with

; any such will give the same results.)
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Let denote the particular pulse function in for which
, that is,

for
for .

(12)

Let us now state the negative main results of this paper.
Theorem 1: For each and , there is a generic

subset of such that, for every system , there is
some such that

1) and are i/o equivalent under the pulse function
, but

2) and are not i/o equivalent.
Theorem 2: For each and , there is a generic

subset of such that, for every system , there is
some such that

1) and are i/o equivalent under all the pulses in the set
, but

2) and are not i/o equivalent.
By setting for the collection , one obtains the

following as a consequence of Theorem 2:
Corollary 3.1: There is a generic subset of such that,

for every system , there is some such that
1) and are i/o equivalent under every constant input, but
2) and are not i/o equivalent.
The first part of Corollary 3.1 may be restated as follows: for

every , there exists some such
that

for all and all . This implies that:

for all and all . Hence, the result in Corollary 3.1
also applies to systems as in (4):

Corollary 3.2: There is a generic subset of such that,
for every , there is some such that

1) and are i/o equivalent under every constant input, but
2) and are not i/o equivalent.
Next, we state our positive results for systems of both types.

For any , let denote the set of pulses of magnitude :

Theorem 3: For each , there is a generic subset of
such that, for every pair of systems , ,

Theorem 4: For each , there is a generic subset of
such that, for every pair of systems , ,

A. Finite Numbers of Experiments

The positive results, Theorems 3 and 4, merely assert that in-
puts in are sufficient for identifiability, and no claim is made
regarding how many such inputs are required, nor at how many
time points does one need to observe the outputs. However, the
results can be refined to show that data
points suffice. More precisely, consider the set

For each , there is a generic subset of , and a generic
class of systems of type I (or of type II), with the following
property:

Suppose that , and that
and are two systems in with the property that for

all their outputs at time are the same when
the input is . Then .

In particular, for systems in the generic class , it follows
that .

To prove this fact, we let , and we view
as parameterizing a quadruple , where the
triple is in control canonical form ( parameters) and

is arbitrary ( parameters). We now define as the
output at time of the system defined by and with
input . We view this mapping as defined on the set of pairs

with . Note that this is a real-analytic function
of , since the formula defining the output of a system at
time is real analytic; for example, for systems of type II
one has

(for systems of type I, the expression is slightly more compli-
cated), where . The domain of is not open,
but the mapping can be extended as an analytic mapping on

by using the same formula. Note that, by analyticity,
for all if and only if the same

holds for the extended mapping, i.e. for all .
By the main theorem for maps in [21], there is a generic subset

of (corresponding to a “universal distinguishing set” of
experiments) such that, if for each

, then for every with
. (Observe that the systems result in [21] requires analyticity,

which does not hold for the outputs of systems with respect to
switched controls such as pulses; hence the need to argue in
terms of the mapping .)

Now we let consist of systems of type I (or of type II)
for which the triple is canonical in the sense of linear
systems. Let us consider two systems and in that have
the same outputs at the times when the input is , for every

.
For each system in , there is a similarity bringing

the triple into control canonical form. So we can
find two parameter vectors and such that the respective
systems are i/o equivalent to and . This means that

, and therefore, by the choice of ,
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we have that for all and . Now pick any
and consider the input and an arbitrary time .

We claim that the systems and have the same outputs at
time . There are two cases: and . In the second
case, the outputs coincide because they are respectively the
same as and , which are equal to each other.
So, assume now that . The key observation now is that the
outputs at time corresponding to and when the input

is used are exactly the same as the outputs at time for
these systems when the input is used instead. Since ,
these outputs are the same as and , which are
equal. So , as claimed.

IV. PROOFS OF NEGATIVE RESULTS

A. Some Preliminaries

The construction in this section is key to the proofs of the
negative results. The following observation was apparently first
made in [22] (see problem 1 in page 110, and problem 12 in
page 105). See the Appendix for a proof.

Lemma 4.1: For each canonical triple , there is
a unique matrix such that

(13)

Moreover, the matrix is given by
.

For each nonzero matrix , consider the following set:

Note that is a proper linear subspace of , because,
in particular, when is the matrix having a 1 in its th
position and zero elsewhere, implies that
for all .

We now define a set that will play a major role in the
constructions. It is defined as the set consisting of those 4-tuples

such that:
1) is canonical,
2) .
Note that, since the triple is already canonical, every

element of is canonical as a 4-tuple.
For the next result, it is more elegant not to use inverses. Given

a triple , let denote the cofactor matrix of
. Note that if is observable, then ,

where .
For any triple (not necessarily minimal), we

define . This is a polynomial ex-
pression on the entries of , , and . If is observable,

.
Observe that for any scalar . Thus,

.
This Lemma is proved in the Appendix:
Lemma 4.2: The complement of is a proper algebraic

subset of .
The key property of this set is as follows.

Lemma 4.3: For each , consider
, where . Then,

1) ,
2) , and
3) for each and each nonnegative integer :

(14)

Proof: Let . The fact that follows
from the fact that . To see that

, note that since
and is invertible. The equality (14) follows by the equalities

, , , , and the following:

for all and all .
Corollary 4.4: For each , and

, the 4-tuples and are not i/o
equivalent to each other.

Proof: Suppose that these two 4-tuples would be i/o equiv-
alent. By Lemma 2.3, they are similar. Let provide a simi-
larity as in (6). In particular, provides a similarity between the
canonical triple and itself. Since there is a unique such
similarity, and the identity is one, it follows that . Thus

, contradicting the fact that .

B. Proof of Theorem 1

Let be the subset consisting of all those 4-tuples

which satisfy the following conditions:
a) is canonical;
b) is canonical;
c) is invertible;
d) .
Letting denote the collection of eigenvalues of a matrix
, the Spectral Mapping Theorem implies that

. Thus, assumption (c), which says that 1 is not an
eigenvalue of , implies, in particular, that is invertible. This
Lemma (see Appendix for proof) will help us show genericity
of the set of systems to be considered:

Lemma 4.5: The complement of is a countable union
, where each is a proper algebraic subset of

.
Let , and consider the

analytic map defined by

where , and denotes the adjoint matrix
of . Note that if is invertible, then is invertible,
and the matrix is also invertible. Hence,
when restricted to the open set
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is given by

(15)

where . Let denote the re-
striction of to , and consider the open set

Then, is a (smooth) diffeomorphism from to . Its in-
verse is given by

(16)

Since , it follows that the com-
plement of is a subset of

. Hence, is contained in the
countable union of the solution sets of the equations

Let , and write , where the sets are
as in Lemma 4.5. The next lemma then follows from the fact
that , and Lemma 4.5:

Lemma 4.6: , where
is the diffeomorphism from to defined by (15).

Corollary 4.7: is generic.
Proof: Since every proper algebraic set has measure zero,

the set has measure zero. Furthermore, since the image
of a measure zero set under a differentiable map has measure
zero (see e.g. [23], Lemma 2.6), has measure zero for
each . This implies that has measure zero. Therefore, is
of full measure, and as a consequence, is dense. Finally, is
open because it is the image of under the diffeomorphism
and is an open subset of .

Let with , .
Lemma 4.8: Consider systems as in (4). For every ,

there exists such that the following holds:
1) and are i/o equivalent under the pulse function , but
2) and are not i/o equivalent.

Proof: Let . Then there
exists such that

Let . Then , and hence,

Since , both and are reach-
able. Moreover,

which implies that . There-
fore, . In particular, .

Applying Lemma 4.3 to , one sees that with
(where ), it holds that ,

and

In particular, for ,

Let . Consider the two systems
and :

Since for , the two systems reduce in that
interval to:

It follows that on [0, 1], and hence outputs coincide
for . In particular, at time both systems are in
state

Now, for , using that and ,
we have that

and, since , it follows that the out-
puts are the same for all as well.

To show that and are not equivalent, we will show ex-
plicitly that the inputs

(with varying ) are enough to distinguish the two systems.
Suppose that the systems have the same output functions

under these input functions.
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Let and . Since , and
, , at time we have:

From and taking derivatives, one gets

Hence,

Taking more derivatives, we conclude inductively that

In particular by continuity, we have that

for all , and by observability of ,

that is,

Taking derivatives with respect to , we conclude that:

This implies that

where , and . Since
is reachable, is invertible. From this we conclude

that , and hence , a contradiction.
To complete the proof of Lemma 4.8, we show that .

First observe that:

Thus, if we prove that , then
. By Lemma 4.3, .

It is thus enough to show that is canon-
ical. To see this, note that since and

is canonical, it follows that is
canonical. Thus, is canonical as
is similar to . Again, applying the fact that

, one sees that is canonical.
The above completes the proof of Theorem 1 for the special

case and . The general case can be obtained by
rescaling inputs and time scale, as follows. We consider the im-
pulse function for any fixed and . Without

loss of generality, we assume that . For the initial-value
problem

let , and consider the initial-value problem

Then . It then can be seen that, with

and any , there exists some such that and
have the same output under the impulse input , but the

two systems are not equivalent.

C. Proof of Theorem 2

In this section we consider systems defined as in (5). Let
and be given. Consider the analytic map :

given by

This is an analytic diffeomorphism whose inverse map is given
by

Let . The following is a consequence of Lemma 4.2:
The complement of is the image of an proper algebraic

set under a diffeomorphism from to . Since
the image of a measure zero set under a smooth map (see e.g.
[23], Lemma 2.6) has measure zero, we conclude:

Corollary 4.9: The collection is generic.
It can be seen that to prove Theorem 2, it is enough to prove

the following:
Lemma 4.10: For any , there exists such that
a) and have the same output for any ;
b) the two systems and are not equivalent.
Let . Thus, by definition

of , there exists such that
. Let , where

. Then , , and the
system .

To prove part (a), pick any , and assume
for . The two systems are given by

For , both systems reduce to the same equation:
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and in particular, for all . For
, the two systems become

and thus have the respective solutions

By Lemma 4.3 and the choices of and , it follows with
that:

which implies that for all as well, so part
(a) is proved.

To prove part (b), suppose the two systems and have the
same output for all inputs, and so, in particular, for all inputs
for which for . This implies that the two
systems

have the same output for any input. Rewriting the two systems
as:

and writing for a new input , one sees that the
two systems

have the same outputs for all inputs and times , which is the
same as saying that the two systems of type II with associated
4-tuples and are i/o equivalent, which
is a contradiction in view of Lemma 4.3 and Corollary 4.4.

This completes the proof of Theorem 2.

V. PROOFS OF POSITIVE RESULTS

In this section we prove the positive results.
Let be given. Let be the set of 4-tuples satisfying

the following two properties:
1) is canonical,
2) is controllable.

Since the complement of is defined by the union of the
solution sets of the equations

we have:
Lemma 5.1: The complement of is a proper algebraic

set. Consequently, is open, dense, and of full measure.

We will prove that the sets of systems in and whose
4-tuples are in satisfy the conclusions of Theorems 3 and 4
respectively.

A. Proof of Theorem 3

Lemma 5.2: Assume that is controllable. Then, for any
and any ,

is controllable for almost all .
Proof: Let be given. For any ,

where . Since
, is analytic, and is controllable, it follows

that is controllable for almost all . It then follows
that is controllable for almost all .

To prove Theorem 3, we pick two systems
and in , and suppose

that they produce have the same output function for each
. We must show that .

Fix a . Applying to the two systems:

one has:

(17)

where

This holds for any .
By Lemma 5.2, we may pick some such that

and are both canonical. Since
by (17) these two triples are i/o equivalent, there exists some
invertible matrix such that

(18)
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Using in particular that for all , (17)
becomes:

From the observability of , it follows that:

for all . Equivalently:

for all . Taking the derivative with respect to , one gets:

Note that this is true for all . In particular,

(19)

On the other hand, taking repeated derivatives in and then
setting , one obtains:

(20)

This implies, with ,

(21)

and with ,

Combining this with (21), one sees that

It then follows from the fact that is invertible
(because is controllable) that:

It then again follows from (18) and the fact that that
. Combined with (18) and (19), we have that

the systems and are similar, with the similarity matrix
given by , and this completes the proof of Theorem 3.

B. Proof of Theorem 4

The proof of Theorem 4 is almost the same as that of Theorem
3, with Lemma 5.2 modified to the following:

Lemma 5.3: Assume that is controllable. Then, for any
and any ,

is controllable for almost all .

We pick elements and
of (seen as a class of systems of type

II) which have the same output function for each .
For any , applying to the two systems:

one has, for any

(22)

where

By Lemma 5.3, there exists some such that both
and are canonical. So, there

exists some invertible matrix such that

and consequently, (22) becomes

For each given, using the observability of , one
sees that:

for all . Starting from here, one can complete the proof by
following the same steps as in the proof of Theorem 3.

VI. REMARK ON SAMPLED CONTROLS

As remarked earlier, our proofs of the positive results, Theo-
rems 3 and 4, were inspired by the identification algorithm pre-
sented in [12]. That algorithm aims to find a system equivalent to
the system being identified, on the basis of observations at dis-
crete instants , where is a fixed sampling
time, and having applied inputs which have the form (for
varying nonnegative integer ’s), i.e., pulses of magnitude
whose width is a multiple of this same sampling time . The mo-
tivation is clear: one wishes to use a sample-and-hold strategy,
which is especially convenient for computer algorithms. Unfor-
tunately, this restriction to fixed sampling times means that the
algorithm cannot work for generic classes of systems, as we
show here by means of a counterexample. (Mathematically, the
difficulty is that some of the steps of the algorithm given in [12]
involve taking logarithms of matrices, which is an ambiguous
procedure, as the author himself points out on the paper.) To
show this shortcoming, for any given , we produce an
open class of 2-dimensional systems of type I (it is easy to
generalize to larger dimensions and to systems of type II) with
the following properties: for every system in , there is some
other system, which is not i/o equivalent to the original one, yet
cannot be distinguished by applying steps of magnitude and
sampled in the above way (with fixed ). Thus, our approach, in
which is varied, is actually necessary.
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For any system , we denote by the
discrete time system which results from sampling the system
with as the length of the sampling interval, and using input
functions that are constant over each sampling interval:

(23)

where , , is the value of over the
interval and

For disrete time systems as in (23), the i/o equivalence under
a collection of inputs is defined in the same manner as in the
continuous time case.

Let be the subset consisting of systems of type I for which
the 4-tuples

satisfy:
1) is canonical; and
2) has a pair of conjugate complex eigenvalues ,

with .
Since the set of 4-tuples for which the triple
is canonical is generic, and the set of 4-tuples for
which has a pair of nonzero conjugate complex eigen-
values has a nonempty interior (because of continuity of eigen-
values on matrix entries), the set contains an open set.

Proposition 6.1: For any , and for any , there
exists some that

1) and are i/o equivalent under the collection
, but

2) and are not i/o equivalent.
Proof: Let be given, and consider

. Without loss of generality, assume that
is already in “real Jordan canonical form”:

for some . (If this were not the case, one may simply apply
a similarity, and at the end of the argument transform back to
original coordinates.) Let

Choose an integer such that
• ; and
• is canonical.

A generic integer works; note that (since ):

and similarly for reachability. Let be given by

That is, is chosen so that

Note that both and are invertible since
and . Let ,

where .
Next we show that the two sampled systems and are

i/o equivalent under the collection .
Consider the input function for some . Clearly

the two systems have the same state trajectory and same output
function if (the input is constantly zero). So assume

. For , the two sampled systems are given
respectively by:

where

and

(where we have used the fact that
for any invertible ). Hence, for all .

In particular, outputs coincide at all sampling times ,
. Over the interval , the two systems and

are given by

This in particular implies that for all and there-
fore outputs also coincide at sampling times , (as
well as for any time ). Thus, and are i/o equivalent
under .
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To show that the two systems and are not i/o equivalent,
consider the constant input . Assume the output functions
of the two systems are the same under this constant . Then

and equivalently,

Since , one gets

This in turn implies that

Taking derivatives with respect to repeatedly, and then setting
, one obtains:

Since both and are canonical, it
follows that the two systems are similar, contradicting the fact
that and have different pairs of eigenvalues.

Finally we show that . Note that was chosen so
that is observable. It is left to show that
is controllable. Note that and
commute. This is because , and ,
where

Using that and therefore :

Since was chosen so that is controllable, it follows that
is non-singular, and hence, is controllable,

as claimed.

VII. CONCLUSION

For bilinear systems, we showed that step inputs are not
enough for identification, nor do single pulses suffice, but that

that the family of all pulses (of a fixed amplitude but varying
widths) do suffice. We presented results for single-input
single-output systems, since one can obviously identify a
multiple-input multiple-output system by considering each pair
of input and output channels separately, and hence the family
of pulses also works for the general case.

We emphasize that we dealt in this paper with ideal noise-free
conditions, and ignored stochastic aspects and noisy data, be-
cause the underlying theoretical questions of what is ultimately
achievable are easiest to understand in a deterministic setting.
Tools such as those here have been used, however, in the formu-
lation of identification algorithms from noisy data, for bilinear
systems [24]. Nor did we deal here with questions of computa-
tional and sample complexity. However, the methods used are
quite constructive and indeed have appeared in the same context
in [12], where numerical implementations are studied; regarding
sample complexity, we leave for further research the generaliza-
tion of learning-theory results [25], [26] from the linear case to
the classes of systems considered here.

Finally, bilinear systems were picked because an elegant re-
sult can be established for them, as well as their applicability
and general interest. However, the study of similar problems to
those treated here for more general classes of systems is of great
interest.

APPENDIX

Proof of Lemma 4.1: Observe that for each canonical triple
, the triple is also canonical, and the two

triples are i/o equivalent since for
all nonnegative integers . Thus there is a (unique) similarity
between and , an invertible matrix such
that:

The formula for is given in (11), which, since in this case
and and , reduces to that

shown.
Although not needed, it is worth remarking that is sym-

metric. This can be proved as follows: transposing the relations
in (13), one has that also , , and .
Since the similarity matrix is unique, .

Proof of Lemma 4.2: The complement of of is the union
of the solution sets of the following equations respectively:

and the scalar equations given by

(24)

Hence, is an algebraic set. Each subset is proper (for the last
one, pick an arbitrary canonical and refer to the above
remark that is always proper), and hence of dimension less
than , so the union is also proper.
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Proof of Lemma 4.5: First note that , and is
the union of and of the solution sets of of the following
equations:

(25)

(26)

(27)

Clearly, the solutions sets and of (25) and (26) respec-
tively are proper algebraic sets. By the Spectral Mapping The-
orem, (27) holds if and only if is an eigenvalue of
for some integer , and hence, the solution set of (27) is the
countable union of the solution sets of the equations

Hence, is the countable union of , , , and
.
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