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Abstract

A �nite-dimensional continuous-time system is forward complete if solutions exist globally, for positive time. This paper
shows that forward completeness can be characterized in a necessary and su�cient manner by means of smooth scalar growth
inequalities. Moreover, a version of this fact is also proved for systems with inputs, and a generalization is also provided
for systems with outputs and a notion (unboundedness observability) of relative completeness. We apply these results to
obtain a bound on reachable states in terms of energy-like estimates of inputs. c© 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We consider general nonlinear systems of the type

ẋ = f(x; u); y = h(x) (1)

with states x in Rn, inputs u taking values in Rm, and
outputs y in Rp, but our results will be novel even for
classical di�erential equations, that is, in the cases
when controls do not appear in the system description
and there is no output map.
We assume that the maps f :Rn×Rm→Rn

and h :Rn→Rm are locally Lipschitz continuous.
(Later we remark that the assumption on h can be
relaxed to continuity.) We use the symbol |·| for Eu-
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clidean norms inRn,Rm, andRp, and ‖·‖∞ for essen-
tial supremum. By an input signal or control for (1)
we mean any measurable locally essentially bounded
function of time, u(·) :R→Rm. For any such u
and any �∈Rn, there exists a unique maximally
extended solution of the initial value problem:

ẋ = f(x; u); x(0) = �: (2)

Such a solution is de�ned over some open interval
(�min�; u ; �

max
�; u ) where �

min
�; u ¡ 0¡�max�; u and is denoted as

x(·; �; u). We also write y(t; �; u) := h(x(t; �; u)) for all
�, u, and each t ∈ (�min�; u ; �max�; u ).
A system is called forward complete if for ev-

ery initial condition � and every input signal u, the
corresponding solution is de�ned for all t¿0, i.e.
�max�; u =+∞.
A strictly weaker property is that of unbounded-

ness observability, introduced in [4–6]. System (1)
has the unboundedness observability property (or just
“UO”) if, for each state � and control u such that
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� = �max�; u ¡∞, necessarily
lim sup
t↗�

|y(t; �; u)|=+∞: (3)

In other words, it is possible to “observe” any un-
boundedness of the state. The contrapositive statement
of this property says that, if supt∈[0; T )|y(t)|¡∞ then
x(T ) is de�ned.

Remark 1.1. Notice that for systems with a bounded
output function (for example, if h ≡ 0), the property of
unboundedness observability is equivalent to forward
completeness. Notice that in general UO does not imply
forward completeness; for instance, every system is
UO taking as the output the whole state x.

Our main result is the following Lyapunov charac-
terization of unboundedness observability.

Theorem 1. System (1) has the unboundedness ob-
servability property if and only if there exist a proper
and smooth function V : Rn → R¿0 such that

DV (x)f(x; u)6V (x) + �1(|u|) + �2(|h(x)|);
∀x∈Rn; ∀u∈Rm (4)

holds for some �1; �2 of classK∞.

We will study also systems for which all inputs are
required to take values in a �xed compact set, typically
the unit ball in Rm. Such inputs can be interpreted in
our context as “disturbances” and we use therefore the
notation “d” instead of “u” for them. In general, if
D⊂Rm is compact, we denote by MD the set of all
measurable functions d : R→ D. Consider a system

ẋ = g(x; d) (5)

with inputs inMD.
The following Lyapunov characterization of for-

ward completeness is a particular consequence of
Theorem 1, but it is of interest in itself (and also, will
be proved �rst, as part of the proof of Theorem 1).

Theorem 2. System (5) is forward complete if and
only if there exists a proper and smooth function
V : Rn → R¿0 such that the following exponential
growth condition is veri�ed:

DV (x)g(x; d)6V (x); ∀x∈Rn; ∀d∈D: (6)

It would appear that even the special case when
there are no disturbances d is a new result. Most of

the literature in di�erential equations is in fact con-
cerned with su�cient conditions for the global exis-
tence of solutions (see [1–3,10]), with the remarkable
exception of [8], where a converse Lyapunov condi-
tion for forward completeness of time-varying systems
without inputs is proved. Nevertheless, in that paper,
only a continuous function is obtained, and in addi-
tion, due to the particular construction and the unusual
notion of radial unboundedness adopted, the resulting
Lyapunov function turns out to be time-dependent
even in the special case of autonomous systems.
Besides the main results, this paper contains sev-

eral intermediate estimates for completeness and
unboundedness observability, which may be of inde-
pendent interest. Finally, as an application, we obtain
a bound on reachable states in terms of energy-like
estimates of inputs (cf. Corollary 2.13).

2. Proofs

The proofs are organized as follows. We �rst pro-
vide growth estimates for solutions, then construct V
for forward completeness, and �nally apply this to
the general problem by means of a combination of a
“small gain” (for handling inputs) and an “output in-
jection” (for outputs) trick.

2.1. Bounded reachable sets

The result which we prove �rst will be a critical
step in our constructions; it shows that the set of states
reachable from any compact set, in bounded time and
using bounded controls, is bounded, provided that the
outputs remain bounded. When there are no outputs
(h ≡ 0), this fact amounts to the statement that reach-
able states from compact sets, in bounded time and
using bounded controls are bounded, a fact which
was proved in [7]; we shall prove the result by a re-
duction to that special case. (Note that when there are
also no controls and we have just a di�erential equa-
tion ẋ = f(x), the statement is an easy consequence
of continuous dependence of solutions on initial
conditions.)
For each nonnegative real numbers �; �; �; T , and �,

and each state �∈Rn, we let:
U(�; �; �; �) := {u | ‖u‖∞6�; �max�; u¿�; and

|y(t; �; u)|6� ∀t ∈ [0; �]};
R(�; �; �; �) := {x(�; �; u) | u∈U(�; �; �; �)}
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and

R6T (�; �; �) :=
⋃

|�|6�; �∈[0;T ]
R(�; �; �; �):

Note that a state � belongs to the reachable set
R6T (�; �; �) if and only if there is some state � with
|�|6�, some time �6T , and some input u bounded by
� such that �= x(�; �; u), where the solution x(·; �; u)
is de�ned on the interval [0; �] and has |y(t; �; u)|6�
for all t ∈ [0; �].
Observe that U(�; �; �; �) increases with each of �

and �, so R(�; �; �; �) does, too. Therefore, the sets
R6T (�; �; �) are also increasing, and thus the function


(T; �; �; �) := sup{|� | |�∈R6T (�; �; �)}
(possibly taking in�nite values) is nondecreasing sep-
arately on each of the variables T; �; �; �.

Lemma 2.1. If system (1) is UO; then 
(T; �; �; �)¡∞
for all T; �; �; �.

Proof. The idea of the proof is this: since we are in-
terested in sets of states which can be reached with
output bounded by �, the dynamics of the system in
the part of the state space where the outputs become
larger than � do not a�ect the value of 
; thus, we mod-
ify the dynamics for those states, using a procedure
motivated by the standard “output injection” construc-
tion in control theory. The modi�ed system will be
forward complete, and previously known results will
be then applicable. Take any T; �; �; �.
We start by picking any smooth functionR→ [0; 1]

with the following properties:

��(r) =

{
1 if r6�;

0 i� r¿�+ 1:

Next, we introduce the following auxiliary system:

ẋ = f(x; u)��(|h(x)|); y = h(x): (7)

Observe that the function f(x; u)��(|h(x)|) is still lo-
cally Lipschitz because h is such. The setR6T (�; �; �)
for this new system is equal to the respective one
de�ned for the original system. So, if we prove that
system (7) is forward complete, then Proposition 5:1
in [7] will give that R6T (�; �; �) is bounded, since
that reference states that the reachable sets for for-
ward complete systems (in bounded time, starting
from a compact set, and using bounded controls) are
bounded.
Suppose that system (7) would not be forward com-

plete, and pick an initial condition � and an input v

such that the maximal solution of ż=f(z; v)��(|h(z)|)
with z(0) = � has

|z(s)| → ∞ as s↗S ¡∞: (8)

We claim that |h(z(s))|¡�+ 1 for all s. If this were
not the case, then there would be some s0 ∈ [0; S) so
that �0 := z(s0) has |h(�0)|¿� + 1. But then ẑ ≡ �0
is a solution of the same equation (because �0 is an
equilibrium, since ��(|h(�0)|) = 0), and hence by
uniqueness we have that ẑ= z, and thus z is bounded,
contradicting (8). We conclude that ��(|h(z(s))|)¿ 0
for all s∈ [0; S). So, the function

’(s) :=
∫ s

0
��(|h(z(�))|) d�

is strictly increasing, and maps [0; S) onto an interval
[0; T ) (with, in fact, T6S, because ��61 every-
where).We let x(t) := z(’−1(t)) for all t ∈ [0; T ). This
is an absolutely continuous function, and it satis�es ẋ=
f(x; u) on [0; T ), where u is the input u(t)=v(’−1(t)).
Note that x(0) = � and (8) says that x(t) → ∞
as t↗T , so T = �max�; u . The unboundedness observ-
ability property says then that y(t; �; u) is unbounded
on [0; T ). But y(t; �; u) = h(x(t)) = h(z(s)), where
s = ’−1(t), and we already proved that this last ex-
pression always has norm 6� + 1, so we arrived at
a contradiction.

2.2. Estimates for states

Lemma 2.2. System (1) has the UO property if and
only if there exist K functions �1; �2; �3; �4 and a
constant c such that

|x(t; �; u)|6 �1(t) + �2(|�|) + �3(‖u[0; t]‖∞)

+�4(‖y[0; t]‖∞) + c (9)

holds for all �∈Rn; all input signals u; and all
t ∈ [0; �max�; u ).

In order to keep notations simple, if the initial state �
and input u are clear from the context, we use the con-
vention that when we write “y”, or “y[0; t]” as above,
we mean the output function y(·; �; u), or its restric-
tion to the interval [0; t], respectively.

Proof. Let us assume that (9) holds, and let us
take any state � and input signal u. If it were the
case that |y(t; �; u)| remains bounded, say by L, then
|x(t; �; u)|6�1(�max�; u )+ �2(|�|)+ �3(M)+ �4(L)¡∞
for all t ∈ [0; �max�; u ), where M := ‖u[0; t)‖∞, and this
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contradicts the de�nition of �max�; u (see e.g. [9, exer-
cise C.3.14]). This proves the su�ciency part of the
Lemma.
To prove the converse implication, assume the

system is UO. By Lemma 2.1, 
(t; �; �; �)¡∞ for
all t; �; �; �. Pick any �∈Rn, input signal u, and
t ∈ [0; �max�; u ), and let � := |�|, � := ‖u[0; t]‖∞, and
� := ‖y[0; t]‖∞. Then x(t; �; u)∈R6t(�; �; �), so

|x(t; �; u)|6
(t; �; �; �)6�(t) + �(�) + �(�) + �(�);
where �(r) := 
(r; r; r; r). The function � : R¿0 →
R¿0 is nondecreasing, because 
 is nondecreasing in
each variable, as remarked earlier. Thus, there ex-
ist a function �̃∈K∞ and a constant c0 such that
�(r)6�̃(r)+c for all r, and therefore (9) is valid with
all �i = �̃ and c = 4c0.

By Remark 1.1, we have the following corollary of
Lemma 2.2.

Corollary 2.3. System (1) is forward complete if and
only if there exist K functions �1; �2; �3 and a con-
stant c such that

|x(t; �; u)|6�1(t) + �2(|�|) + �3(‖u[0; t)‖∞) + c

(10)

holds for all �∈Rn; all input signals u; and all
t ∈ [0; �max�; u ). (And thus; �

max
�; u =+∞:)

Consider now systems (5) with inputs inMD. Tak-
ing �3(D)+c instead of c, where D is an upper bound
on the elements of D, Corollary 2.3, implies:

Corollary 2.4. A system (5) with inputs in MD is
forward complete if and only if there exist functions
�1; �2 of classK and a constant c such that

|x(t; �; d)|6�1(t) + �2(|�|) + c (11)

holds for all �∈Rn; all d(·)∈MD; and all t ∈ [0; �max�; d ).
(And thus; �max�; d =+∞:)

Finally, the following result provides a “relative for-
ward completeness” characterization of unbounded-
ness observability, and is stated here for ease of future
reference.

Corollary 2.5. System (5) with inputs in MD; and
with an output function y=h(x); has the UO-property
if and only if there exist classK∞ functions �; �1; �2
such that the following implication holds for all �∈

Rn and all T ∈ [0; �max�; d ):

|h(x(t; �))|6�(|x(t; �)|) ∀t ∈ [0; T ]
⇒ |x(t; �)|6�1(t) + �2(|�|) + c (12)

for all t ∈ [0; T ].

Proof. One direction of the result follows sim-
ply considering separately the two cases ‖y‖∞6
�(‖x‖∞) and ‖y‖∞¿�(‖x‖∞). For the converse
implication, we �rst absorb �3(D) into c, as before;
then, by a standard small-gain argument, it is enough
to let �(r) = �−14 (r=2) in (9) having assumed with-
out loss of generality �4 ∈K∞ (otherwise just take
�̃4(r) = �4(r) + r).

2.3. Margins

We start by choosing a �xed smooth function �:
R¿0 → [0; 1] such that

�(r) =

{
1 if r60;

0 i� r¿1:

Given system (1) and a function �∈K∞, we intro-
duce the following auxilliary system, with inputs in
MD, where D is the closed unit ball in Rm:

ẋ = g(x; d) = f(x; d�(|x|))�(|h(x)| − �(|x|)): (13)

Observe that g(x; d) is still locally Lipschitz, because
h is. Since every state � with |h(�)|¿�(|�|) + 1 is an
equilibrium state for the system (13), it follows, by
uniqueness of solutions, that for each initial state with
|h(�)|¡�(|�|) + 1 and each d∈MD, the trajectory
x(t; �; d) never enters the set where |h(x)|¿�(|x|)+1.

Lemma 2.6. Suppose that system (1) has the un-
boundedness observability property. Then; there ex-
ists a function �∈K∞ (called a “margin”) such that
the system (13) is forward complete.

Proof. We de�ne

�(r) = min{�−13 (r=4); �−14 (r=4)=2}
in terms of comparison functions as in Lemma 2.2,
assuming without loss of generality that they are of
classK∞. Let us pick any state � and input d∈MD,
and consider the maximal solution z of ż = g(z; d)
with z(0)=�, de�ned on [0; S). We want to show that
S = +∞. If |h(�)|¿�(|�|) + 1 then, as pointed out
above, z ≡ �, so indeed S=+∞. So we may suppose
that the trajectory has �(|h(z(s))|)− �(|z(s)|)¿ 0 for
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all s. As in the proof of Lemma 2.1, we consider the
time reparametrization ’ : [0; S)→ [0; T ) de�ned by

’(s) :=
∫ s

0
�(|h(z(�)|)− �(|z(�)|) ds:

Note that T6S because �61 everywhere, and that ’
is strictly increasing.
Letting x(t) := z(’−1(t)), we have that ẋ=f(x; u),

where we are de�ning the input u(t) = d(’−1(t))
�(|x(t)|), and x(0)=�. Thus, applying the estimate in
Lemma 2.6 and the supremum of x(t) over an interval
[0; t] with t ¡T , we obtain, for all such t:

‖x[0; t]‖∞6 �1(t) + �2(|�|) + �3(‖u[0; t]‖∞)

+�4(‖y[0; t]‖∞) + c: (14)

On the other hand, ‖u[0; t]‖∞6�(‖x[0; t])‖∞), so
�3(‖u[0; t])‖∞)6‖x[0; t])‖∞=4 because of the choice
of �, and, since |h(x(t))| − �(|x(t)|)¡ 1 for all t,

�4(‖y[0; t])‖∞)6 �4

(
1
2
�−14

( ‖x[0; t])‖∞
4

)
+ 1

)

6
‖x[0; t])‖∞

4
+ �4(2)

and we conclude from (14) that

‖x[0; t])‖∞62�1(t) + 2�2(|�|) + 2c + 2�4(2)
for all t ∈ [0; �max�; u ), so it follows that the trajectory is
bounded by 2�1(T ) + 2�2(|�|) + 2c + 2�4(2), which
is a contradiction if T ¡∞. So the system is indeed
complete.

2.4. Lyapunov functions for forward completeness

Given a forward complete system (5), we associate
to it the following function W : R¿0× Rn → R¿0:

W (t; �) := inf
−t6�60; d∈MD

|x(�; �; d)|: (15)

As the system is not assumed to be backward com-
plete, the solution x(t; �; d) might fail to exist for some
�¡ 0 and d; in that case, we make the convention that
|x(�; �; d)|=+∞when de�ning the in�mum. We have

06W (t; �)6|�|; ∀t¿0; ∀�∈Rn:
Conversely,W is bounded below by � in the following
sense. Let �1; �2 ∈K and c be as in (11).

Lemma 2.7. For each t¿0 and �∈Rn; |�|6�1(t) +
�2(W (t; �)) + c.

Proof. Pick any �¿ 0. There is some �∈ [− t; 0] and
some d∈MD such that � := x(�; �; d) satis�es

|�|6W (t; �) + �:
Letting d̃(s) :=d(s + �), we have � = x(−�; �; d̃), so
forward completeness gives that

|�|6�1(−�) + �2(|�|) + c
6�1(t) + �2(W (t; �) + �) + c

and taking limits as �↘0 gives the conclusion.

The lemma tells us that W (t; x) is radially un-
bounded, in the sense that W (t; x) → +∞ as x →
+∞, uniformly in t for t in any compact subset of
R¿0. This latter property was �rst introduced in [8],
with the name “mild radial unboundedness”.

Lemma 2.8. The function W (t; x) : R¿0 × Rn →
R¿0 is locally Lipschitz continuous.

Proof. We pick an M ¿ 0, and our goal is to �nd an
L= LM ¿ 0 so that

|W (t; �)−W (�t; �)|6L(|�− �|+ |t − �t |)
holds for all |�|; |�|6M and all 06t; �t6M . We let

K = KM := �1(M) + �2(M + 1) + c;

and, in general, use Br ⊆Rn be the ball of radius r
centered at the origin. Note that

�∈BM+1 ⇒ x(�; �; d)∈BK (16)

for all d∈MD and all �∈ [0; M ].

Claim. If

ẋ = g̃(x; d) (17)

is any other system with the property that g(x; d)=
g̃(x; d) for all x∈BK , then, if we let W̃ be the function
analogous to W , but de�ned for this other system, it
holds that W (t; �) = W̃ (t; �) for all �∈BM and all
t ∈ [0; M ].

Proof. Pick any �∈BM and t ∈ [0; M ], and any
�∈ (0; 1). By de�nition ofW , there is some s∈ [−t; 0]
and some input d such that

|x(s; �; d)|6W (t; �) + �:
Since W (t; �)6|�|6M and �¡ 1, we have � :=
x(s; �; d)∈BM+1. Thus (16) gives us x(�; �; d)∈BK

for each �∈ [s; 0]. Since the equations coincide
for states in BK ; x(s; �; d) = x̃(s; �; d), where we
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are using “x̃” for the solutions of (17). Therefore,
W̃ (t; �)6|x̃(s; �; d)|6W (t; �) + �, and taking �↘0 we
conclude that W̃ (t; �)6W (t; �).
Conversely, pick any �; t; � as before, and some

s∈ [ − t; 0] and d such that |�|6W̃ (t; �) + �6M +
1, where � := x̃(s; �; d). Property (16) says that
x(�; �; d̃)∈BK for each �∈ [0;−s], where d̃(a) =
d(a + s). De�ne �′ := x(−s; �; d̃)∈BK . Since
x(‘; �; d̃)∈BK for all intermediate times ‘, and the
equations coincide on BK , we have that

�′ = x(−s; �; d̃) = x̃(−s; �; d̃) = �:
Therefore �=x(s; �; d), from which it follows by de�-
nition of W (t; �) that W (t; �)6|x(s; �; d)|6W̃ (t; �) +
�, and, once more letting �↘0, we have that also the
reverse inequality W (t; �)6W̃ (t; �) holds, establish-
ing the claim.

We may apply the conclusion of this claim to the
new system

ż = g̃(z; d) = ’(z)g(z; d);

where ’ : Rn → [0; 1] is smooth and has ’(z) = 1
when z ∈BK and ’(z) = 0 if z 6∈BK+1. This system
is complete (in negative as well as positive time), be-
cause the right-hand side vanishes outside a ball. To
prove a Lispchitz estimate for W restricted to x∈BM

and t6M it is enough, in view of the claim, to study
this system. Thus, from now on we assume, with-
out loss of generality, that the given system (5) is
complete.
Pick any �; �∈BM and any positive t; �t such that

06t; �t6M , and let �∈ (0; 1). By de�nition of W , we
have that there are some d�; �; t and some ��; �; t ∈ [−t; 0]
such that

|x(��; �; t ; �; d�; �; t)|6W (t; �) + �: (18)

Taking increments of W yields:

W (t; �)−W (�t; �) = [W (t; �)−W (t; �)]
+[W (t; �)−W (�t; �)]: (19)

The �rst term in (19) can be estimated by virtue of
(18) according to:

W (t; �)−W (t; �)
6 inf

�∈[−t;0]
|x(�; �; d�; �; t)| − |x(��; �; t ; �; d�; �; t)|+ �:

(20)

Since the system is backwards complete, there is some
K = K(M) with the property that x(s; �; d)∈BK for

all s∈ [−M; 0] and all �∈BM ( just reverse time and
apply the forward completeness results). By Lipschitz
continuity of f, we have that there is someG such that

|f(x; d)− f(y; d)|6G|x − y|
for all x; y∈BK . So, by Gronwall’s lemma:

inf
�∈[−t; 0]

|x(�; �; d�; �; t)| − |(��; �; t ; �; d�; �; t)|+ �

6|x(��; �; t ; �; d�; �; t)| − |x(��; �; t ; �; d�; �; t)|+ �
6|x(��; �; t ; �; d�; �; t)− x(��; �; t ; �; d�; �; t)|+ �
6eGM |�− �|+ �: (21)

From (20) and letting �↘0, we conclude that have
W (t; �)−W (t; �)6eGM |�− �|: (22)

Similarly, there are ��; �; �t ∈ [ − �t; 0] and d�; �; �t so that,
assuming without loss of generality �t ¿ t the second
contribution in (19) can be estimated as follows:

W (t; �)−W (�t; �)
6 inf

�∈[−t; 0]
|x(�; �; d�; �; �t)| − |x(��; �; �t ; �; d�; �; �t)|+ �

6



� if ��; �; �t ∈ [− t; 0];
|x(t; �; d�; �; �t)
−x(��; �; �t ; �; d�; �; �t)|+ � if ��; �; �t ∈ [− �t;−t];

6R|t − �t|+ �; (23)

where R is an upper bound for |f(x; d)| when x∈BK

(for instance take R = GM). Letting �↘0 and com-
bining the inequalities, we obtain

W (t; �)−W (�t; �)6eGM (|�− �|+ |t − �t|):
By a symmetric argument, we can �nd a similar esti-
mate for W (�t; �)−W (t; �); thus, we conclude that W
is locally Lipschitz.

Recall that, from Lemma 2.7, we know that
|�|6�1(t) + �2(W (t; �)) + c for each t¿0 and
�∈Rn. We assume, without loss of generality, that
�1; �2 ∈K∞. This gives that

�−11

( |�|
2

)
6t + �−11 (�2(W (t; �)) + c)

and thus, taking exponentials of both sides,


(|�|)e−t=26�(W (t; �)) (24)
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for all �; t, where


(r) := exp
[
�−11 (r=2)

2

]
and

�(r) := exp
[
�−11 (�2(r) + c)

2

]
:

Note that 
 and � are both strictly increasing and con-
tinuous, and 
(0) = exp[�−11 (0)=2] = 1¿ 0. Without
loss of generality (just replacing � by a suitable upper
bound), we may also assume that � is locally Lips-
chitz. Consider now the function U (�) de�ned by the
formula:

U (�) := inf
t¿0
�(W (t; �))et :

Since, by Eq. (24), U (�)¿inf t¿0
(|�|)et=2, and also
U (�)6�(W (0; �)), we have that


(|�|)6U (�)6�(|�|): (25)

for all �, and, in particular, U is proper (radially un-
bounded).

Lemma 2.9. The function U is locally Lipschitz.

Proof. Pick any M ¿ 0. Because of (25), there is
some T ¿ 0 such that

U (�) = min
t∈[0;T ]

�(W (t; �))et

for all �∈BM . So, for all �; �∈BM , we have

U (�)− U (�) = min
t∈[0;TM ]

�(W (t; �))et − �(W (��; �))e��

6 �(W (��; �))e�� − �(W (��; �))e��

6C|�− �|;
where we let C :=KeTM , where K is a Lipschitz con-
stant for �(W (·; ·)) and by continuity
�� := arg min

t∈[0;TM ]
�(W (t; �))et :

By symmetry, U is indeed Lipschitz.

We consider the upper Dini derivatives along tra-
jectories:

U̇ (�; d) = lim sup
h→0+

U (x(h; �; d))− U (�)
h

: (26)

As a consequence of de�nition (15),W is non-increasing
along trajectories of (5), in the following sense:

W (t + h; x(h; �; d))6W (t; �); ∀d; ∀h¿0; ∀�: (27)

Then, by de�nition of U we obtain

U̇ (�; d) = lim sup
h→0+

1
h

{
inf
t¿0
[�(W (t; x(h; �; d)))et]

− inf
t¿0
[�(W (t; �))et]

}

6 lim sup
h→0+

1
h

{
inf
t¿h
[�(W (t; x(h; �; d)))et]

− inf
t¿0
[�(W (t; �))et]

}

6 lim sup
h→0+

1
h

{
inf
t¿h
[�(W (t − h; �))et]

− inf
t¿0
[�(W (t; �))et]

}

= lim sup
h→0+

1
h

{
eh inf
t¿0
[�(W (t; �))et]

− inf
t¿0
[�(W (t; �))et]

}

6 lim sup
h→0+

eh − 1
h

inf
t¿0
[�(W (t; �))et]

= inf
t¿0
[�(W (t; �))et] = U (�) (28)

where the second inequality follows by (27).

Proof of Theorem 2. By Theorem B.1 in [7], there
exists a smooth function V : Rn → R which satis�es
the following properties:

|V (�)− U (�)|¡U (�)=2; ∀�∈Rn;
DV (�)f(�; d)6U (�) + U (�)=2;

∀�∈Rn; ∀d∈D: (29)

It follows by (29) that V (�)¿U (�)=2, and hence V
is proper. Further,

DV (�)f(�; d)63V (�); ∀�∈Rn; ∀d∈D: (30)

Notice that, V (�)¿U (�)=2¿
(|�|)=2¿
(0)=2¿ 0;
as a consequence, V (�)1=3 is a smooth Lyapunov
function satisfying (6).

2.5. Proof of Theorem 1

Su�ciency is obvious, since the di�erential inequal-
ity for V (x(t)) along trajectories is linear on V (x(t)).
To show necessity, we use, by Lemma 2.6 and
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Proposition 2, that there exists a proper and smooth
function V : Rn → R such that

DV (x)f(x; �(|x|)d)�(|h(x)| − �(|x|))6V (x)
holds for each x∈Rn and each d∈D. Hence,

|h(x)|6�(|x|) and |u|6�(|x|)
⇒ DV (x)f(x; u)6V (x):

Then, letting �1 and �2 be de�ned by

�1(r) = r + max
|x|6�−1(|u|);|u|6r

|DV (x)f(x; u)|; (31)

�2(r) = r + max
|x|6�−1(|h(x)|);|h(x)|6r

|DV (x)f(x; u)|;
(32)

(the additive r’s are just to insure that the maps are
strictly increasing) we obtain

DV (x)f(x; u)6V (x) + �1(|u|) + �2(|h(x)|) (33)

thus �nishing the proof.

Remark 2.10. Notice that, as far as the su�ciency
part of Theorem 1 is concerned, it is enough to check
for satisfaction of (4) outside a ball of arbitrarily large
radius (basically we only need the inequality to be
satis�ed in a neighborhood of ∞). Hence, unbound-
edness observability is equivalent to the existence of a
proper and smooth function V (x) such that, for some
�1; �2 of classK∞, there is some M ¿ 0 so that

DV (x)f(x; u)6V (x) + �1(|u|) + �2(|h(x)|) (34)

holds for all |x|¿M and u∈Rm.

2.6. Some restatements and consequences

There are several interesting ways to restate our
results, and also some consequences worth pointing
out. (As a matter of fact, trying to prove these con-
sequences was the motivation behind this work.) As
a corollary of the previous theorem and by virtue of
Remark 1.1, we have the following Lyapunov charac-
terization of forward completeness:

Corollary 2.11. System (1) is forward complete if
and only if there exists a smooth and proper function
V : Rn → R¿0 and such that

DV (x)f(x; u)6V (x) + �(|u|); ∀x∈Rn; ∀u∈Rm

holds for some � of classK∞.

It is an easy consequence of Theorem 1, taking as
a function W (x) = log(1 + V (x)), that the following
Lyapunov characterizations of unboundedness observ-
ability and forward completeness are also true:

Corollary 2.12. System (1) is forward complete if
and only if there exists a smooth and proper function
W : Rn → R¿0 such that
DW (x)f(x; u)61 + �(|u|); ∀x∈Rn; ∀u∈Rm;

(35)

for some � of classK∞. Similarly; system (1) has the
unboundedness observability property if and only if
there exists a smooth and proper function W : Rn →
R¿0 such that
DW (x)f(x; u)61 + �1(|u|) + �2(|h(x)|);

∀x∈Rn; ∀u∈Rm (36)

holds for some �1; �2 inK∞.

By properness of the function W in Corollary 2.12,
we know that there exists a classK∞ function � such
that �(|x|)6W (x) for all x∈Rn. It is straightforward
from (35) and (36) that the following inequalities are
equivalent, respectively, to forward completeness and
unboundedness observabililty:

�(|x(t; �; u)|) 6W (x(t; �; u))

6W (�) + t +
∫ t

0
�(|u(s)|) ds;

�(|x(t; �; u)|) 6W (x(t; �; u))

6W (�) + t +
∫ t

0
�1(|u(s)|) ds

+
∫ t

0
�2(|y(s)|) ds:

Hence, recalling that the inverse of aK∞ function is
still of classK∞ and exploiting continuity of W , we
have proved the following result.

Corollary 2.13. System (1) is forward complete if
and only if there exist functions �1; �2; �3; � of class
K∞; and a constant c¿0; such that
|x(t; �; u)|6�1(t) + �2(|�|)

+ �3

(∫ t

0
�(|u(s)|) ds

)
+ c

holds for all t ¿ 0; all �∈Rn; and all input signals u.
Similarly; system (1) has the unboundedness observ-
ability property; if and only if there exist functions
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�1; �2; �3; �4; �1; �2 of class K∞ and a positive con-
stant c¿0 such that

|x(t; �; u)|6�1(t) + �2(|�|) + �3
(∫ t

0
�1(|u(s)|) ds

)

+�4

(∫ t

0
�2(|y(s)|) ds

)
+ c

holds for all t ¿ 0; all �∈Rn; and all input signals u.

Remark 2.14. Notice that, while the two estimates in
Corollary 2.13 imply respectively (10) and (9) (with
possibly di�erent comparison functions), it was not
obvious that the converse implications should also be
true.

Remark 2.15. The assumption that h is locally
Lipschitz can be relaxed to simply continuity, while
preserving all the results given. Indeed, suppose that
h is continuous. Pick any locally Lipschitz function
h0 : Rn → R¿0 such that |h(x)|¡h0(x)¡ |h(x)|+ 1
for all x∈Rn (such functions always exist; in fact,
one could even pick h0 smooth). Clearly, if the orig-
inal system is UO, then the system ẋ = f(x; u) with
output y= h0(x) also is. Applying the various results
to this new system then gives the desired results for
the original one.

Remark 2.16. One may wonder if it is possible to
always pick � = Id, thus reducing the energy � to
an L1 norm of the input. This can not be achieved in

general, as illustrated by the forward complete system
ẋ=u3. Choosing as an input sequence un(t)=n when
t ∈ [0; 1=n] and equal to zero elsewhere, we have that∫ 1
0 |un(t)| dt61; on the other hand, there is no uniform
bound for |x(1; 0; un)|.
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