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Abstract: In this note we prove that, for analytic systems 
satisfying the strong accessibility rank condition, generic in- 
puts produce trajectories along which the linearized system is 
controllable. Applications to the steering of systems without 
drift are briefly mentioned. 
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1. Introduct ion and s ta tement  of  result  

T h e  systems cons idered  here  will be  of  the 
type 

i t(t)  = f (  x( t) ,  u( t)) (1)  

( a rguments  ' t '  will be  de le ted  below when  clear  
f rom the context)  where  x(t) ~ ~o~, u(t) ~ U, and: 

• ~-~c_ It~ n is open  and connec ted ,  for  some  
n > ~ l ;  

• ~ / c  R '~ is open  and connec ted ,  for  some 
m > ~ l ;  

• f : ~ × ~ '  ~ R n is real-analytic.  
This  def ines  a t ime- invar iant  control  system (for 
basic sys tem-theore t ic  definit ions,  consult  [11]). 

A control is a measu rab le  essentially b o u n d e d  
m a p  to:[0, T]  ~ ~ ;  it is said to be  smooth (re- 
spectively, analytic) if it is infinitely d i f ferent iable  
(respectively,  real-analyt ic)  as a funct ion of  t 
[0, T]. We  deno te  by Oh(t, x,  to) the  solution of  
(1) at t ime t with initial condi t ion x and control  
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to. This  is def ined for  all small posit ive t < ~'(x, to); 
when  we write ~b(., x, to), we m e a n  the solution 
as def ined  on the largest  interval [0, ~-) of  exis- 
tence.  

Recall  that  the system (1) is said to be  strongly 
accessible if for  each  x ~ ~ the re  is some T > 0 
so that  

int ~ r ( x )  --/: ¢, 

where  as usual  JFr(x) denotes  the reachable  set  
f rom x in t ime exactly T. Equivalently,  the sys- 
t em must  satisfy the strong accessibility rank con- 
dition: dim Sa0(x) = n for  all x,  where  2 o is the 
ideal gene ra t ed  by all the vector  fields of  the type 

{ f ( ' ,  u)  - f ( ' ,  v ) ,  u,  v ~ ~'} 

in the  Lie a lgebra  ~ gene ra t ed  by all the vector  
fields of  the  type { f ( . ,  u), u ~ ~'}; see [14]. For  
systems affine in controls,  

r n  

= f ( x )  + ~]  uigi(x) ,  (2)  
i=1 

the a lgebra  -~0 is the Lie a lgebra  gene ra t ed  by 
all vec tor  fields 

a d ~ ( g i ) ,  k>~0 ,  i = 1  . . . . .  m.  

Given  a s tate  x, a control  to def ined on [0, T], 
and a posit ive T o ~< T so tha t  ~( t )  = ~b(t, x,  to) is 
def ined  for  all t ~ [0, To], we may  consider  the 
linearization along the trajectory ( ~, to): 

~(t)  = A ( t ) z ( t )  + B ( t ) u ( t )  (3) 

where  

0f 
A ( t )  := -~-x (~ : ( t ) ,  t o ( t ) )  

and 

B( t )  := ~-~(~:( t ) ,  t o ( t ) )  

for  each  t. A control  to will be  said to be  nonsin- 
gular for x if the l inear  t ime-varying system (3) is 
control lable  on the interval [0, To], for  some T O > 
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0. When u is analytic, this property is indepen- 
dent of the particular T O chosen, and it is equiva- 
lent to a Kalman-like rank condition (see e.g. 
[11], Corollary 3.5.17). Nonsingularity is equiva- 
lent to the Fr6chet derivative of ~b(T 0, x, • ) be- 
ing full rank at to. 

If to is nonsingular for x ~ A~', and T O is as 
above, then ~'r,,(x) has a nonempty interior. 
This is a trivial consequence of the Implicit Func- 
tion Theorem (see for instance [11], Theorem 6). 
Thus, if for each state x there is some control 
which is nonsingular for x, then (1) is strongly 
accessible. The converse of this fact is also true, 
that is, if a system is strongly accessible then for 
each state x there is some control which is non- 
singular for x. This converse fact was proved in 
[10] (the result in that reference is stated under a 
controllability assumption, which is not needed in 
the proof  of this particular fact; in any case, we 
review below the proof). The main purpose of 
this note is to point out that to can be chosen 
independently of the particular x, and moreover, 
that in a certain sense a ' r andom'  to has this 
property. We now give a precise statement of 
these facts. 

A control to :[0, T]---> ~/ will be said to be a 
universal nonsingular control for the system (1) if 
it is nonsingular for every x ~ ~ .  

Theorem 1. I f  (1) /s  strongly accessible, there is an 
analytic universal nonsingular control. 

Let ~=([0, T], ~ ' )  denote the set of smooth 
controls to :[0, T] ~ ~', endowed with the ~ o  
topology (uniform convergence of all derivatives). 
A generic subset of ~'=([0, T], ~ ')  is one that 
contains a countable intersection of open dense 
sets. 

Theorem 2. I f  (1) /s  strongly accessible, the set of  
smooth universal nonsingular controls is generic in 
~=([0, T], ~'), for any fixed T > O. 

The proof  will be heavily based on the paper  
[13]. This in turn generalized a weaker result in 
[7], which would have given only Theorem 1 for 
compact ~'~; see also this special case in [15], 
Lemma 4.10. 

In the last section we make some remarks 
about applications to the control of systems with- 
out drift. 

2. Proof of  result 

We first recall the fact, mentioned above, that 
for each x there is a control nonsingular for x. 
This can be proved as follows. Pick x, and as- 
sume that the system (1) is strongly accessible. 
Let y be in the interior of ~T(X) ,  for some 
T > 0. It follows from [8], Lemma 2.2 and Propo- 
sition 2.3, that there exists some real number  
6 > 0 and some positive integer k so that y is in 
the interior of the image of 

tz(u I . . . . .  uk) ~ exp(6f,~) • - • e x p ( 6 f , ~ ) ( x ) ,  

where we are using the notation 

e x p ( a f , ) ( z )  =4~(& z, to) 

for the control to = u  on [0,8]. This map F is 
smooth, so by Sard's Theorem it must have full- 
rank Jacobian at some point (u ° . . . . .  u°). This 
implies that the piecewise-constant control to, 
defined on [0, k6] and equal to the values u/° on 
consecutive intervals of length 6, is nonsingular 
for the given state x, as desired. 

What we need next is basically a restatement 
of the main results in [13]: 

Proposition 2.1. Consider the system (1) and as- 
sume that h : ~ ~ is a real-analytic function. 
Let G be the set of  states x for which there is for 
some control to = to(x) so that h(~b(-, x, to))/s not 
identically zero. The, there exists an analytic con- 
trol to* - independent of  x - so that, for every 
x ~ G ,  h(~b(., x, to*)) is not identically zero; 
moreover, for each T > O, the set of  smooth such 
controls is generic in ~'~([0, T], ~ ) .  

Proof. We consider the extended system (with 
state space A ~ × ~): 

Yc = f ( x ,  u) ,  

2 = 0 ,  

y =zh(x), 

which is an analytic system with outputs. Con- 
sider two states of the form (x, 0) and (x, 1), with 
x ~ ~ .  A control to distinguishes these states if 
and only if h(~b(., x, to)) is not identically zero. 

Let to* be a control for the extended system 
which is universal with respect to observability. 
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There are analytic such controls, and the desired 
genericity holds, by Theorems 2.1 and 2.2 in [13]. 
Now pick any x in the set G. Then (x, 0) and 
(x, 1) are distinguishable, and hence to* distin- 
guishes among them. This means h(4,( ' ,  x, to*)) 
is not identically zero, as desired. [] 

We now prove Theorems 1 and 2. Let (1) be 
given, and take the following new system: 

=f(x,  u), 

Q. =AQ + QA + BB', 

with output h(x, Q) = det Q, where 

a =A(x, u) = ~ ( x ,  u) 

and 

B = B ( x ,  u) = ~u(X, u). 

This is seen as a system with state space ~ x 
R n×n. For an initial state of the form z = (x, 0), 
and a control to, the solution q~ of the larger 
system at time t, if defined, is so that 

h( ~b( t, ( x, O), to) ) 

= det(f0 'q)( t ,  s ) B ( s ) B ' ( s ) ~ ( t ,  s)' ds)  

(where q~ denotes the fundamental solution of 
ic =A(x,  u)x), so to is nonsingular for x precisely 
when h(~( t ,  (x, 0), to)) is not identically zero. 

By the remarks at the begining of this section, 
strong accessibility guarantees that every state of 
the form (x, 0) is in the set G defined in Proposi- 
tion 2.1 (for the enlarged system); thus our Theo- 
rems follow from the Proposition. [] 

Remark 2.2. Even though the results are stated 
merely in terms of genericity, rather than proba- 
bilistically, the theorems in [13], and hence also 
Theorem 2, hold in a stronger sense. The univer- 
sal controls include those whose jets at t = 0 do 
not lie in a countable union of analytic subsets; 
see the proofs in [13] for details. 

Remark 2.3. More generally, all results will re- 
main true if ~" is a real-analytic - second count- 
able, connected - manifold and f : 2" × ~ ~ T ~  

is real-analytic and satisfies f (x ,  u) ~ T,2" for all 
(x, u), but this requires care in defining lineariza- 
tions in a coordinate-free fashion. Also, provided 
enough transversality is assumed (e.g. use of an 
analogue of the observability rank condition in 
the proof of the result in [13]), one may be able to 
generalize the proof to the smooth case. 

3. Systems with no drift 

Consider now the case of analytic systems of 
the type (2) without drift, that is, with f = 0. For 
these, Chow's theorem guarantees that the strong 
accessibility property is equivalent to complete 
controllability. Such systems have been the focus 
of much activity lately; see e.g. [4,5]. It is in 
general of interest to give algorithms for steering 
a given state s ~ into another given state, which 
without loss of generality can be taken to be the 
zero state. The paper [12] explains how to use the 
result given here for that purpose; next we sketch 
the main ideas. 

The basic principle is to use an iterative tech- 
nique, either steepest descent or Newton, for 
finding controls that steer s c closer and closer to 
the origin. For this, one starts by obtaining a 
'nonsingular loop': Generate  a generic control to 
on some small interval [0, T], and let ¢ be the 
solution obtained by using the control v on [0, 2T] 
that equals to followed by its antisymmetric ex- 
tension 

t o ( 2 T - t ) =  - t o ( t ) ,  t ~ [ T ,  2T] .  

Thus, unless the solution ceases to be defined, it 
follows that sC(2T)=x. Furthermore generically 
the linearization along this trajectory is nonsingu- 
lar. Thus a linear least-squares (pseudo-inverse) 
method can be used to obtain a perturbation v' 
on [0, 2T] so that the state that results when 
using v'  instead of v is closer to zero than x was 
(basically Newton's method); alternatively, the 
adjoint of the differential of ~b can be used in- 
stead of the pseudo-inverse (gradient descent). In 
either, case, the perturbation is easily computed 
numerically, solving a differential equation. This 
procedure can now be iterated in the same fash- 
ion, starting from the new state that had been 
reached. If one uses always the same control v, 
there is guaranteed convergence in finite time to 
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any arbitrary neighborhood of  the origin, for small 
enough stepsize (see [12]). One may also combine 
this approach with line searches, or even conju- 
gate gradient algorithms. Of course, such tech- 
niques are always used in nonlinear control; see 
for instance [1,3]. What appears to be new is the 
observation that for analytic systems without drift, 
generic loops indeed provide nonsingularity. This 
is all also related to the material in [9], which 
relied on pole-shifting along nonsingular trajecto- 
ries. The paper [12] presents details on the use of  
this method. 

Finally, we mention also a connection with the 
recent work on time-varying feedback laws for 
systems without drift (see especially [2] and [6]). 
In [2], Coron proves for smooth systems with no 
drift that there is a smooth feedback law u = 
k(t, x), peridic on t and with k(t, 0 ) =  0, such 
that, for each initial state x and each t, the 
control that results by applying the feedback law, 
over a period, is nonsingular. The basic step is to 
prove that there is a smooth choice of  controls 
u(x) so that each u is of  fixed length T and 
nonsingular for x. We can rederive this result - 
at least in the analytic case - using Theorem 1, as 
follows. Let o2 be any smooth universal nonsingu- 
lar control, which for convenience we take to be 
defined on some interval of  the form [T, 2T]. 
Patching smoothly, we may extend w to the inter- 
val [0, 5T] in such a manner that it satisfies the 
antisymmetry condition o ~ ( 5 T - t ) = - o ~ ( t )  and 
also oJ(0)= 0. Furthermore, by openness  of  the 
domain of  definition of  solutions, there is a scalar 
smooth real function p : R + ~  I~+ such that the 
control v (x )=  p( II x II 2)o~(')  is so that the solu- 
tion da(t, x, v(x)) is defined on all of  [0, 5T], and 
one can also make p vanish at zero. The control 
v(x) is as needed in the constructions in [2]; note 
that it is universal because its restriction to 
[T, 2T] is. Our results and constructions are 
closely related to those obtained by Coron, and in 
a sense connect his work more classical results in 
systems theory. 
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The last paragraph of this paper consists of a 
remark sketching how to derive, in an alternative 
way, one of the main steps in the proof of a 
recent theorem by Coron. There is a minor but 
annoying mistake in this paragraph. (The main 
results of the paper are not affected in any way.) 

In the remark in question, one starts with a 
smooth universal control to and then obtains a 
family of controls v(x), parameterized by the 
initial state x; this family is as needed in Coron's 
proof. Unfortunately, the construction of v (x )  
from to was stated wrong (we thank Leonid 
Gurvits for pointing this out). Indeed, the for- 
mula used there, namely v (x )  = p( It x It 2)to(.), is 
not assured of preserving nonsingularity, contrary 

to what is said in the paper; it is obvious that the 
time should have been rescaled as well. Thus, the 
correct formula is: 

= p(li x it 2)to(p(ii x il 2)(.)).  

Unfortunately, this complicates matters a bit, as 
now the control is defined on a varying interval 
[0, T / p (  IL x LL 2)], and it may result in explosions 
even if p(.)  is small. However, assuming that the 
control was not just smooth but analytic - the 
result insures existence of analytic universal non- 
singular controls - one can observe that univer- 
sality still holds for the restriction of u(x)  to any 
nontrivial subinterval [0, e], and for E = e(x )  there 
will be no explosions, for a suitable choice of 
smooth e(x). The rest of the remark follows the 
same outline as in the paper. At one point one 
needs to patch so as to make derivatives vanish at 
all orders, and for this one needs to observe that 
nonsingularity is preserved when the control is 
modified only on a small enough interval. 
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