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Glossary

Stability A globally asymptotically stable equilibrium is
a state with the property that all solutions converge to
this state, with no large excursions.

Stabilization A system is stabilizable (with respect to
a given state) if it is possible to find a feedback law that
renders that state a globally asymptotically stable equi-
librium.

Lyapunov and control-Lyapunov functions A control-
Lyapunov functions is a scalar function which de-
creases along trajectories, if appropriate control ac-
tions are taken. For systems with no controls, one has
a Lyapunov function.

Definition of the Subject

The problem of stabilization of equilibria is one of the cen-
tral issues in control. In addition to its intrinsic interest, it
represents a first step towards the solution of more compli-
cated problems, such as the stabilization of periodic orbits
or general invariant sets, or the attainment of other con-
trol objectives, such as tracking, disturbance rejection, or
output feedback, all of which may be interpreted as requir-
ing the stabilization of some quantity (typically, some sort
of “error” signal). A very special case, when there are no
inputs, is that of stability.

Introduction

This article discusses the problem of stabilization of an
equilibrium, which we take without loss of generality to
be the origin, for a finite-dimensional system ẋ D f (x; u).

The objective is to find a feedback law u D k(x) which ren-
ders the origin of the “closed-loop” system ẋ D f (x; k(x))
globally asymptotically stable. The problem of stabiliza-
tion of equilibria is one of the central issues in control. In
addition to its intrinsic interest, it represents a first step
towards the solution of more complicated problems, such
as the stabilization of periodic orbits or general invariant
sets, or the attainment of other control objectives, such
as tracking, disturbance rejection, or output feedback, all
of which may be interpreted as requiring the stabilization
of some quantity (typically, some sort of “error” signal).
A very special case (when there are no inputs u) is that of
stability.

After setting up the basic definitions, we consider lin-
ear systems. Linear systems are widely used as models
for physical processes, and they also play a major role in
the general theory of local stabilization. We briefly review
pole assignment and linear-quadratic optimization as ap-
proaches to obtaining feedback stabilizers.

In general, there is a close connection between the ex-
istence of continuous stabilizing feedbacks and smooth
control-Lyapunov functions, (cfl’s), which constitute an ex-
tension of the classical concept of Lyapunov functions
from dynamical system theory. We discuss the role of clf’s
in design methods and “universal” formulas for feedback
controls.

For nonlinear systems, it has been known since the late
1970s that, in general, there are topological obstructions
to the existence of even continuous stabilizers. We review
these obstructions, using tools from degree theory.

Finally, we turn to discontinuous stabilization and the
associated issue of defining precisely a “solution” for a dif-
ferential equation with discontinuous right-hand side. We
introduce techniques from nonsmooth analysis and dif-
ferential games, in order to deal with discontinuous con-
trollers. In particular, we discuss the effect of measurement
errors on the performance of such controllers.

Preliminaries

In this article, we restrict attention to continuous-time de-
terministic systems whose states evolve in finite-dimen-
sional Euclidean spaces Rn . (This excludes many other
equally important objects of study in control theory: sys-
tems which evolve on infinite dimensional spaces and
are described by PDE’s, systems evolving on manifolds
which serve to model state constraints, discrete-time sys-
tems described by difference equations, and stochastic sys-
tems, among others.) In order to streamline the presenta-
tion, we suppose throughout that controls take values in
U D Rm (constraints in controls would lead to proper
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subsets U). A control (other names: input, forcing func-
tion) is any measurable locally essentially bounded map
u(�) : [0;1) ! U D Rm . In general, we use the nota-
tion jxj for Euclidean norms, and use kuk to indicate the
essential supremum of a function u(�). For basic terminol-
ogy and facts about control systems, see [25].

Given a map f : Rn �Rm ! Rn which is locally Lip-
schitz and satisfies f (0; 0) D 0, we consider the associated
forced system of ordinary differential equations

ẋ(t) D f (x(t); u(t)) : (1)

The maximal solution x(�) of (1) which corresponds to
a given initial state x(0) D x0 and to a given control u
is defined on some maximal interval [0; tmax(x0; u)), and
is denoted by x(t; x0; u). In the special case when f does
not depend on u, we have an unforced system, or system
with no inputs

ẋ(t) D f (x(t)) : (2)

Unforced systems are associated to a controlled system (1)
in two different ways. The first is when one substitutes
a feedback law u D k(x) in (1) to obtain a “closed-loop”
system ẋ D f (x; k(x)). The second is when one considers
instead the autonomous system ẋ D f (x; 0) which mod-
els the behavior of (1) in the absence of any controls. All
definitions stated for unforced systems are implicitly ap-
plied also to systems with inputs (1) by setting u � 0; for
instance, we define the global asymptotic stability (GAS)
property for (2), but we say that (1) is GAS if ẋ D f (x; 0)
is. For systems with no inputs (2) we write just x(t; x0) in-
stead of x(t; x0; u).

Stability and Asymptotic Controllability Stability is
one of the most important objectives in control theory, be-
cause a great variety of problems can be recast in stability
terms. This includes questions of driving a system to a de-
sired configuration (e. g., an inverted pendulum on a cart,
to its upwards position), or the problem of tracking a ref-
erence signal (such as a pilot’s command to an aircraft).
We focus in this talk on global asymptotic stabilization.

Recall that the class of K1 functions consists of all
˛ : R�0 ! R�0 which are continuous, strictly increasing,
unbounded, and satisfy ˛(0) D 0. The class of KL func-
tions consists of those ˇ : R�0 � R�0 ! R�0 with the
properties that

(1) ˇ(�; t) 2K1 for all t, and
(2) ˇ(r; t) decreases to zero as t !1.

We will also use N to denote the set of all nondecreas-
ing functions � : R�0 ! R�0. Expressed in terms of such

comparison functions, the property of global asymptotic
stability (GAS) of the origin for a system with no inputs (2)
becomes:

(9ˇ 2KL) jx(t; x0)j � ˇ
�
jx0j; t

�
8x0 ;8t � 0 :

This definition is equivalent to a more classical “"-ı” def-
inition usually provided in textbooks, which defines GAS
as the combination of stability and global attractivity. For
one implication, simply observe that

jx(t; x0)j � ˇ
�
jx0j; 0

�

provides the stability (or “small overshoot”) property,
while

jx(t; x0)j � ˇ
�
jx0j; t

�
�!

t!1
0

gives attractivity. The converse implication is an easy ex-
ercise.

More generally, we define what it means for the system
with inputs (1) to be (open loop, globally) asymptotically
controllable (AC) (to the origin). The definition amounts
to requiring that for each initial state x0 there exists some
control u D ux0 (�) defined on [0;1), such that the cor-
responding solution x(t; x0; u) is defined for all t � 0,
and converges to zero as t ! 1, with “small” overshoot.
Moreover, we wish to rule out the possibility that u(t) be-
comes unbounded for x near zero. The precise formulation
is as follows.

(9ˇ 2KL)(9� 2N ) 8x0 2 Rn9u(�) ; kuk � �(
ˇ̌
x0
ˇ̌
) ;

jx(t; x0; u)j � ˇ
�
jx0j; t

�
8 t � 0 :

In particular, (global) asymptotic stability amounts to the
existence of ˇ 2 KL such that jx(t; x0; u)j � ˇ (jx0j; t)
holds for all t � 0. A very special case is that of exponential
stability, in which an estimate of the type jx(t; x0; u)j �
Me��t jx0j holds. For linear systems (see below), asymp-
totic stability and exponential stability coincide. It is a puz-
zling fact that for general systems, one can find contin-
uous coordinate changes that make asymptotically stable
systems exponentially stable [8,13] (a fact of little practical
utility, since finding such coordinate changes is as hard as
establishing stability to being with).

Feedback Stabilization A map k : Rn ! U is a feed-
back stabilizer for the system with inputs (1) if k is locally
bounded (that is, k is bounded on each bounded subset of
R), k(0) D 0, and the closed-loop system

ẋ D f (x; k(x)) (3)
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is GAS, i. e. there is some ˇ 2 KL so that jx(t)j �
ˇ (jx(0)j ; t) for all solutions and all t � 0. (A technical
difficulty with this definition lies the possible lack of solu-
tions of (1) when k is not regular enough. We ignore this
for now, but will most definitely return to this issue later.)

For example, if (1) is a model of an undamped
spring/mass system, where u represents the net effect of
external forces, one obvious way to asymptotically stabi-
lize the system is to introduce damping. In control-the-
oretic terms, this means that we choose u(t) D k(x(t)) to
be a negative linear function of the velocity. Physically, one
may implement a feedback controller by means of an ana-
log device. In the example of the spring/mass system, one
could achieve this by adding friction or connecting a dash-
pot. Alternatively, in modern control technology, one uses
a digital computer to measure the state x and compute the
appropriate control action to be applied. (There are many
implementation issues which arise in digital control and
are ignored in our theoretical formulation “u D k(x)”,
among them the effect of delays in the actual computation
of the control u(t) to be applied at time t, and the effect of
quantization due to the finite precision of measuring de-
vices and the digital nature of the computer. These issues
are addressed in the literature, although a comprehensive
theoretical framework is still lacking.)

Observe that, obviously, if there exists a feedback sta-
bilizer for (1), then (1) is also AC (we just use u(t) :D
k(x(t; x0)) as ux0 ). Thus, it is very natural to ask whether
the converse holds: is every asymptotically controllable sys-
tem also feedback stabilizable?

Linear Systems

A linear system is a system (1) for which the map f is lin-
ear. In other words, there are two linear transformations
A : Rn ! Rn and B : Rm ! Rn so that the equations
take the form

ẋ D Ax C Bu : (4)

Such a system is completely specified once that we are
given A and B, which we identify by abuse of notation with
their respective matrices A 2 Rn�n and B 2 Rn�m with
respect to the canonical bases in Rn and Rm . We also say
“the system (A, B)” when referring to (4).

It is natural to look specifically for linear feedbacks
k : Rn ! Rm which stabilize a linear system (just as a lin-
ear term, inversely proportional to velocity, stabilizes an
undamped harmonic oscillator). (In fact, this is no loss
of generality, since it can be easily proved for linear sys-
tems [25] that if a feedback stabilizer u D k(x) exists,
then there also exists a linear feedback stabilizer.) We write

u D Fx, when expressing k(x) D Fx in matrix terms with
respect to the canonical bases. Substituting this control law
into (4) results in the equation ẋ D (AC BF)x. Thus, the
mathematical problem reduces to:

given A 2 Rn�n and B 2 Rn�m , find F 2 Rm�n

such that AC BF is Hurwitz.

(Recall that a Hurwitz matrix is one all whose eigenvalues
have negative real parts, and that the origin of the system
ẋ D Hx is globally asymptotically stable if and only if H
is a Hurwitz matrix.) The fundamental stabilization result
for linear systems is as follows [25]:

Theorem 1 A linear system is asymptotically controllable
if and only if it admits a linear feedback stabilizer.

A Remark on Linearization

If the dynamics map f in (1) is continuously differentiable,
we may expand to first order f (x; u) D AxCBuCo(x; u).
Let us suppose that the linearized system (A, B) is AC, and
pick a linear feedback stabilizer u D Fx, whose existence
is guaranteed by Theorem 1. Then, the same feedback law
k(x) D Fx, when fed back into the original system (1), re-
sults in ẋ D f (x; Fx) D (AC BF)xC o(x). Thus, k locally
stabilizes the origin for the nonlinear system. Of course,
the assumption that the linearization is AC is not always
satisfied. Systems in which inputs enter multiplicatively,
such as those controlling reaction rates in chemical prob-
lems, lead to degenerate linearizations. In addition, even if
the linearized system (A, B) is AC, in general a linear sta-
bilizer u D Fx will not work as a global stabilizer. For ex-
ample, the system ẋ D xC x2Cu can be locally stabilized
with u :D �2x, but any linear feedback u D � f x ( f > 1)
results in an additional equilibrium away from the origin
(at x D f � 1). Nonlinear feedback must be used (obvi-
ously, in this, example, u D �2x � x2 works for global
stabilization).

Returning to linear systems, let us note that Theo-
rem 1 is of great interest because (1) there is a simple alge-
braic test to check the AC property, and (2) there are sev-
eral practically useful algorithms for obtaining a stabiliz-
ing F, including pole placement and optimization, which
we sketch next.

Pole Placement

The first technique for stabilization is purely algebraic. In
order to simplify this exposition, we will suppose that the
system (4) is not just AC but is in fact controllable, mean-
ing that every state can be steered, in finite time, to ev-
ery other state. (Any AC system (4) can be decomposed
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into two components, of which one is already GAS and
the other one is controllable, cf. [25], so this represents no
loss of generality.) Controllability is characterized by the
property – generically satisfied for pairs (A, B) – that

rank
h

B
ˇ̌
ˇAB

ˇ̌
ˇA2B

ˇ̌
ˇ : : :

ˇ̌
ˇAn�1B

i
D n

(note that the composite matrix shown has n rows and nm
columns).

Two pairs (A, B) and (eA;eB) are said to be feedback
equivalent if there exist T 2 GL(n;R), F0 2 Rm�n , and
V 2 GL(m;R) so that

(AC BF0)T D TeA and
BV D TeB :

(5)

Feedback equivalence corresponds to changes of basis in
the state and control-value spaces (invertible matrices T
and V , respectively) and feedback transformations u D
F0xC u0, where u0 is a new control. (An equivalent way to
describe feedback equivalence is by the requirement that
two pairs should be in the same orbit under the action of
a “feedback group” which is obtained as a suitable semidi-
rect product of GL(n;R), (Rm�n ;C), and GL(m;R).)
Controllability is preserved under feedback equivalence.
Moreover, if (5) holds and if one finds a matrixeF so that
eACeBeF is Hurwitz, then

AC BF D T(eACeBeF)T�1

is also Hurwitz, where F :D F0CVeFT�1. Thus, the task of
finding a stabilizing feedback F can be reduced to the same
problem for any pair (eA;eB) which is feedback equivalent
to the given pair (A, B).

One then proceeds to show that there always exists an
equivalent pair (eA;eB) which has a form simple enough
that the existence of eF is trivial to establish. In order to
find such a pair, it is useful to study the classification of
controllable pairs under feedback equivalence. This clas-
sification is closely related to Kronecker’s theory of “ma-
trix pencils” applied to polynomial matrices [�I�A; B] D
�[I; 0]C [�A; B] modulo matrix equivalence, cf. [25]. The
orbits under feedback equivalence are in one-to-one corre-
spondence with the possible partitions of n D �1C: : :C�r
into the sum of r positive integers, r � m, and in each orbit
one can find a pair (eA;eB) which is in “controller canonical
form”, for which F can be trivially found. For simplicity,
let is just discuss here the very special case of single-input
systems (m D 1). For this case, the action of the feedback
group is transitive, and each controllable system is feed-

back equivalent to the following special system:

A :D

0
BBBBB@

0 1 0 : : : 0
0 0 1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1
0 0 0 : : : 0

1
CCCCCA

B :D

0
BBBBB@

0
0
:::

0
1

1
CCCCCA
:

For this system, a stabilizing feedback is trivial to obtain.
Indeed, take the polynomial p(�) D (� C 1)n D �n �

˛n�
n�1 � : : : � ˛2� � ˛1. With F D (˛1; ˛2; ˛3; : : : ; ˛n),

AC BF :D

0
BBBBB@

0 1 0 : : : 0
0 0 1 : : : 0

‘
:::

:::
:::

: : :
:::

0 0 0 : : : 1
˛1 ˛2 ˛3 : : : ˛n

1
CCCCCA

has characteristic polynomial (�C1)n , and hence is a Hur-
witz matrix, as required for stabilization.

Observe that, instead of the particular p(�) which we
used, we could have picked any polynomial all whose roots
have negative real parts, and the same argument applies.
The conclusion is that, not only can we make ACBF Hur-
witz, but we can assign to it any desired set of n eigenvalues
(as long as they form a set closed under conjugation). This
is the reason that the technique is called eigenvalue place-
ment (or “pole placement” because the eigenvalues of A are
the poles of the resolvent (�I � A)�1). See Chap. 5 in [25]
for a detailed treatment of the pole placement problem.

Variational Approach

A second technique for stabilization is based on optimal
control techniques. We first pick any two symmetric pos-
itive definite matrices R 2 Rm�m and Q 2 Rn�n (for in-
stance the identity matrices of the respective sizes). Next,
we consider the problem of minimizing, for each initial
state x0 at time t D 0, the infinite-horizon cost

Jx0 (u) :D
Z 1

0

˚
u(t)0Ru(t)C x(t)0Qx(t)

�
dt

over all controls u : [0;1) ! Rm which make Jx0 (u) <
1, where x(t) D x(t; x0; u) and prime indicates trans-
pose. The main result from linear-quadratic optimal con-
trol (cf. Sect. 8.4 in [25]) implies that, for AC systems, there
is a unique solution u to this problem, which is given in the
following form: there is a matrix F 2 Rm�n such that solv-
ing ẋ D (ACBF)x with x(0) D x0 gives that u(t) :D Fx(t)
minimizes Jx0 (�). Moreover, this F stabilizes the system
(which is intuitively to be expected, since Jx0 (u) < 1
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implies that solutions x(t) must be in L2), and F can be
computed by the formula

F :D �R�1B0P ; (6)

where P is a symmetric and positive definite solution of the
Matrix Algebraic Riccati Equation

PBR�1B0P � PA� A0P � Q D 0 : (7)

A Sufficient Nonlinear Condition

Although of limited applicability, it is worth remarking
that there is a partial extension to nonlinear systems of the
stabilization method which was just described. For sim-
plicity, we specialize our discussion to control-affine sys-
tems, i. e., those for which the input appears only in an
affine form. This class is sufficient for the study of most
forced mechanical systems. The Eq. (1) becomes:

ẋ D g0(x)C
mX

iD1

ui gi (x) D g0(x)C G(x)u :

(See Sect. 8.5 in [25] for general f , and for proofs). We
now pick two continuous functions Q : Rn ! R�0 and
R : Rn ! Rn�n , so that R(x) is a symmetric positive defi-
nite matrix for each x.

In general, we say that a continuous function

V : Rn ! R�0

is positive definite if V(x) D 0 only if x D 0, and it is
proper (or “weakly coercive”) if for each a � 0 the set
fxjV(x) � ag is compact, or, equivalently, V (x) ! 1
as jxj ! 1 (radial unboundedness). Given any such V
which is also differentiable, we denote the vector function
whose components are the directional derivatives of V in
the directions of the various control vector fields gi, i � 1
by:

LG V(x) :D rV(x)G(x) D
�
Lg1 V(x); : : : ; Lgm V(x)

�
;

and also write Lg0 V (x) :D rV(x)g0(x).
We consider the following PDE on such functions V :

8x Q(x)CLg0 V(x)�
1
4

LG V(x)R(x)�1 (LG V(x))0 D 0:

(8)

This reduces to the Algebraic Riccati Eq. (7) in the special
case of linear systems, quadratic V(x) D x0Px and Q(x) D
x0Qx, and constant matrices R(x) � R. We also take the
following generalization of the feedback law (6):

k(x) :D �
1
2

R(x)�1 (LG V (x))0 : (9)

Finally, we assume that Q is a positive definite function.
One then has [25]:

Theorem 2 Suppose that V is a twice continuously dif-
ferentiable, positive definite, and proper solution of the
PDE (8). Then, k defined by (9) stabilizes the system.

This theorem arises from the following optimization prob-
lem: for each state x0 2 Rn , minimize the cost

Jx0 (u) :D
Z 1

0
u(t)0R(x(t))u(t)C Q(x(t))dt ;

where x(t) D x(t; x0; u), over all those controls u : [0;1)
! U for which the solution x(t; x0; u) of (1) is defined for
all t � 0 and satisfies limt!1 x(t) D 0. Under the above
assumptions, and as for linear systems, one also concludes
that for each state x0 the solution of ẋ D f (x; k(x)) with
initial state x(0) D x0 exists for all t � 0, the control
u(t) D k(x(t)) is optimal, and V (x0) is the optimal cost
from initial state x0. Moreover, the formula for k arises
from the Hamilton–Jacobi–Bellman equation of optimal
control theory, because

k(x) D argmin
u

˚
rV(x) � f (x; u)C u0R(x)u C Q(x)

�

when f (x; u) D g0(x)C G(x)u.
There are applications where this method has proven

useful. Unfortunately, however, and in contrast to the lin-
ear case, in general there exists no positive definite, proper,
and C2 solution V of the above PDE. On the other hand,
the formula (9) does appear, with variations, in other
contexts, including generalizations of the idea of adding
damping to systems, cf. Sect. 5.9 in [25], and, more gener-
ally, the use of auxiliary positive definite and proper func-
tions V , in similar roles, will be central to the control-
Lyapunov ideas discussed later.

Nonlinear Systems: Continuous Feedback

One of the central topics which we will address here con-
cerns possibly discontinuous feedback laws k. Before turn-
ing to that subject, however, we study continuous feed-
back. When dealing with linear systems, linear feedback
is natural, and indeed sufficient from a theoretical stand-
point, as shown by the results just reviewed. However, for
our general study, major technical questions arise in even
deciding on just what degree of regularity should be im-
posed on the feedback maps k.

It turns out that the precise requirements away from 0,
say asking whether k is merely continuous or smooth, are
not very critical; it is often the case that one can “smooth
out” a continuous feedback (or, even, make it real-analytic,
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via Grauert’s Theorem) away from the origin. So, in order
to avoid unnecessary complications in exposition due to
nonuniqueness, let us call a feedback k regular if it is lo-
cally Lipschitz on Rn n f0g. For such k, solutions of ini-
tial value problems ẋ D f (x; k(x)), x(0) D x0, are well
defined (at least for small time intervals [0; ")) and, pro-
vided k is a stabilizing feedback, are unique (cf. Exercise
5.9.9 in [25]).

On the other hand, behavior at the origin cannot be
“smoothed out” and, at zero, the precise degree of smooth-
ness plays a central role in the theory [12]. For instance,
consider the system

ẋ D x C u3 :

The continuous (and, in fact, smooth away from zero)
feedback u D k(x) :D � 3p2x globally stabilizes the sys-
tem (the closed-loop system becomes ẋ D �x). However,
there is no possible stabilizing feedback which is differen-
tiable at the origin, since u D k(x) D O(x) implies that

ẋ D x C O
�
x3�

about x D 0, which means that the solution starting at
any positive and small point moves to the right, instead
of towards the origin. (A general result, assuming that A
has no purely imaginary eigenvalues, cf. [25], Section 5.8,
is that if – and only if – ẋ D Ax C Bu C o(x; u) can be
locally asymptotically stabilized using a feedback which is
differentiable at the origin, the linearization ẋ D Ax C
Bu must be AC itself. In the example that we gave, this
linearization is just ẋ D x, which is not AC.)

We now turn to the question of existence of regular
feedback stabilizers. We first study a comparatively trivial
case, namely systems with one state variable and one input.
After that, we turn to multidimensional systems.

The Special Case n D m D 1

There are algebraic obstructions to the stabilization of ẋ D
f (x; u) if the input u appears nonlinearly in f . Ignoring the
requirement that there be a � 2N so that controls can be
picked with kuk � �(jx0j), asymptotic controllability is,
for n D m D 1, equivalent to:

(8x 6D 0)(9u) x f (x; u) < 0 (10)

(this is proved in [28]; it is fairly obvious, but some care
must be taken to deal with the fact that one is allowing
arbitrary measurable controls; the argument proceeds by
first approximating such controls by piecewise constant
ones). Let us introduce the following set:

O :D f(x; u)jx f (x; u) < 0g ;

and let � : (x; u) 7! x be the projection into the first coor-
dinate in R. Then, (10) is equivalent to:

�O D R n f0g :

(One can easily include the requirement “kuk � �(jx0j)”
by asking that for each interval [�K;K] 
 R there must
be some compact set CK 
 R2 so that [�K;K] �
�(CK ). For simplicity, we ignore this technicality.) In
these terms, a stabilizing feedback is nothing else than a lo-
cally bounded map k : R ! R such that k(0) D 0 and so
that k is a section of � on R n f0g:

(x; k(x)) 2 O 8x 6D 0 :

For a regular feedback, we ask that k be locally Lipschitz
on R n f0g.

Clearly, there is no reason for Lipschitz, or for that
matter, just continuous, sections of � to exist. As an il-
lustration, take the system

ẋ D x
�
(u � 1)2 � (x � 1)

	 �
(u C 1)2 C (x � 2)

	
:

Let

O1 D
˚

(u C 1)2 < (2 � x)
�

andO2 D f(u�1)2 < (x�1)g

(these are the interiors of two disjoint parabolas). Here,
O has three connected components, namely O2, O1 inter-
sected with x < 0, andO1 intersected with x < 0. It is clear
that, even though �O D R, there is no continuous curve
(graph of u D k(x)) which is always in O and projects
onto Rn f0g. On the other hand, there exist many possible
feedback stabilizers provided that we allow one disconti-
nuity. It is also possible to provide examples, even with
f (x, u) smooth, for which an infinite number of switches
are needed in any possible stabilizing feedback law. Finally,
it may even be possible to stabilize semiglobally with a reg-
ular feedback, meaning that for each compact subset K of
the state-space there is a regular, even smooth, feedback
law u D kK (x) such that all states in K get driven asymp-
totically to the origin, but yet it may be impossible to find
a single u D k(x) which works globally. See [26] for de-
tails.

When feedback laws are required to be continuous at
the origin, new obstructions arise. The case of systems with
n D m D 1 is also a good way to introduce this subject.
The first observation is that stabilization about the origin
(even if just local) means that we must have, near zero:

f (x; k(x))

8
<

:

> 0 if x < 0
< 0 if x > 0
D 0 if x D 0

:
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In fact, all that we need is that f (x1; k(x1)) < 0 for some
x1 > 0 and f (x2; k(x2)) > 0 for some x2 < 0. This guar-
antees, via the intermediate-value theorem that, if k is con-
tinuous, the projection

(�"; ")! R ; x 7! f (x; k(x))

is onto a neighborhood of zero, for each " > 0. It follows,
in particular, that the image of

(�"; ") � (�"; ")! R ; (x; u) 7! f (x; u)

also contains a neighborhood of zero, for any " > 0 (that
is, the map (x; u) 7! f (x; u) is open at zero). This last
property is intrinsic, being stated in terms of the origi-
nal data f (x, u) and not depending upon the feedback k.
Brockett’s condition, to be described next, is a far-reaching
generalization of this argument; in its proof, degree theory
replaces the use of the intermediate value theorem.

Obstructions and Necessary Degree Conditions

If there are “obstacles” in the state-space, or more pre-
cisely if the state-space is a proper subset of Rn , discon-
tinuities in feedback laws cannot in general be avoided,
since the domain of attraction of an asymptotically stable
vector field must be diffeomorphic to Euclidean space. But
even if states evolve in Euclidean spaces, similar obstruc-
tions may arise. These are due not to the topology of the
state space, but to “virtual obstacles” implicit in the form
of the system equations. These obstacles occur when it is
impossible to move instantaneously in certain directions,
even if it is possible to move eventually in every direction,
the phenomenon of “nonholonomy”. As an illustration, let
us consider a model for the “shopping cart” shown in Fig. 1
(“knife-edge” or “unicycle” are other names for this ex-
ample). The state is given by the orientation 	 , together
with the coordinates x1; x2 of the midpoint between the
back wheels. The front wheel is a castor, free to rotate.

Stability and Feedback Stabilization, Figure 1
Shopping cart

There is a non-slipping constraint on movement: the ve-
locity (ẋ1; ẋ2)0 must be parallel to the vector (cos 	; sin 	)0.
This leads to the following equations:

ẋ1 D u1 cos 	
ẋ2 D u1 sin 	

	̇ D u2

where we may view u1 as a “drive” command and u2
as a steering control. (In practice, one would implement
these controls by means of differential forces on the two
back corners of the cart.) The feedback transformation
z1 :D 	 , z2 :D x1 cos 	Cx2 sin 	 , z3 :D x1 sin 	�x2 cos 	 ,
v1 :D u2, and v2 :D u1 � u2z3 brings the system into
the system with equations ż1 D v1, ż2 D v2, ż3 D z2v1
known as “Brockett’s example” or “nonholonomic inte-
grator” (yet another change can bring the third equation
into the form ż3 D z1v2 � z2v1). We view the system as
having state space R3. Although a physically more accu-
rate state space would be the manifold R2 � S1, the neces-
sary condition to be given is of a local nature, so the global
structure is unimportant.

This system is (obviously) completely controllable
(formally, controllability can be checked using the Lie al-
gebra rank condition, as in e. g. [25], Exercise 4.3.16), and
in particular is AC. However, we may expect that discon-
tinuities are unavoidable due to the non-slip constraint,
which does not allow moving from, for example the posi-
tion x1 D 0, 	 D 0, x2 D 1 in a straight line towards the
origin. Indeed, one then has [3]:

Theorem 3 If there is a stabilizing feedback which is regu-
lar and continuous at zero, then the map (x; u) 7! f (x; u)
is open at zero.

The test fails here, since no points of the form (0; ";) be-
long to the image of the map

R5 ! R3 : (x1; x2; 	; u1; u2)0 7! f (x; u)
D (u1 cos 	; u1 sin 	; u2)0

for 	 2 (��/2; �/2), unless " D 0.
More generally, it is impossible to continuously stabi-

lize any system without drift

ẋ D u1 g1(x)C : : :C um gm(x) D G(x)u

if m < n and rank[g1(0); : : : ; gm(0)] D m (this includes
all totally nonholonomic mechanical systems). Indeed, un-
der these conditions, the map (x; u) 7! G(x)u cannot con-
tain a neighborhood of zero in its image, when restricted
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to a small enough neighborhood of zero. Indeed, let us first
rearrange the rows of G:

G(x) Ý
�

G1(x)
G2(x)

�

so that G1(x) is of size m � m and is nonsingular for all
states x that belong to some neighborhood N of the origin.
Then,
�

0
a

�
2 Im

�
N �Rm !Rn : (x; u) 7! G(x)u

	
) aD 0

(since G1(x)u D 0) u D 0) G2(x)u D 0 too).
If the condition rank[g1(0); : : : ; gm(0)] D m is vio-

lated, we cannot conclude a negative result. For instance,
the system ẋ1 D x1u, ẋ2 D x2u has m D 1 < 2 D
n but it can be stabilized by means of the feedback law
u D �(x2

1 C x2
2).

Observe that for linear systems, Brockett’s condition
says that

rank[A; B] D n

which is the Hautus controllability condition (see e. g. [25],
Lemma 3.3.7) at the zero mode.

Idea of the Proof One may prove Brockett’s condition
in several ways. A proof based on degree theory is proba-
bly easiest, and proceeds as follows (for details see for in-
stance [25], Sect 5.9). The basic fact, due to Krasnosel’ski,
is that if the system ẋ D F(x) D f (x; k(x)) has the origin
as an asymptotically stable point and F is regular (since k
is), then the degree (index) of F with respect to zero is
(�1)n , where n is the system dimension. In particular, the
degree is also nonzero with respect to points p in a neigh-
borhood of 0, which means that the equation F(x) D p
can be solved for small p, and hence f (x; u) D p can be
solved as well. The proof that the degree is (�1)n follows
by exhibiting a homotopy, namely

Ft(x0) D
1
t



x
�

t
1� t

; x0

�
� x0

�
;

between F0 D F and F1(x) D �x, and noting that
the degree of the latter is obviously (�1)n . An alternative
proof uses Lyapunov functions. Asymptotic stability im-
plies the existence of a smooth Lyapunov function V for
ẋ D F(x) D f (x; k(x)), so, on the boundary @B of a sub-
level set B D fxjV(x) � cg we have that F points to-
wards the interior of B. Thus, for p small, F(x) � p still
points to the interior, which means that B is invariant
with respect to the perturbed vector field ẋ D F(x) � p.

Provided that a fixed-point theorem applies to continu-
ous maps B ! B, this implies that F(x) � p must van-
ish somewhere in B, that is, the equation F(x) D p can be
solved. (Because, for each small h > 0, the time-h flow �

of F � p has a fixed point xh 2 B, i. e. �(h; xh) D xh ,
so picking a convergent subsequence xh ! x̄ gives that
0 D (�(h; xh) � xh)/(h) ! F(x̄) � p.) A fixed point the-
orem can indeed be applied, because B is a retract of Rn

(use the flow itself); note that this argument gives a weaker
conclusion than the degree condition.

Control-Lyapunov Functions

The method of control-Lyapunov functions (“clf’s”) pro-
vides a powerful tool for studying stabilization prob-
lems, both as a basis of theoretical developments and as
a method for actual feedback design.

Before discussing clf’s, let us quickly review the classi-
cal concept of Lyapunov functions, through a simple ex-
ample. Consider first a damped spring-mass system ÿ C
ẏ C y D 0, or, in state-space form with x1 D y and
x2 D ẏ, ẋ1 D x2, ẋ2 D �x1 � x2. One way to verify global
asymptotic stability of the equilibrium x D 0 is to pick the
(Lyapunov) function V(x1; x2) :D 3

2 x2
1 C x1x2 C x2

2, and
observe that rV(x): f (x) D � jxj2 < 0 if x 6D 0, which
means that

dV(x(t))
dt

D �
ˇ̌
x(t)2 ˇ̌ < 0

along all nonzero solutions, and thus the energy-like func-
tion V decreases along all trajectories, which, since V
is a nondegenerate quadratic form, implies that x(t) de-
creases, and in fact x(t) ! 0. Of course, in this case
one could compute solutions explicitly, or simply note
that the characteristic equation has all roots with negative
real part, but Lyapunov functions are a general technique.
(In fact, the classical converse theorems of Massera and
Kurzweil [17,19] show that, whenever a system is GAS,
there always exists a smooth Lyapunov function V .)

Now let us modify this example to deal with a control
system, and consider a forced (but undamped) harmonic
oscillator ẍ C x D u, i. e. ẋ1 D x2, ẋ2 D �x1 C u. The
damping feedback u D �x2 stabilizes the system, but let
us pretend that we do not know that. If we take the same V
as before, now the derivatives along trajectories are, us-
ing “V̇ (x; u)” to denote rV(x): f (x; u) and omitting ar-
guments t in x(t) and u(t):

V̇(x; u) D �x2
1 C x1x2 C x2

2 � (x1 C 2x2)u :

This expression is affine in u. Thus, if x is a state such that
x1 C 2x2 6D 0, then we may pick a control value u (which
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depends on this current state x) such that V̇ < 0. On the
other hand, if x1 C 2x2 D 0, then the expression reduces
to V̇ D �5x2

2 (for any u), which is negative unless x2 (and
hence also x1 D �2x2) vanishes.

In conclusion, for each x 6D 0 there is some u so
that V̇ (x; u) < 0. This is, except for some technicalities
to be discussed, the characterizing property of control-
Lyapunov functions. For any given compact subset B in
Rn , we now pick some compact subset U0 
 U so that

8x 2 B; x 6D 0 ; 9u 2 U0

such that V̇(x; u) < 0 : (11)

In principle, then, we could then stabilize the system, for
states in B, by using the steepest descent feedback law:

k(x) :D argmin
u2U0

rV(x) � f (x; u) (12)

(“argmin” means “pick any u at which the min is attained”;
we restricted U to be assured that V̇(x; u) attains a min-
imum). Note that the stabilization problem becomes, in
these terms, a set of static nonlinear programming prob-
lems: minimize a function of u, for each x. Global stabiliza-
tion is also possible, by appropriately picking U0 as a func-
tion of the norm of x; later we discuss a precise formula-
tion.

Control–Lyapunov functions, if understood non-tech-
nically as the basic paradigm “look for a function V(x)
with the properties that V(x) � 0 if and only if x � 0,
and so that for each x 6D 0 it is possible to decrease
V(x) by some control action,” constitute a very general ap-
proach to control (sometimes expressed in a dual fashion,
as maximization of some measure of success). They ap-
pear in such disparate areas as A.I. game-playing programs
(position evaluations), energy arguments for dissipative
systems, program termination (Floyd/Dijkstra “variant”),
and learning control (“critics” implemented by neural-
networks). More relevantly to this paper, the idea under-
lies much of modern feedback control design, as illustrated
for instance by the books [7,11,15,16,25].

Differentiable clf’s: Precise Definition A differentiable
control-Lyapunov function (clf) is a differentiable function
V : Rn ! R�0 which is proper, positive definite, and in-
finitesimally decreasing, meaning that there exists a pos-
itive definite continuous function W : Rn ! R�0, and
there is some � 2N , so that

sup
x2Rn

min
juj��(jxj)

rV(x) � f (x; u)CW(x) � 0 : (13)

This is basically the same as condition (11), with U0 D the
ball of radius �(jxj) picked as a function of x. The main

difference is that, instead of saying “rV(x) � f (x; u) < 0
for x 6D 0” we writerV(x) � f (x; u) � �W(x), where W is
negative when x 6D 0. The two definitions are equivalent,
but the “Hamiltonian” version used here is the correct one
for the generalizations to be given, to nonsmooth V .

The basic result is due to Artstein [2]:

Theorem 4 A control-affine system ẋD g0(x)C
P

ui gi (x)
admits a differentiable clf if and only if it admits a regular
stabilizing feedback.

The proof of sufficiency is easy: if there is such a k, then the
converse Lyapunov theorem, applied to the closed-loop
system F(x) D f (x; k(x)), provides a smooth V such that

LF V(x) D rV(x)F(x) < 0 8x 6D 0 :

This gives that for all nonzero x there is some u (bounded
on bounded sets, because k is locally bounded by definition
of feedback) so that V̇(x; u) < 0; and one can put this in
the form (13).

The necessity is more interesting. The original proof
in [2] proceeds by a nonconstructive argument involving
partitions of unity, but it is also possible [24,25] to exhibit
explicitly a feedback, written as a function:

k
�
rV(x) � g0(x); : : : ;rV (x) � gm(x)

�

of the directional derivatives of V along the vector fields
defining the system (universal formulas for stabilization).
Taking for simplicity m D 1, one such formula is:

k(x) :D �
a(x)C

p
a(x)2 C b(x)4

b(x)
(0 if b D 0)

where a(x) :D rV(x) � g0(x) and b(x) :D rV(x) � g1(x).
The expression for k is analytic in a,b when x 6D 0, because
the clf property means that a(x) < 0 whenever b(x) D
0 [24,25].

Thus, the question of existence of regular feedback, for
control-affine systems, reduces to the search for differen-
tiable clf’s, and this gives rise to a vast literature dealing
with the construction of such V ’s, see [7,15,16,25] and ref-
erences therein. Many other theoretical issues are also an-
swered by Artstein’s theorem. For example, via Kurzweil’s
converse theorem one has that the existence of k merely
continuous on Rn nf0g suffices for the existence of smooth
(infinitely differentiable) V , and from here one may in turn
find a k which is smooth on Rn n f0g. In addition, one
may easily characterize the existence of k continuous at
zero as well as regular: this is equivalent to the small con-
trol property: for each " > 0 there is some ı > 0 so that
0 < jxj < ı implies that minjuj�" rV(x) � f (x; u) < 0
(if this property holds, the universal formula automatically
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provides such a k). We should note that Artstein provided
a result valid for general, not necessarily control-affine sys-
tems ẋ D f (x; u); however, the obtained “feedback” has
values in sets of relaxed controls, and is not a feedback law
in the classical sense. Later, we discuss a different general-
ization.

Differentiable clf’s will in general not exist, because of
obstructions to regular feedback stabilization. This leads
us naturally into the twin subjects of discontinuous feed-
backs and non-differentiable clf’s.

Discontinuous Feedback

The previous results and examples show that, in order
to develop a satisfactory general theory of stabilization,
one in which one proves the implication “asymptotic con-
trollability implies feedback stabilizability,” we must al-
low discontinuous feedback laws u D k(x). But then,
a major technical difficulty arises: solutions of the initial-
value problem ẋ D f (x; k(x)), x(0) D x0, interpreted
in the classical sense of differentiable functions or even as
(absolutely) continuous solutions of the integral equation
x(t) D x0 C

R t
0 f (x(s); k(x(s)))ds, do not exist in general.

The only general theorems apply to systems ẋ D F(x)
with continuous F. For example, there is no solution to
ẋ D � sign x, x(0) D 0, where sign x D �1 for x < 0 and
sign x D 1 for x � 0. So one cannot even pose the stabi-
lization problem in a mathematically consistent sense.

There is, of course, an extensive literature addressing
the question of discontinuous feedback laws for control
systems and, more generally, differential equations with
discontinuous right-hand sides. One of the best-known
candidates for the concept of solution of (3) is that of a Fil-
ippov solution [6,9], which is defined as the solution of
a certain differential inclusion with a multivalued right-
hand side which is built from f (x; k(x)). Unfortunately,
there is no hope of obtaining the implication “asymptotic
controllability implies feedback stabilizability” if one in-
terprets solutions of (3) as Filippov solutions. This is a con-
sequence of results in [5,22], which established that the ex-
istence of a discontinuous stabilizing feedback in the Filip-
pov sense implies the Brockett necessary conditions, and,
moreover, for systems affine in controls it also implies the
existence of regular feedback (which we know is in general
impossible).

A different concept of solution originates with the
theory of discontinuous positional control developed by
Krasovskii and Subbotin in the context of differential
games in [14], and it is the basis of the new approach to
discontinuous stabilization proposed in [4], to which we
now turn.

Limits of High-Frequency Sampling

By a sampling schedule or partition � D ftigi�0 of 0;C1
we mean an infinite sequence

0 D t0 < t1 < t2 < : : :

with limi!1 ti D 1. We call

d(�) :D sup
i�0

(tiC1 � ti )

the diameter of � . Suppose that k is a given feedback
law for system (1). For each � , the �-trajectory starting
from x0 of system (3) is defined recursively on the in-
tervals [ti ; tiC1), i D 0; 1; : : :, as follows. On each in-
terval ti ; tiC1), the initial state is measured, the control
value ui D k(x(ti )) is computed, and the constant con-
trol u � ui is applied until time tiC1; the process is then
iterated. That is, we start with x(t0) D x0 and solve recur-
sively

ẋ(t) D f (x(t); k(x(ti ))) ; t 2 ti ; tiC1) ; i D 0; 1; 2; : : :

using as initial value x(ti) the endpoint of the solution on
the preceding interval. The ensuing�-trajectory, which we
denote as x�(�; x0), is defined on some maximal nontrivial
interval; it may fail to exist on the entire interval [0;C1)
due to a blow-up on one of the subintervals ti ; tiC1). We
say that it is well defined if x� (t; x0) is defined on all of
[0;C1).

Definition The feedback k : Rn ! U stabilizes the sys-
tem (1) if there exists a function ˇ 2 KL so that the fol-
lowing property holds: For each

0 < " < K

there exists a ı D ı(";K) > 0 such that, for every sampling
schedule � with d(�) < ı, and for each initial state x0 with
jx0j � K, the corresponding �-trajectory of (3) is well-
defined and satisfies

ˇ̌
x�(t; x0)

ˇ̌
� max fˇ (K; t) ; "g 8t � 0 : (14)

In particular, we have
ˇ̌
x�(t; x0)

ˇ̌
� max

˚
ˇ
�ˇ̌

x0
ˇ̌
; t
�
; "
�
8t � 0 (15)

whenever 0 < " < jx0j and d(�) < ı("; jx0j) (just take
K :D jx0j).

Observe that the role of ı is to specify a lower bound
on intersampling times. Roughly, one is requiring that

tiC1 � ti C 	 (jx(ti )j)

for each i, where 	 is an appropriate positive function.
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Our definition of stabilization is physically meaning-
ful, and is very natural in the context of sampled-data
(computer control) systems. It says in essence that a feed-
back k stabilizes the system if it drives all states asymptot-
ically to the origin and with small overshoot when using
any fast enough sampling schedule. A high enough sam-
pling frequency is generally required when close to the ori-
gin, in order to guarantee small displacements, and also at
infinity, so as to preclude large excursions or even blow-
ups in finite time. This is the reason for making ı depend
on " and K .

This concept of stabilization can be reinterpreted in
various ways. One is as follows. Pick any initial state
x0, and consider any sequence of sampling schedules �`
whose diameters d(�`) converge to zero as ` ! 1 (for
instance, constant sampling rates with ti D i/`, i D
0; 1; 2; : : :). Note that the functions x` :D x�`(�; x0) re-
main in a bounded set, namely the ball of radius ˇ(jx0j ; 0)
(at least for ` large enough, for instance, any ` so that
d(�`)ı(jx0j /2; jx0j)). Because f (x; k(x)) is bounded on
this ball, these functions are equicontinuous, and (Arzela–
Ascoli’s Theorem) we may take a subsequence, which we
denote again as fx`g, so that x` ! x as `!1 (uniformly
on compact time intervals) for some absolutely continu-
ous (even Lipschitz) function x : [0;1) ! Rn . We may
think of any limit function x(�) that arises in this fashion
as a generalized solution of the closed-loop Eq. (3). That
is, generalized solutions are the limits of trajectories aris-
ing from arbitrarily high-frequency sampling when using
the feedback law u D k(x). Generalized solutions, for
a given initial state x0, may not be unique – just as may
happen with continuous but non-Lipschitz feedback – but
there is always existence, and, moreover, for any general-
ized solution, jx(t)j � ˇ(jx0j ; t) for all t � 0. This is pre-
cisely the defining estimate for the GAS property. More-
over, if k happens to be regular, then the unique solution of
ẋ D f (x; k(x)) in the classical sense is also the unique gen-
eralized solution, so we have a reasonable extension of the
concept of solution. (This type of interpretation is some-
what analogous, at least in spirit, to the way in which “re-
laxed” controls are interpreted in optimal trajectory calcu-
lations, namely through high-frequency switching of ap-
proximating regular controls.) The definition of stabiliza-
tion was given in [4] in a slightly different form; see [26]
for a discussion of the equivalence.

Stabilizing Feedbacks Exist

The main result is [4]:

Theorem 5 The system (1) admits a stabilizing feedback if
and only if it is asymptotically controllable.

Necessity is clear. The sufficiency statement is proved by
construction of k, and is based on the following ingredi-
ents:

� Existence of a nonsmooth control-Lyapunov func-
tion V .

� Regularization on shells of V .
� Pointwise minimization of a Hamiltonian for the regu-

larized V .

In order to sketch this construction, we start by quickly
reviewing a basic concept from nonsmooth analysis.

Proximal Subgradients Let V be any continuous func-
tion Rn ! R (or even, just lower semicontinuous and
with extended real values). A proximal subgradient of V at
the point x 2 Rn is any vector � 2 Rn such that, for some
� > 0 and some neighborhood O of x,

V(y) � V(x)C � � (y � x)� �2 ˇ̌y � x2 ˇ̌ 8y 2 O :

In other words, proximal subgradients are the possible
gradients of supporting quadratics at the point x. The set
of all proximal subgradients at x is denoted @pV(x).

Nonsmooth Control–Lyapunov Functions A continu-
ous (but not necessarily differentiable) V : Rn ! R�0
is a control-Lyapunov function (clf) if it is proper, posi-
tive definite, and infinitesimally decreasing in the follow-
ing generalized sense: there exist a positive definite contin-
uous W : Rn ! R�0 and a � 2N so that

sup
x2Rn

max
�2@p V (x)

min
juj��(jxj)

� � f (x; u)CW(x) � 0 : (16)

This is the obvious generalization of the differentiable case
in (13); we are still asking that one should be able to make
rV(x) � f (x; u) < 0 by an appropriate choice of u D ux ,
for each x 6D 0, except that now we replace rV (x) by the
proximal subgradient set @pV (x). An equivalent property
is to ask that V be a viscosity supersolution of the corre-
sponding Hamilton–Jacobi–Bellman equation.

For nonsmooth clf’s, the main basic result is [23,26]:

Theorem 6 The system (1) is asymptotically controllable if
and only if it admits a continuous clf.

The proof is based on first constructing an appropriate W,
and then letting V be the optimal cost (Bellman function)
for the problem min

R1
0 W(x(s))ds. However, some care

has to be taken to insure that V is continuous, and the
cost has to be adjusted in order to deal with possibly un-
bounded minimizers. An important and very useful refine-
ment of this result is the fact that a locally Lipschitz clf can
also be shown to exist [21].
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Regularization Once V is known to exist, the next step
in the construction of a stabilizing feedback is to ob-
tain Lipschitz approximations of V . For this purpose, one
considers the Iosida–Moreau inf-convolution of V with
a quadratic function:

V˛(x) :D inf
y2Rn



V(y)C

1
2˛2 jy � xj2

�

where the number ˛ > 0 is picked constant on appro-
priate regions. One has that V˛(x)% V(x), uniformly on
compacts. Since V˛ is locally Lipschitz, Rademacher’s The-
orem insures that V˛ is differentiable almost everywhere.
The feedback k is then made equal to a pointwise mini-
mizer k˛ of the Hamiltonian, at the points of differentia-
bility (compare with (12) for the case of differentiable V):

k˛(x) :D argmin
u2U0

rV˛(x) � f (x; u) ;

where ˛ and the compact U0 D U0(˛) are chosen con-
stant on certain compacts and this choice is made in be-
tween level curves. The critical fact is that V˛ is itself a clf
for the original system, at least when restricted to the re-
gion where it is needed. More precisely, on each shell of
the form

C D fx 2 Rn jr � jxj � Rg ;

there are positive numbers m and ˛0 and a compact subset
U0 such that, for each 0 < ˛ � ˛0, each x 2 C, and every
� 2 @pV˛(x),

min
u2U0

� � f (x; u)C m � 0 :

See [26]. (Actually, this description is oversimplified, and
the proof is a bit more delicate. One must define, on ap-
propriate compact sets

k(x) :D argmin
u2U0

�˛(x) � f (x; u) ;

where �˛(x) is carefully chosen. At points x of nondif-
ferentiability, �˛(x) is not a proximal subgradient of V˛ ,
since @pV˛(x) may well be empty. One uses, instead, the
fact that �˛(x) happens to be in @pV (x0) for some x0 � x.
See [4] for details.)

Sensitivity to Small Measurement Errors

We have seen that every asymptotically controllable sys-
tem admits a feedback stabilizer k, generally discontinu-
ous, which renders the closed-loop system ẋ D f (x; k(x))
GAS. On the other hand, one of the main motivations for

the use of feedback is in order to deal with uncertainty,
and one possible source of uncertainty are measurement
errors in state estimation. The use of discontinuous feed-
back means that undesirable behavior – chattering – may
arise. In fact, one of the main reasons for the focus on
continuous feedback is precisely in order to avoid such
behaviors. Thus, we turn now to an analysis of the effect
of measurement errors. Suppose first that k is a continu-
ous function of x. Then, if the error e is small, using the
control u0 D k(x C e) instead of u D k(x) results in
behavior which remains close to the intended one, since
k(x C e) � k(x); moreover, if e � x then stability is pre-
served. This property of robustness to small errors when k
is continuous can be rigorously established by means of
a Lyapunov proof, based on the observation that, if V is
a Lyapunov function for the closed-loop system, then con-
tinuity of f (x; k(x C e)) on e means that

rV(x) � f (x; k(x C e)) � rV(x) � f (x; k(x)) < 0 :

Unfortunately, when k is not continuous, this argument
breaks down. However, it can be modified so as to avoid
invoking continuity of k. Assuming that V is continuously
differentiable, one can argue that

rV(x) � f (x; k(xC e))� rV(xC e) � f (x; k(xC e))< 0

(using the Lyapunov property at the point xC e instead of
at x). This observation leads to a theorem, formulated be-
low, which says that a discontinuous feedback stabilizer,
robust with respect to small observation errors, can be
found provided that there is a C1 clf. In general, as there
are no C1, but only continuous, clf’s, one may not be able
to find any feedback law that is robust in this sense.

There are many well-known techniques for avoiding
chattering, and a very common one is the introduction of
deadzones where no action is taken. The feedback con-
structed in [4], with no modifications needed, can always
be used in a manner robust with respect to small obser-
vation errors, using such an approach. Roughly speaking,
the general idea is as follows. Suppose that the true cur-
rent state, let us say at time t D ti , is x, but that the con-
troller uses u D k(x̃), where x̃ D x C e, and e is small.
Call x0 the state that results at the next sampling time,
t D tiC1. By continuity of solutions on initial conditions,
jx0 � x̃0j is also small, where x̃0 is the state that would have
resulted from applying the control u if the true state had
been x̃. By continuity, it follows that V˛(x) � V˛(x̃) and
also V˛(x0) � V˛(x̃0). On the other hand, the construc-
tion in [4] provides that V˛(x̃0) < V˛(x̃) � d(tiC1 � ti ),
where d is some positive constant (this is valid while we are
far from the origin). Hence, if e is sufficiently small com-
pared to the intersample time tiC1�ti , it will necessarily be
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the case that V˛(x0) must also be smaller than V˛(x). This
discussion may be formalized in several ways; see [26] for
a precise statement.

If we insist upon fast sampling, a necessary condition
arises, as was proved in the recent paper [18] (which, in
turn, represented an extension of the work by Hermes [10]
for classical solutions under observation error). We next
discuss the main result from that paper. We consider sys-
tems

ẋ(t) D f (x(t); k(x(t)C e(t))C d(t)) (17)

in which there are observation errors as well as, now, pos-
sible actuator errors d(�). Actuator errors d(�) : [0;1) !
U are Lebesgue measurable and locally essentially
bounded, and observation errors e(�) : [0;1) ! Rn are
locally bounded. We define solutions of (17), for each sam-
pling schedule � , in the usual manner, i. e., solving recur-
sively on the intervals ti ; tiC1), i D 0; 1; : : :, the differen-
tial equation

ẋ(t) D f
�
x(t); k(x(ti )C e(ti ))C d(t)

�
(18)

with x(0) D x0. We write x(t) D x�(t; x0; d; e) for the
solution, and say it is well-defined if it is defined for all t �
0.

Definition The feedback k : Rn ! U stabilizes the sys-
tem (17) if there exists a function ˇ 2 KL so that the
following property holds: For each

0 < " < K

there exist ı D ı(";K) > 0 and � D �(";K) such that,
for every sampling schedule � with d(�) < ı, each initial
state x0 with jx0j � K, and each e; d such that je(t)j � �
for all t � 0 and jd(t)j � � for almost all t � 0, the corre-
sponding �-trajectory of (17) is well-defined and satisfies

ˇ̌
x� (t; x0; d; e)

ˇ̌
� max fˇ (K; t) ; "g 8t � 0 : (19)

In particular, taking K :D jx0j, one has that
ˇ̌
x� (t; x0; d; e)

ˇ̌
� max

˚
ˇ
�ˇ̌

x0
ˇ̌
; t
�
; "
�
8t � 0

whenever 0 < " < jx0j, d(�) < ı("; jx0j), and for all t,
je(t)j � �("; jx0j), and jd(t)j � �("; jx0j).

The main result in [18] is as follows.

Theorem 7 There is a feedback which stabilizes the sys-
tem (17) if and only if there is a C1 clf for the unperturbed
system (1).

It is interesting to note that, as a corollary of Artstein’s
Theorem, for control-affine systems ẋ D g0(x) C

P
ui

gi (x) we may conclude that if there is a discontinuous
feedback stabilizer that is robust with respect to small
noise, then there is also a regular one, and even one that is
smooth on Rn n f0g. For non control-affine systems, how-
ever, there may exist a discontinuous feedback stabilizer
that is robust with respect to small noise, yet there is no
regular feedback.

Briefly, the sufficiency part of Theorem 7 proceeds by
taking a pointwise minimization of the Hamiltonian, for
a givenC1 clf, i. e. k(x) is defined as any u with juj � �(jxj)
which minimizes rV(x) � f (x; u). The necessity part is
based on the following technical fact: if the perturbed sys-
tem can be stabilized, then the differential inclusion

ẋ 2 F(x) :D
\

">0

co f (x; k(x C "B))

(where B denotes the unit ball in Rn ) is strongly asymp-
totically stable. One may then apply converse Lyapunov
theorems for upper semicontinuous compact convex dif-
ferential inclusions to deduce the existence of V .

We now summarize exactly which implications hold,
writing “robust” to mean stabilization of the system sub-
ject to observation and actuator noise:

C1V () 9 robust k
+ +

C0V () 9k () AC :

Future Directions

There are several alternative approaches to feedback sta-
bilization, notably the very appealing approach to discon-
tinuous stabilization throgh patchy feedbacks [1], as well as
other related “hybrid” approaches [20]. It is also extremely
important to understand the effect of “large” disturbances
on the behavior of feedback systems. This study leads one
to the very active area of input to state stability (ISS) and
related notions (output to state stability as a model of de-
tectability, input to output stability for the study of regula-
tion problems, and so forth), see [27].
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