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Network reconstruction 
based on steady-state data
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Abstract

This paper discusses a theoretical method for the “reverse engineering” of 
networks based solely on steady-state (and quasi-steady-state) data.

Introduction

A central concern of systems biology is that of elucidating the mechanisms 
and overall architecture underlying the observed behaviour of biomolecular 
networks. In this context, the “reverse engineering problem” concerns itself 
with the unravelling of the web of interactions among the components of 
protein and gene regulatory networks, so as to map out the direct or local 
interactions among components. These direct interactions capture the topology 
of the functional network.

An intrinsic diffi culty in capturing these direct interactions, at least in intact 
cells, is that any perturbation to a particular gene or signalling component 
-using tools such as traditional genetic experiments, RNAi (RNA interference), 
hormones, growth factors, or pharmacological interventions- may rapidly 
propagate throughout the network, thus causing global changes which cannot 
be easily distinguished from direct effects. Thus, a major goal in reverse engi-
neering is to use these observed global responses -such as steady-state changes 
in concentrations of active proteins, mRNA levels, or transcription rates- in 
order to infer the local interactions between individual nodes.
1sontag@math.rutgers.edu
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One approach to solving this global-to-local problem is the “unravelling,” 
or “Modular Response Analysis” (MRA) method proposed in [1] (see also [2]) 
and further elaborated upon in [3–6] (see [7,8] for reviews). The MRA experi-
mental design compares the steady states which result after performing inde-
pendent perturbations with each “modular component” of a network. These 
perturbations might be genetic or biochemical. For example, in eukaryotes 
they might be achieved through the down-regulation of mRNA, and therefore 
protein, levels by means of RNAi, as done in [9]. That work employed MRA 
in order to quantify positive and negative feedback effects in the Raf/MEK 
(MAPK/ERK kinase)/ERK (extracellular-signal-regulated kinase) MAPK 
(mitogen-activated protein kinase) network in rat adrenal pheochromocytoma 
(PC-12) cells; using the algorithms from [3] and [4], the authors of [9] uncov-
ered connectivity differences depending on whether the cells are stimulated 
with epidermal growth factor (EGF) or instead with neuronal growth factor 
(NGF).

This paper presents a mathematical synopsis of the MRA method.

Problem formulation

We assume that there are n quantities xi(t) that can be in principle measured, 
such as the levels of activity of selected proteins, or the transcription rates 
of certain genes. Later, we discuss how to weaken this assumption, so as 
to be able to include systems for which some variables are hidden from 
measurement. These quantities are thought of as state variables in a dynamical 
system, and are collected into a time-dependent vector x(t) = (x1(t),…, xn(t)). 
The dynamical system is described by a system of differential equations:
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or, in more convenient vector form,

 �x f x p= ( , )

(dot indicates time derivative, and arguments t are omitted when clear). 
We will assume that m ≥ n. The pi’s are parameters, collected into a vector 
p = ( p1,…, pm). These parameters can be manipulated, but, once changed, 
they remain constant for the duration of the experiment. An example would 
be that in which the variables xi correspond to the levels of protein products 
corresponding to n genes in a network, and the parameters refl ect translation 
rates, controlled by RNAi. Another example would be that in which the 
parameters represent total levels of proteins, whose half-lives are long 
compared with the time scale of the processes (such as phosphorylation 
modifications of these proteins in a signalling pathway) described by the 
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variables xi. Yet another example would be one in which the parameters 
represent concentrations of enzymes that control the reactions, and whose 
turnover is slow.

The ultimate goal is to obtain, for each pair of variables xi and xj, the 
relative signs and magnitudes of the partial derivatives

∂
∂

f

x
i

j

which quantify the direct effects of each variable xj upon each variable xi. These 
partial derivatives are the entries of the Jacobian matrix with respect to x of f 
(which is assumed to be continuous differentiable). See Figure 1.

The entries of ∂fi/∂xj of the Jacobian F are functions of x and p. The 
steady-state version of MRA attempts to estimate this Jacobian when x = x− is 
an “unperturbed” steady state attained when the vector of parameters has an 
“unperturbed” value p = p.−. The steady-state condition means that f(x −, p.−) = 0. 
Ideally, one would want to fi nd the matrix F, since this matrix completely 
describes the infl uence of each variable xj upon the rate of change of each 
other variable xi. Unfortunately, such an objective is impossible to achieve 
from only steady-state data, because, for any parameter vector p and associ-
ated steady-state x, f(x, p) = 0 implies that Λ f(x, p) = 0, for any diagonal matrix 
Λ = diag (λ1, . . . , λn). In other words, the best that one could hope for is for 
steady-state data to uniquely determine each of the rows

F F F i ni i in= =( ,... , ), ,... ,1 1

Figure 1. Network interaction graph
Shown in bold are the edges ending at node i, which correspond to the nonzero elements Fij of 
the ith row of the Jacobian. The numerical value of Fij refl ects the interaction strength, quantify-
ing how the rate of change of activity of node i depends on the activity of node j.

i j
Fij

0045-0012 Sontag.indd   1630045-0012 Sontag.indd   163 8/26/08   5:06:54 AM8/26/08   5:06:54 AM



© The Authors Journal compilation © 2008 Biochemical Society

164 Essays in Biochemistry volume 45 2008

of F only up to a scalar multiple. For example, if we impose the realistic 
condition that Fii ≠ 0 for every i (these diagonal Jacobian terms typically 
represent degradation and/or dilution effects, and are in fact negative), one 
could hope to have enough data to estimate the ratios aij/aii for each i ≠ j. Note 
that Fi is the same as the gradient ∇fi of the ith coordinate fi of f, evaluated at 
steady states.

The critical assumption for MRA, and indeed the main point of [1,3,10], is 
that, while one may not know the detailed form of the vector fi eld f, often one 
does know which parameters pj directly affect which variables xi. For exam-
ple, xi may be the level of activity of a particular protein, and pi might be the 
total amount (active plus inactive) of that particular protein; in that case, we 
know that pi only directly affects xi, and only indirectly affects the remaining 
variables.

The steady-state MRA experimental design consists of the following steps:
1.  measure a steady state x − corresponding to the unperturbed vector of 

parameters p.−;
2.  separately perform a perturbation to each entry of p.−, and measure a new 

steady state.
The “perturbations” are assumed to be small, in the sense that the theoretical 
analysis will be based on the computation of derivatives. Under mild technical 
conditions, this means that a perturbed steady state can be found near x−. 
Note that there are m + 1 experiments, and n numbers (coordinates of the 
corresponding steady state) are measured in each. In practice, of course, this 
protocol is repeated several times, so as to average out noise and obtain error 
estimates, as we discuss later. For our theoretical analysis, however, we assume 
ideal, noise-free measurements, and so we may assume that each perturbation 
is done only once.

Using these data (and assuming that a certain independence condition, 
which we review later, is satisfi ed), it is possible to calculate, at least in the ideal 
noise-free case, the Jacobian of f, evaluated at ( x−, p −), except for the unavoidable 
scalar multiplicative factor uncertainty on each row.

The obtained results typically look as shown in Figure 2, which is repro-
duced with permission from [9]. The authors of that paper used MRA in order 
to infer positive and negative feedback effects in the Raf/MEK/ERK MAPK 
network in PC-12 cells, employing perturbations in which total mRNA, and 
thus protein, levels are down-regulated by means of RNAi. The numbers in 
the arrows in Figure 2 have been normalized to −1’s in the diagonal of the 
Jacobian. An example of the raw data for the algorithm is provided by Figure 3, 
which shows the level of active (doubly phosphorylated) ERK1/2 when 
PC-12 cells have been stimulated by EGF and NGF. (The Figure shows only 
responses in the unperturbed case. Similar plots, not shown, can be derived 
from the data for the perturbation experiments given in [9].) The response to 
NGF stimulation allows the application of the steady-state MRA method, and 
leads to the results shown in the right-most panel in Figure 2.
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However, the plots in Figure 3 indicate that, in certain problems, 
steady-state data cannot be expected to provide enough information, even for 
only fi nding the Jacobian rows up to multiplicative factors. Such a situation 
occurs when the system adapts to perturbations. In Figure 3, notice that the 
steady-state response to EGF stimulation is (near) zero (this holds for perturbed 
parameters as well, not shown). Thus, measuring steady-state level of activity 
of ERK1/2 after parameter perturbations, in the EGF-stimulated cells, will not 
provide non-trivial information. One needs more than steady-state data. A vari-
ant of MRA, which allows for the use of general non-steady-state, time-series 
data was developed in [3]. However, that method requires one to compute 

Figure 3. Active form of ERK1/2, in MRA experiments from [9]
Data shown only for unperturbed case. Adapted from Santos, S.D.M, Verveer, P.J & Bastiaens, 
P.I.H. (2007) Growth factor induced MAPK network topology shapes Erk response determining 
PC-12 cell fate. Nat. Cell Biol. 9, 324–330, with permission © 2007 Macmillan Publishers Ltd.
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Figure 2. Three reconstructed local interaction maps, in MRA experiments from [9]
Topologies derived from data obtained after stimulation by EGF (left-hand panel, 5 min) or NGF 
(middle panel, 5 min, and right-hand panel, 15 min). Adapted from Santos, S.D.M, Verveer, P.J & 
Bastiaens, P.I.H. (2007) Growth factor induced MAPK network topology shapes Erk response 
determining PC-12 cell fate. Nat. Cell Biol. 9, 324–330, with permission © 2007 Macmillan 
Publishers Ltd.
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second-order time derivatives, and hence is especially hard to apply when time 
measurements are spaced far apart and/or are noisy. In addition, as shown for 
5 min and 15 min NGF stimulation by the middle and right-most panels in 
Figure 2, the relative strengths of functional interactions may change over time, 
so that a time-varying Jacobian may not be very informative from a biological 
standpoint. An appealing intermediate possibility is to use quasi-steady-state 
data, meaning that one employs data collected at times when a variable has 
been observed to attain a local maximum (peak of activity) or a local minimum. 
Indeed, this is the approach taken in [9], which, for EGF stimulation, measured 
network responses at the time of peak ERK activity (approximately 5 min), 
and not at steady state. The left-most and middle panels in Figure 2 represent, 
respectively, the networks reconstructed in [9] when using quasi-steady-state 
data (at approximately 5 min) for EGF and NGF stimulation.

We next describe both the steady-state and quasi-steady-state reconstruc-
tion problems.

Mathematical details

We assume given a parameter vector p− and state x− such that f( x−, p −) = 0 
and so that the following generic condition holds for the Jacobian of 
f F x p x p

f

x
: ( , ) ( , ) .= ≠∂

∂ 0  Therefore, we may apply the implicit function 
theorem and conclude the existence of a mapping φ, defined on a 
neighbourhood of p−, with the property that, for each row i,

 fi (φ(p), p) = 0 for all p ≈ p−  (1)

and φ ( p −) = x− (and, in fact, x = φ( p) is the unique state x near x− such that 
f (x, p) = 0).

We next discuss how one reconstructs the gradient ∇fi( x
−, p −) , up to a 

constant multiple. (The index i is fi xed from now on, and the procedure must 
be repeated for each row fi.) We do this under the assumption that it is pos-
sible to apply n−1 independent parameter perturbations. Mathematically, the 
assumption is that there are n−1 indices j1, j2,…, jn−1 with the following two 
properties:

(a)  fi does not depend directly on any pj: ∂fi/∂pj ≡ 0, for j ∈ { j1, j2,…, jn–1}, 
and

(b) the vectors vj = (∂φ/∂pj)( p
−), for these j’s, are linearly independent.

Assumption (a) is structural, and is key to the method and non-trivial, but 
assumption (b) is a weaker genericity assumption. We then have, taking total 
derivatives in (eqn 1):

∇fi ( x
−, p −) vj = 0, j ∈ { j1, j2,…, jn–1}.

Thus, the vector ∇ fi ( x
−, p −) which we wish to estimate, and which we will 

denote simply as Fi, is known to be orthogonal to the n−1 dimensional 
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subspace spanned by {v1,…, vn–1}. Therefore, it is uniquely determined, up to 
multiplication by a positive scalar. The row vector Fi satisfi es

    Fi Σ = 0  (2)

where Σ is defined as the n × (n−1) matrix whose columns are the vi’s. 
Generically, we assume that there is no degeneracy, and the rank of Σ is n−1. 
Thus, Fi can be computed by using Gaussian elimination, as any vector which 
is orthogonal to the span of the columns of Σ. Another way to phrase this is to 
say that Fi is in the (one-dimensional) left nullspace of the matrix Σ, or that (if 
nonzero) the transpose of this gradient can be found as an (any) eigenvector 
associated to the zero eigenvalue of the transpose of Σ.

Handling noise

We next briefl y discuss how to modify the algorithm to account for repeated 
but noisy measurements. In principle, such noise may be due to combinations 
of internal sources, such as stochasticity in gene expression, external sources 
affecting the process being studied, or measurement errors. Our discussion 
is tailored to measurement noise, although in an approximate way may apply 
to internal noise; however, the effect of internal noise on MRA has not been 
studied in any detail.

In practice, one would estimate not merely the results of just n−1 pertur-
bation experiments, but many repetitions, collecting the data into a matrix Σ# 
whose columns are derived from the different experiments. We will think of 
each column of Σ# as having the form v + e, where v is a vector (∂φ/∂pj)( p

−), 
for some parameter pj for which fi does not depend directly on pj, and where e 
is an “error” vector. In matrix notation, Σ# = Σ + E, where E denotes an error 
matrix. Note that eqn (2) implies that Σ has rank n−1. On the other hand, 
because of noise in measurements, Σ# will have full rank n, which means that 
there is no possible nonzero solution Fi to eqn (2) with the data matrix Σ# 
used in place of the (unknown) Σ. So, we proceed as follows. Assuming that 
the signal to noise ratio is not too large, the experimental matrix Σ# should be 
close to the ideal (noise-free) matrix, Σ. The best least-squares estimate of Σ, in 
the sense of minimization of the norm of E, is obtained (Eckart-Young Matrix 
Approximation Theorem [11]) by a singular value decomposition (SVD) of 
Σ#, as follows. An SVD of Σ# is a factorization Σ# = UMVT, where U and V are 
(square) orthogonal matrices and M is a matrix (of the same size as Σ#) with 
non-negative numbers on the diagonal and zeros off the diagonal. The diagonal 
elements σ1 ≥ σ2 ≥ . . . ≥ σn of M are the singular values of Σ#, and we have that 
σ1, . . ., σn–1 are all nonzero, and σn = 0, in the ideal case, but in general σn will 
be nonzero and represents the magnitude of the noise. The columns of U and 
of V are, respectively, the left and right singular vectors of Σ#. Then (see details 
in e.g. [12], Appendix A, or in [13,14]), the matrix Σ of rank n–1 for which ⎪⎪E⎪⎪ 
is minimized is Σ = UMn−1V

T, where Mn–1 is the matrix obtained from M by 
setting the smallest singular value σn to zero.
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We now replace eqn (2) by FiΣ
# = 0, which, because V is nonsingular, is 

the same as Fi U Mn−1 = 0. Under the generic assumption that σ1, . . . , σn–1 are 
nonzero, this means that FU ei n

T= α , where α is a scalar and en
T = ( , ,... , , )0 0 0 1 . 

We then conclude that, up to a constant multiple, F Uei
T

n=  is the right 
singular vector corresponding to the smallest singular value σn.

This procedure can also be interpreted as follows (see [4] for details). If 
we normalize Fi to have its ith entry as “−1” (in other words, we normalize the 
diagonal of the Jacobian to −1’s), then the equation FiΣ

# = 0 can also be writ-
ten as “Az = b” where z represents the unknown n−1 remaining entries of Fi, b 
is the ith column of Σ#, and A is the matrix in which this column has been 
removed from Σ#. The estimation method outlined above is the “total least 
squares” or “errors in variables” procedure [13,14]. Statistically, the method is 
justifi ed if the elements of the noise matrix E are independent and identically 
distributed normal (Gaussian) random variables. If these entries are normal 
and independent but have different variances, then one must modify the above 
procedure to add an appropriate weighting, but in the general non-Gaussian 
case nonlinear SVD techniques are required; see for instance [15–17].

Modular approach

Modularity is an important feature of biochemical networks [18,19]. As its 
name implies, one of the main advantages of the steady-state MRA method 
is that only “communicating intermediates” in-between “modules” need to 
be measured. When applying MRA in a modular fashion, only perturbation 
data on communicating intermediaries are collected, The connectivity strength 
among a pair of intermediates (such as activated levels of MAPK cascade 
proteins) can be derived, even if this apparent connectivity it is not due 
to a direct biochemical interaction. An obvious advantage of the modular 
approach is that it can be applied regardless the degree of complexity of the 
network analysed, as “hidden” variables (such as non-activated forms of a 
MAPK protein, for example) only affect connectivity in an indirect fashion. 
Thus, functional interactions among communicating variables can be deduced 
without requiring detailed knowledge of all the components involved.

Let us suppose that the entire network consists of an interconnection of 
n subsystems or “modules”, each of which is described by a set of differential 
equations such as:

 

�

�
x g x x p p j nj j j n m

j

= =( , , ... , , , ... , ), , ... ,y

y
1 1 1

== =G x x p p j nj j n m( , , ... , , , ... , ), , ... ,y 1 1 1
 

(3)

where the variables xj represent “communicating” or “connecting” 
intermediaries of module j that transmit information to other modules, 
whereas the vector variables yj represent chemical species that interact within 
module j. Each vector yj has dimension � j . The integers � j j n, ,... ,=1  are in 
general different for each of the n modules, and they represent one less than 
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the number of chemical species in the jth module respectively. Observe that, 
for each j, the rate of change of the communicating variable depends only on 
the remaining communicating variables xi, i ≠ j, and on the variables yj it its 
own block, but does not directly depend on the internal variables of other 
blocks. In that sense, we think of the variables yj as “hidden” (except from the 
communicating variable in the same block).

We will assume, for each fixed module, that the Jacobian of Gj with 
respect to the vector variable yj, evaluated at the steady state corresponding to 
p− (assumed to exist, as before) is nonsingular. The Implicit Mapping Theorem 
then implies that one may, in a neighbourhood of this steady state, solve

 Gj(yj , x1 , . . . . , xn , p1, . . . , pm) = 0

for the vector variable yj, as a function of x1, . . . , xn, p1, . . . , pm, the solution 
being given locally by a function

 yj = Mj(x 1, . . . . , xn, p1, . . . . , pm).

Then, those steady states obtained by small perturbations of p− are precisely the 
same as the steady states of the new system

 x
.
j = hj(x1, . . . . , xn, p1, . . . . , pm), j = 1, . . . . n

where we defi ned hj(x 1, . . . . , xn, p1, . . . . , pm) as:

 gj(Mj(x 1, . . . . , xn, p1, . . . . , pm), x1, . . . . , xn, p1, . . . . , pm)

From here, the analysis then proceeds as before, using the hj’s instead of the 
fj’s. A generalization to the case of more than one communicating intermediate 
in a module, namely a vector (xj,1, . . . . , xj, kj ), is easy.

Using quasi-steady-state data

Recalling the discussion in the Introduction regarding the need for a method 
based on quasi-steady-state data, we next consider the following scenario. For 
any fi xed variable, let us say the ith component xi of x, we consider some time 
instant ti  at which x.i (t) is zero. Under the same independence hypothesis as 
in the steady-state case, plus the non-degeneracy assumption that the second 
time derivative x..t ( t 

−
i
 ) is not zero (so that we have a true local minimum or local 

maximum, but not an infl ection point), we show here that the MRA approach 
applies in exactly the same manner as in the steady-state case. Specifi cally, 
the ith row of the Jacobian of f, evaluated at the vector ( x−, p −), is recovered up 
to a constant multiple, where xx− = x(t−i) is the full state x at time  t −i

 . The main 
difference with the steady-state case is that different rows of f are estimated 
at different pairs ( x−, p −), since the considered times t−i at which each individual 
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x
.
i (t) vanishes are in general different for different indices i, and so the state x− is 

different for different i’s.
We fi x an index i ∈ {1, . . . . , n}, and an initial condition x(0), and assume that 

the solution x(t) with this initial condition and a given parameter vector p− has 
the property that, for some time t−  = t−i , we have that both x.i (t) = 0 and  x

..
i (t) ≠ 0. 

At the instant t   = t−i , xi achieves a local minimum or a local maximum as a function 
of t. We describe the reconstruction of the ith row of the Jacobian of f, which 
that is, the gradient ∇ fi, where fi is the ith coordinate of f, evaluated at x = x− 
and p = p −, where x− = (t− ).

To emphasize the dependence of the solution on the parameters [the initial 
condition x(0) will remain fi xed], we will denote the solution of the differential 
equation x. = 

f ( x−, p −) by x(t, p). The function x(t, p) is jointly continuously dif-
ferentiable in x and p, if the vector fi eld f is continuously differentiable (see e.g. 
[12], Appendix C). Note that, with this notation, the left-hand side of the dif-
ferential equation can also be written as ∂x/∂t, and that x (t−, p −) = x−.

We introduce the following function:

α( , ) ( , ) ( ( , ), )t p
x

t
t p f x t p pi

i=
∂
∂

=

Note that α (t−, p −) = 0. Also,

 
∂
∂

=
∂

∂
= ∇α

t
t p

x

t
t p f x t p p f x t pi

i( , ) ( , ) ( ( , ), ) ( ( ,
2

2
)), ).p

The assumption that x..i ( t
−  ) ≠ 0 when p = p − means that 

∂
∂

≠α
t

t p( , ) 0 . Therefore, 
we may apply the implicit function theorem and conclude the existence of a 
mapping τ, defi ned on a neighbourhood of p −, with the property that

 α (τ ( p), p) = 0 for all p ≈ p −

and τ ( p −) = t− [and, in fact, t = τ ( p) is the unique value of t near t− such that 
(∂xi/∂t)(t, p) = α (t, p) = 0]. Finally, we defi ne, also in a neighbourhood of p −, 
the differentiable function

 φ( p) = x(τ ( p), p)

and note that φ( p −) = x−. Observe that, from the defi nition of α, we have that 
eqn (1) holds, exactly as in the steady-state case. From here, the reconstruction 
of ∇fi( x

−, p −) up to a constant multiple proceeds as in the steady-state case, again 
under the assumption that it is possible to apply n−1 independent parameter 
perturbations.
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A noise analysis similar to that in the steady-state case can be done here. 
However, there are now many more potential sources of numerical and 
experimental error, since measurements at different times are involved. In 
addition, internal (thermal) noise may introduce additional error, since, in the 
quasi-steady-state case, the state probability distributions (solutions of the 
Chemical Master Equation) have not converged to steady state.

Implementation: numerical approximation by fi nite differences

Of course, the sensitivities represented by the vectors vi (entries of the 
matrix Σ, or Σ# in the noisy case) cannot be directly obtained from typical 
experimental data. However, approximating the vectors vj by fi nite differences, 
one has that ∇fi ( x

−, p −) is approximately orthogonal to these differences as well. 
Explicitly, suppose that we approximate vj = (∂ (φ/∂ pj)( p −) by:

1
h

p he xj( ( ) )ϕ + −

where h is small and where ej is the vector having a one in the jth position 
and zeros elsewhere. Then, ∇fi ( x

−, p −) is (approximately) orthogonal to the 
differences

 φ( p −+ hej) − x−

which form a set of n−1 linearly independent vectors (if h is small). A 
simple matrix inversion (after fi xing an arbitrary value for one of its entries) 
allows the computation of ∇fi ( x

−, p −). Observe that division by the potentially 
small number h is not required in performing these operations, In fact, no 
knowledge whatsoever about parameter values is needed by the algorithm. 
In the quasi-steady-state case, note that φ ( p  −+ hej) is the state x(t) at the time 
t at which the particular coordinate xi achieves a local extremum value, if the 
parameters have been perturbed to p = p − + hej. To be more precise, t is the 
unique time close to t− such that x.i (t) = 0 when parameter vector p is being used. 
Theoretically, we must have p ≈ p − so h must be very small, but, in practice, 
quite large perturbations of p also work fi ne.

A simple numerical example

We illustrate the calculations by working out a very simple example, the 
following system (writing x instead of x1 and y instead of x2, and p and q 
instead of p1 and p2):

�

�

x qx

y px y
y

= − +

= + −
+3

1 3

10
1

.

We take the initial state (0, 0) and reference parameters p − = 2 and q − = 1. 
These equations might model, for example, a simplified dynamics of a 
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two-gene network, in which the fi rst gene enhances the expression of the 
second gene, which in turn represses the rate of expression of the fi rst one, 
there are constitutive rates of production of each gene, and both protein 
products decay at rate 3 s−1. (For simplicity, we do not introduce separate 
variables for mRNA and protein concentrations.) Parameter p represents a 
promoter strength, and we assume that there is a way to perturb it (perhaps 
by duplication or sequence change). Parameter q affects the degradation of the 
fi rst gene product.

Figure 4 shows (solid lines) the solution [x(t), y(t)] with initial state (0, 0), 
p = p − = 2 and q = q − = 1. By time t = 2.5, the system has settled approximately to 
steady state, (x(2.5), y(2.5)) ≈ (1.45, 1.3). At this point, the true Jacobian, to be 
estimated, is approximately:

− −
−

⎛
⎝

⎞
⎠

3 1 9
2 3

.

In order to estimate the fi rst row of the Jacobian, which does not depend 
on the parameter p, we next perturb to p = 4 (keeping q = 1; see Figure 4). 
We now have (x(2.5), y(2.5)) ≈ (1.16, 1.88). Thus we are looking for a vector 
orthogonal to (1.16, 1.88) − (1.45, 1.3), which provides an estimated fi rst row of 
approximately (−3, −1.5). (We normalized the fi rst entry to −3 merely in order 
to compare our result with the true gradient; the algorithm does not know the 
value “−3”. In practice, one might know that the fi rst entry of the vector is 
negative, refl ecting degradation or dilution effects, so the algorithm will give 
the correct sign for the second term, as well as its magnitude relative to the rate 
of degradation or dilution.) Observe that we have retrieved the correct sign for 
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1.8

2

Figure 4. Trajectories
p = 2, q = 1 (solid); p = 4, q = 1 (dash); p = 2, q = 1.5 (dash-dot).
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the second element, and the relative error is less than 20%, even though we have 
used a 100% perturbation. To estimate the second row of the Jacobian, one 
perturbs q, and the results are even better. For example, a 50% perturbation to 
q = 1.5 (keeping p = 2; see Figure 4) gives (x(2.5), y(2.5)) ≈ (1.09, 1.05), which 
leads to perfect recovery (to two decimal digits) of the second row.

Next we illustrate the quasi-steady version of the algorithm, using the same 
example. We study the equation for the fi rst variable, which is the one that has 
a peaking behaviour. The solid lines in Figure 5 (and also in Figures 6 and 7) 
again show plots of the solution coordinates x(t) and y(t), but now zooming-in 
on an initial interval where peaks occur.

Let us pose the following problem: not knowing the above equations, esti-
mate the relative strength of the second gene’s effect on the rate of expression 
of the fi rst one. The only data to be used are the levels of both gene products 
[x(t) and y(t)] at the time when x(t) achieves its local maximum. We do assume 
known the fact that the parameter p affects directly only the rate of expression 
of the second gene, not the fi rst. Observe that the maximum of x is attained 
at t ≈ 0.5275, and the values there are (approximately) x(t) = 1.6553 and y(t) 
= 1.0138. The gradient ∇ f1 of − + +3 10

1x y , evaluated at (1.407, 1.3695), has the 
true (but unknown to the algorithm) value:

 
− −

+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

≈ − −
=

3 10
1

3 2 46592
1 0138

,
( )

( , . ).
.y y
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Figure 5. Trajectories
Dashed is perturbed motion with 25% change in parameter.
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Figure 6. Trajectories
Dashed is perturbed motion with 50% change in parameter.
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Figure 7. Trajectories
Dashed is perturbed motion with 100% change in parameter.

0045-0012 Sontag.indd   Sec1:1740045-0012 Sontag.indd   Sec1:174 8/26/08   5:06:57 AM8/26/08   5:06:57 AM



© The Authors Journal compilation © 2008 Biochemical Society

E.D. Sontag 175

Next, we perform the “experiment” in which p is up-perturbed by 25%. With 
the new parameter p = 2.5, we obtain plots as shown by the dotted lines in 
Figure 5. Now the maximum of x is attained at t ≈ 0.4268, and the values there 
are x(t) = 1.407 and y(t) = 1.3695. Letting δ = (1.407, 1.3695) − (1.6553, 1.0138), 
the unknown (to the algorithm) gradient ∇f1 is known to be (approximately) 
orthogonal to δ. Any vector perpendicular to δ must be a multiple of 
(−3, −2.3455). The relative error in our estimate is less than 5%.

Even larger perturbations may be performed. For example, a 50% pertur-
bation from p − = 2 to p = 3, provides the dashed lines in Figure 6. Now the max-
imum for x is attained at t ≈ 0.4658, and there x(t) = 1.5103 and y(t) = 1.2073. 
The estimated gradient is now (−3, −2.2476), which gives a relative error 
of less than 9%. Finally, a 100% perturbation to p = 4 provides the dashed 
lines in Figure 7. Now the maximum for x is attained at t ≈ 0.4268, and there 
x(t) = 1.4071 and y(t) = 1.3695. The estimated gradient is now (−3, −2.0936), 
which gives a relative error of about 15%.

Conclusions

The MRA method provides a tool for reconstructing network topology, and 
relative input strengths, from steady-state and quasi-steady-state data. Much 
future work remains to be done, especially concerning the analysis of noise.

Summary

• Local interactions can be reverse engineered from global responses, so 

long as enough independent perturbations can be performed.

• The same method can be applied in a modular fashion.

• Measurement errors are dealt with by a total least squares procedure.

This research was supported in part by NSF (National Science Foundation) grants 
DMS-0504557 and DMS-0614371, and an AFOSR (Air Force Offi ce of Scientifi c 
Research) grant.
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