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Abstract. This paper presents a brief introduction to Vapnik-Chervonenkis (VC)
dimension, a quantity which characterizes the difficulty of distribution-independent
learning. The paper establishes various elementary results, and discusses how to
estimate the VC dimension in several examples of interest in neural network theory.

1 Introduction

In this expository paper, we present a brief introduction to the subject of
computing and estimating the VC dimension of neural network architectures.
We provide precise definitions and prove several basic results, discussing also
how one estimates VC dimension in several examples of interest in neural
network theory.

We do not address the learning and estimation-theoretic applications of
VC dimension. (Roughly, the VC dimension is a number which helps to quan-
tify the difficulty when learning from examples. The sample complexity, that
is, the number of “learning instances” that one must be exposed to, in order
to be reasonably certain to derive accurate predictions from data, is propor-
tional to this number. This relationship can be made mathematically precise
using the formalism of computational learning theory and uniform conver-
gence theorems for empirical probabilities, and it is covered in other papers
in this volume, as well as in several good books, notably Vidyasagar (1997).)

The VC dimension is geared towards binary classification. It is possible
to generalize the notion of VC dimension in several ways, to deal with the
problem of “learning” (approximating from data) real-valued functions. This
leads to pseudodimension (Haussler 1992, Vidyasagar 1997), “fat-shattering
dimension” (Anthony and Bartlett n.d.), and several other notions. Reasons
of space preclude covering such topics in this paper; however, many of the
tools developed here are also central to the study of these generalizations.

2 Concepts and VC Dimension

As a starting point for introducing the necessary concepts, we assume given
a set U, to be called the input space. Typically, U will be a subset of Rm,
for some m; we think of inputs as vectors whose coordinates may represent
“features” to be used for classification purposes. Also given is a concept class
C, which consists of a family of subsets of U. Some examples of input spaces
and concept classes are as follows:
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1. U = R, C = infinite open intervals, or the empty set;
2. U = R, C = R, ∅, one open interval, or two disjoint infinite open intervals;
3. U = R2, C = open half-spaces; and
4. U = R2, C = all convex sets.

Definition 1 A finite subset S ⊆ U is shattered by C if

(∀S+ ⊆ S) (∃C ∈ C) S+ = S
⋂
C . (1)

For the above examples, we have that one may shatter, respectively:

1. every 2-element set, no 3-element set;
2. every 3-element set, no 4-element set;
3. every noncollinear 3-element set, no 4-element set; and
4. any finite subset of unit circle.

The first two of these are quite clear. To see that no 4-element set S ⊆ R2

can be shattered when C = all open half-spaces, we can argue as follows (see
Fig. 1). If some three points of S lie on a line, then S cannot be shattered,
because it is impossible to find a half-space which covers only the midpoint.
Similarly if one of the points lies in the convex hull of the remaining three
points. On the other hand, if no three points lie on a line, then S determines
the corners of a quadrilateral, and a set S+ which consists of one pair of
opposing corners cannot be the intersection of S and a half-plane. To see
that any finite subset of the unit circle can be shattered, in the last example,
we may pick any such subset S, and any subset S+ ⊆ S, and take the convex
hull of S+ as the desired element of C (this set is the region inside a polygon
whose vertices are the points in S+).
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Fig. 1. Four points cannot be shattered by half-spaces

Definition 2 The Vapnik-Chervonenkis (VC) dimension of C is:

vcd (C) := sup { cardS | S shattered by C} (2)
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In the above examples, one obtains, respectively: 2, 3, 3, ∞. (Observe that,
in the third example, sets of three points that are in a straight line cannot be
shattered. Nonetheless, the VC dimension is 3 because some 3-element set
can be shattered; as a matter of fact, it turns out in this particular example
that “almost any” 3-element set can be shattered, but this is not required in
the definition.)

Equivalently, with Functions

The concept-based definition of VC dimension just given originates in com-
binatorics and computer science. It is useful to provide an equivalent formu-
lation in terms of functions, which is the way in which the subject arises in
statistical estimation. Now, instead of C, we assume given a function class
F , consisting of a set of binary functions U→ {0, 1}. To each f ∈ F we may
associate the set

Cf = {u ∈ U | f(u) = 1} (3)

and thus to F we associate a concept class

CF := {Cf , f ∈ F} . (4)

We define:

vcd (F) := vcd (CF ) . (5)

Conversely, to any concept class C we may associate a function class F in
such a way that C = CF (just take characteristic functions of subsets). We use
the two formalisms interchangeably, depending on which is more convenient
for any given proof.

Actually, in practice one is often interested in classifiers which arise from
neural networks and other devices which produce real-valued outputs, and
one makes the convention that positive outputs are interpreted as “1” and
negative outputs as “0” for purposes of binary classification. Formally, we are
now given a set of real-valued functions F , and define, then:

vcd (F) := vcd ({H ◦ f, f ∈ F}) , (6)

where H(x) is the “Heaviside” function which equals 1 if x > 0 and equals 0
if x ≤ 0. (In other words, a “concept” is a set where some possible f ∈ F is
positive.) We also write signx = H(x).

In this language, saying that a subset S = {u1, . . . ,un} ⊆ U is shattered
means that, for any possible binary assignment ε = (ε1, . . . , εn) ∈ {0, 1}n,
there must exist some function f = fε ∈ F which has precisely these signs,
i.e., H(f(ui)) = εi.
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Parametrized Classes of Functions

The class F is more often than not specified by means of neural network archi-
tectures with tunable weights, or some other parametric description (splines
with nodes and values to be determined, Fourier series with a fixed number
of terms but adjustable frequencies and coefficients, etc). In general, we may
suppose given a function

β : W× U→ R . (7)

Typically, W = Rρ, where ρ is called the number of weights or parameters,
and w = (w1, . . . , wρ) ∈ W is a weight or parameter vector . For each choice
of parameters, we obtain a function:

Fβ := {β(w, ·) | w ∈W} (8)

and we define
vcd (β) := vcd (Fβ) . (9)

We can express the first three examples given earlier in this language, as
follows:

1. the map β : R2 × R → R given by β
(
(a, b), u

)
:= a + bu leads to the

concept class C which consists of all open infinite intervals (and ∅);
2. the map β : R3 × R→ R given by β

(
(a, b, c), u

)
:= a+ bu+ cu2 leads to

the second example (R, ∅, one open interval, or two disjoint infinite open
intervals); and

3. the map β : R3×R2 → R given by β
(
(a, b, c), (u, v)

)
:= a+ bu+ cv leads

to the third one (half-spaces).

Observe that in all these examples, the parametric description β is linear
in the parameters a, b, and c, and the VC dimension coincides with the
respective number of parameters. This is not a coincidence, as we see next.

3 Special Case: Linear Parameterizations

Linearly parametrized classes constitute vector spaces; their dimension is the
number of independent parameters. Elementary linear algebra gives that the
linear dimension of a vector space of functions F is finite, and equal to n, if
and only if there is a set of n functions {f1, . . . , fn} ⊆ F , and there are some
n points u1, . . . ,un, so that the following matrix:

A =

f1 f2 · · · fn
u1 f1(u1) f2(u1) · · · fn(u1)
u2 f1(u2) f2(u2) · · · fn(u2)
...

...
...

...
...

un f1(un) f2(un) · · · fn(un)

(10)

has rank n, and any n + 1 by n + 1 matrix of this type is singular. The
following general fact is very useful for linear classes:



VC Dimension of Neural Networks 5

Theorem 1. If F is a vector subspace of RU, then vcdF = dimF .

Proof. Saying that a subset S = {u1, . . . ,un} ⊆ U is shattered by F is the
same as saying that there exists some set of 2n functions, let us say f1, . . . f2n ,
for which the columns of the array fj(ui) assume all possible 2n sign vectors,
that is, we have a sign pattern as follows (after if necessary rearranging the
fi’s):

B =

f1 f2 f3 · · · f2n

u1 − − − · · · +
u2 − − − · · · +
...

...
...

... · · ·
...

un−1 − − + · · · +
un − + − · · · +

(11)

(using “−” to mean entries ≤ 0).
Pick any n, and suppose that the VC dimension of F (which could be

infinite) is ≥ n. By definition, there is some subset S = {u1, . . . ,un} ⊆ U
which is shattered. We claim that this matrix B has rank n (the number of
rows). Indeed, if this is not the case, then the rows are linearly independent,
i.e., there is some vector ν 6= 0 so that νB = 0. Assume that there is such
a vector, and consider the vector of signs of ν, say (+,+,−,+, . . .+). Now
pick that column fi of B which has exactly these signs. The inner product
ν · fi is obviously positive (sum of nonnegative terms, at least one nonzero),
contradicting νB = 0. Since rankB = n, there are n linearly independent
columns, let us say fi1 , . . . , fin . These give rise to a submatrix A as in (10),
so dimF ≥ n. As this holds for any n, we have that dimF ≥ vcd (F).

To show the converse inequality, we start with a set of linearly indepen-
dent elements f1, . . . , fn and a set S = {u1, . . . ,un} so that the matrix in
Equation (10) has rank n. We claim that the set S is shattered. To prove this,
we consider any binary assignment ε ∈ {0, 1}n. We need to verify that there
is some function f ∈ F which has precisely these signs, i.e. H(f(ui)) = εi.
Since A has rank n, there exists some vector v ∈ Rn so that Av = ε. Thus
f = (f1, . . . , fn)v (which belongs to the subspace F) has signs given by ε on
the respective ui’s, as desired. As S is shattered, vcd (F) ≥ n, which shows
vcd (F) ≥ dimF .

Since in the first three examples there were 2, 3, and 3 independent pa-
rameters, appearing linearly, this theorem provides VC dimensions of 2, 3,
and 3 respectively, just as we had found directly.

Margins For linearly parametrized classes, one can always classify with
margins. Precisely: if a finite set S = {u1, . . . ,un} ⊆ U is shattered by F ,
and F is a linear space, then the following property holds: for any possible
binary assignment ε = (ε1, . . . , εn) ∈ {0, 1}n, and for each real δ > 0, there
exists some function f = fε,δ ∈ F so that f(ui) > δ if εi = 1 and f(ui) < −δ
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if εi = 0. Indeed, suppose that g, h ∈ F have been found such thatH(g(ui)) =
εi for all i and H(h(ui)) = 1 − εi for all i. Then (g − h)(ui) > 0 whenever
εi = 1 and (g − h)(ui) < 0 whenever εi = 0 (strict inequalities). Therefore,
for some scalar ρ, f = ρ(g − h) has the desired properties.

Affine Parameterizations If a class F is an affine subspace, that is to say, it
has the form G+f0 = {g+f0, g ∈ G}, where G is some vector space of functions
and f0 is a fixed function, then vcd (F) = vcd (G) = dimG. To see this, we
argue as follows. Suppose that S = {u1, . . . ,un} ⊆ U is shattered by F , and
pick any ε = (ε1, . . . , εn) ∈ {0, 1}n. Then, there exists a function g ∈ G so that
H(g(ui) + f0(ui)) = εi for all i. Similarly, there is a function h ∈ G so that
H(h(ui)+f0(ui)) = 1−εi for all i. Then, f = g−h = (g+f0)−(h+f0) ∈ G has
the property that H(f(ui)) = εi for all i. This means that S is also shattered
by G. Conversely, suppose that S = {u1, . . . ,un} ⊆ U is shattered by G
and pick any ε = (ε1, . . . , εn) ∈ {0, 1}n. The values f0(ui) are all bounded in
absolute value by some δ > 0. Let g ∈ G classify with margin δ, i.e., g(ui) > δ
if εi = 1 and g(ui) < −δ if εi = 0. It follows that H(g(ui) + f0(ui)) = εi for
all i. So S is also shattered by F .

Theorem 1 has several immediate applications.

3.1 Perceptrons

Perceptrons are just linear discriminators on Rm. Here F = Pm consists of
all possible affine functions from U = Rm into R, i.e., all functions of the
form:

f(u) = f(u1, . . . , um) = a0 + a1u1 + . . .+ amum . (12)

These functions are linearly parametrized by vectors (a0, . . . , am) ∈ Rm+1,
so

vcdPm = m+ 1 . (13)

One may also fix certain of the coefficients at “prewired” values, leaving
only a subset of m′ < m parameters free. This gives rise to an affine class of
dimension m′, so that the VC dimension is m′. (For instance, take the class
consisting of all functions of the form 1+a1u1 +a2u2−3u3, where the a1 and
a2 parameters are arbitrary real numbers. This is the class of all functions
of the form G + f0, where f0(u) = 1− 3u3 and G is the m′ = 2 dimensional
space generated by u1 and u2.)

3.2 Single Hidden Layer Nets with Fixed Input Weights

Single hidden layer nets are described as follows. We fix an “activation”
function σ : R → R and positive integers n and m, the number of hidden
units and the input dimension, respectively.
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For each choice of n row m-vectors A1, . . . , An (the input-layer weights), n
scalars b1, . . . , bn (the input-layer biases), and output-layer weights c0, . . . , cm,
the response of such a net is

y = f(u) = c0 +
n∑
i=1

ciσ(Aiu + bi) . (14)

Writing each Ai as ai1, . . . , aim, pictorially we have a net as in Fig. 2.
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Fig. 2. Single-hidden layer net with activation function σ.

We now fix the input-layer weights A1, . . . , An and the input-layer biases
b1, . . . , bn, and leave variable the output-layer weights c0, . . . , cm. Let us call
the obtained class of functions Fn,σ,A,B ; this is the span of the functions 1
and σ(Aiu + bi), i = 1, . . . , n, so it has dimension at most n+ 1. Therefore:

vcdFn,σ,A,B ≤ n+ 1 . (15)

When is vcdFn,σ,A,B = n+1? The inequality (15) may be strict, because
there is no reason for the functions 1 and σ(Aiu + bi), i = 1, . . . , n to span a
space of dimension exactly n+ 1. Thus, we are led to the following question:
When are the functions 1 and σ(Aiu+ bi), i = 1, . . . , n linearly independent?
That is, we wish to know, for a fixed set of A’s and b’s, whether the following
implication holds:

c0 +
n∑
i=1

ciσ(Aiu + bi) ≡ 0 ⇒ c0 = . . . = cn = 0 . (16)

This implication is in general false, for example if there are two or more equal
sets of weights (Ai, bi) at the input layer, or weights with opposite signs and
σ is an odd function (σ(−x) = −σ(x)), or if a weight Ai is zero. But in
these cases, one may either collect equal (or opposite) terms into a single
first-layer unit, or into c0 (for the Ai = 0). The implication is also false even
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if these obvious degeneracies do not occur, for activations σ such as periodic
functions, exponentials, or polynomials:

sin(1.u+ 2π) + (−1) sin(1.u+ 0) ≡ 0
exp(1.u+ 1)− e exp(1.u+ 0) ≡ 0

(2.u)2 − 4(u)2 ≡ 0 .

However, we show next that, except in the trivial cases, independence does
hold when a “standard” activation is used.

Theorem 2. Let σ = tanh. Assume that (Ai, bi) 6= ±(Aj , bj) for all i 6= j
and that Ai 6= 0 for all i. Then, vcdFn,σ,A,B = n+ 1.

Proof. Note that there is some vector û ∈ Rm so that, for all i 6= j:

1. Aiû 6= 0,
2. bi = bj ⇒ (Ai −Aj)û 6= 0, and
3. bi = −bj ⇒ (Ai +Aj)û 6= 0.

(Because the complement of the set of such u’s is a finite union of hyper-
planes.) Suppose that there would exists nonzero coefficients ci’s so that
f(u) = c0 +

∑n
i=1 ciσ(Aiu + bi) = 0 for all u ∈ Rm. Letting ai := Aiû, we

may reduce the problem to the scalar-input case:

g(u) := f(uû) = c0 +
n∑
i=1

ciσ(aiu+ bi) = 0 (17)

for all u ∈ R, and the weights satisfy ai 6= 0 ∀i and (ai, bi) 6= ±(aj , bj) ∀i 6= j.
Without loss of generality, we may assume that ci 6= 0, i = 1, . . . n (otherwise,
we may drop zero terms and have a sum with a smaller n). Similarly, we may
take all ai > 0 (otherwise, we may reverse signs of the necessary ai and bi, and
take ci := −ci. Without loss of generality, we suppose a1 ≥ ai, i = 2, . . . , n.
We make a change of variables v := a1u+ b1, so that now

g(v) = c0 + c1σ(v) +
n∑
i=2

ciσ(a′iv + b′i) = 0 (18)

for all real v. We have that all 0 < a′i ≤ 1, and a′i = 1⇒ b′i 6= 0. Thus, for all
odd integers k, a′i

π
2

√
−1 + b′i 6= k π2

√
−1, that is, a′i

π
2

√
−1 + bi is not a pole

of σ when σ is seen as a function of a complex variable. By the principle of
analytic continuation, equation (18) must hold for all v on the subset of C
where none of the terms has poles (which is a connected subset containing
R). Pick a sequence {vk} of points where g is analytic, vk → π

2

√
−1. Then,

0 ≡ g(vk)
σ(vk) → c1 implies c1 = 0, contradiction.
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Theorem 2 is from Sussmann (1992) The proof given here is from Alber-
tini, Sontag and Maillot (1993); in addition to simplicity, has the advantage
of generalizing, with no changes, to other typical choices of sigmoids, such
as (1 + e−x)−1 or arctanx. Other techniques can be used as well, see the
discussion in Sontag (1997a). These results can also be interpreted as estab-
lishing parameter identifiability of networks (“function determines form”, see
references in Albertini et al. (1993)).

A special case worth noticing is also that in which there are no lower-level
biases, i.e., networks of the form

∑n
i=1 ciσ(aiu). Suppose that σ is an odd

function, and it is infinitely differentiable about zero, with an infinite number
of nonzero derivatives σ(k)(0) at zero. Then, if all ai are nonzero and have
different absolute values, the functions σ(aiu) are linearly independent, so
the corresponding class has VC dimension exactly n. To see this, one simply
notices that one may take without loss of generality all ai > 0 (using that σ is
odd, and changing if needed ci to −ci); now g(k)(0) =

∑n
i=1 a

k
i ciσ

(k)(aiu) = 0
for all k implies, for those k so that σ(k)(0) 6= 0, that

∑n
i=1 a

k
i ci = 0; a

generalized Vandermonde argument then implies that the ci must vanish
(see Albertini et al. (1993)). For an analytic function σ, this means that the
VC dimension is n for all such nets if and only if σ is not a polynomial.

4 The Fundamental Fact About VC Dimension

In order to obtain other upper bounds on VC dimension, we need to review
what is perhaps the single most important property of VC dimension. This
result, frequently called “Sauer’s Lemma,” is from Vapnik and Cervonenkis
(1968) (see also Vapnik (1992)), and was discovered independently by Sauer
(1972) and Shelah (1972); interestingly, Sauer credits Erdös with posing it as
a conjecture.

Assume given a set F of functions U → {0, 1}. For each m, and each se-
quence (u1,u2, . . . ,um) ∈ Um, we count the number of classifications possible
on the inputs in this sequence:

γ(u1,u2, . . . ,um) := card {(f(u1), f(u2), . . . , f(um)) ∈ {0, 1}m | f ∈ F} .
Observe that the m-element set S = {u1,u2, . . . ,um} is shattered if and
only if γ(u1,u2, . . . ,um) attains its maximal possible value, namely 2m. In
general, γ(u1,u2, . . . ,um) measures the number of elements of the set of
functions F|S consisting of the restrictions of the functions in F to S.

The important fact is that γ grows only polynomially, instead of expo-
nentially, on the sample length m, provided that the VC dimension be finite.
Moreover, the degree of the polynomial is the VC dimension. For each two
nonnegative integers with m ≥ d, we define Φ(m, d) as the number of possible
subsets of an m-element set with at most d elements, that is,

Φ(m, d) :=
d∑
i=0

(
m

i

)
≤ 2

md

d!
≤
(em
d

)d
(19)
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(the two shown upper bounds are not difficult to establish).

Theorem 3. (Vapnik-Chervonenkis-Sauer-Shelah.) Suppose that vcd (F) =
d <∞. Then, for each m ≥ d and all sequences u1,u2, . . . ,um,

γ(u1,u2, . . . ,um) ≤ Φ(m, d) . (20)

Observe that the bound is best possible in general, since the concept class
consisting of all d-element subsets of {1, . . . ,m} achieves the estimate. The
key for the proof is the following lemma about binary matrices.

Lemma 1. Let m ≥ 1 and 0 ≤ d ≤ m, and suppose that the matrix C ∈
{0, 1}m×r is so that all its columns are distinct, where r is an integer satis-
fying r > Φ(m, d). Then, there is some d + 1 by 2d+1 submatrix of C whose
columns are distinct.

Let us first see why this implies Theorem 3. Suppose that vcd (F) = d,
pick any sequence (u1,u2, . . . ,um) withm ≥ d, and let r = γ(u1,u2, . . . ,um).
We list all possible different classifications as columns:

f1(u1) f2(u1) . . . fr(u1)
f1(u2) f2(u2) . . . fr(u2)

...
... . . .

...
f1(um) f2(um) . . . fr(um)

. (21)

If it were the case that r > Φ(m, d), then the Lemma says that there is a
submatrix with d+ 1 rows and all possible 2d+1 columns. The corresponding
ui’s would then provide a subset of cardinality d + 1 which is shattered,
contradicting the fact that the maximal shattered set has size d. So r ≤
Φ(m, d), as wanted.

Proof of Lemma 1. We proceed by induction on m. If m = 1, then d = 0
or d = 1. Since, 2m ≥ r > Φ(m, d) and Φ(1, 1) = 2, necessarily d = 0. So
r > Φ(1, 0) = 1, that is, r = 2. This means that C is itself of size d + 1 by
2d+1.

We next assume the result true for m−1, and prove it for m. The columns
of C can be rearranged, in several manners, so that C has the following form:

1 { 0 · · · 0 1 · · · 1 ∗ . . . ∗
m− 1 { A A B

where A is an m − 1 by r1 submatrix and B has size r − 2r1. For instance,
we may take r1 = 0 and no “A” submatrix.

Among these rearrangements, there are some for which r1 is as large as
possible; from now on, we assume that we have picked one such. Note that
all columns of the matrix (A B) must be distinct. (Indeed, if A would have
two equal columns, or if A and B had a column in common, then there would
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be some two equal columns in C; if B had two equal columns, then, the first
entry in C for the corresponding columns would have to be distinct, and thus
these columns could be moved to the A blocks, contradicting the maximal
choice of r1.)

We now claim that either:

1. (A B) has some d+ 1 rows with 2d+1 distinct columns, or
2. A has some d rows with 2d distinct columns.

The lemma will follow from this claim: in the first case the last m − 1 rows
already give an appropriate submatrix of C, and in the second case we use
that (

0 · · · 0 1 · · · 1
A A

)
(22)

has some d+ 1 rows with 2d+1 distinct columns.
So we show the claim, using the induction hypothesis. Since 2m ≥ r >

Φ(m, d) and Φ(m,m) = 2m, necessarily m − 1 ≥ d. We let r2 = r − r1, the
number of columns of (A B). There are two cases:

1. r2 > Φ(m − 1, d): in this case, the inductive assumption applies to the
data m− 1, r2, d, so we have the first case of the claim; or

2. r2 ≤ Φ(m−1, d): now r1 = r−r2 > Φ(m, d)−Φ(m−1, d) = Φ(m−1, d−1),
so the result applied to m−1, r1, d−1 gives that A has d rows as wanted.

This completes the proof of the Lemma.

5 Basic Techniques

In this section, we cover several basic techniques which are used in estimating
upper bounds on VC dimension. They all use Theorem 3 as a tool.

5.1 Boolean Closures

We start showing how to establish upper bounds on the VC dimensions of
those concept classes which arise as unions, intersections, or other Boolean
operations, starting from classes whose VC dimensions have already been
estimated.

Given k classes of functions U→ {0, 1}, F1, . . . ,Fk, and a fixed Boolean
function b : {0, 1}k → {0, 1}. we define

b(F1, . . . ,Fk) := {b(f1(·), . . . , fk(·)) | fi ∈ Fi, i = 1, . . . , k} . (23)

Lemma 2. With ck = 2k log ek, a constant which does not depend on the
classes Fi nor on the Boolean function b,

vcd (b(F1, . . . ,Fk)) ≤ ck max
i=1,...,k

{vcd (Fi)} . (24)
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Proof. We assume that S ⊆ U is shattered, and cardS = n. Restricting all
functions to S, we think of each Fi as a set of functions from S to {0, 1}, and
F := F1 × . . .×Fk as a set of functions S → {0, 1}k. Since the mapping

F → b(F1, . . . ,Fk) : f1, . . . , fk 7→ b ◦ (f1, . . . , fk) (25)

is onto,
card b(F1, . . . ,Fk) ≤ cardF =

∏
i

cardFi . (26)

We assume that all the di = vcd (Fi) < ∞ (otherwise, d = ∞ and there is
nothing to prove). By Theorem 3,

cardFi ≤
(
en

di

)di
(27)

for each i. With d := maxi=1,...,k di, this gives

card b(F1, . . . ,Fk) ≤
(en
d

)dk
. (28)

As S is shattered by F , 2n ≤
(
en
d

)dk. An easy calculus argument then gives
n < (2k log ek) d.

See Dudley (1984), Pollard (1990), and Vidyasagar (1997) for more results
along these lines.

Single Hidden Layer Nets with Fixed Output Weights. As an ap-
plication of Lemma 2, we consider single hidden layer networks as in (14),
but now ask what is the VC dimension when the output weights ci are con-
stant and we vary the input weights instead. We can only apply the result to
Boolean functions, so we take σ = H.

The function classes Fi are all the same, and consist of perceptrons
H(au + b), so we know that d = m + 1. So, vcd (F) ≤ cn(m + 1). The
same upper bound obtains if the second-level operation is a more general
Boolean operation than a linear threshold, of course.

The argument just given uses that σ = H in an essential manner. When
σ is not Boolean, not only is the estimate vcd (F) ≤ cn(m + 1) false, but
vcd (F) may be infinite even if n = 2, m = 1, and F1 = F2 has VC dimension
one. To see an example of this phenomenon, consider the following activation
function (cf. Sontag (1992)):

σ(u) :=
1
π

arctanu +
1
2

+
cosu

α(1 + u2)
, (29)

where α is any fixed constant > 2π. The graph of σ has a “sigmoidal” shape,
with range (0, 1), and strictly positive derivative everywhere. The functions
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of the form f(u) = σ(au+b) are all monotonic, so the classes F1 and F2 each
have VC dimension 1. However, if we take the 1-2 architecture with fixed
weights −c0 = c1 = c2 = 1, that is, the set of functions F of the form:

f(u) = −1 + σ(a1u+ b1) + σ(a2u+ b2) (30)

(with different possible ai’s and bi’s), we obtain vcd (F) =∞. In fact, this is
true even if we also restrict attention to b1 = b2 = 0 and a1 = −a2 = λ, where
λ is a scalar parameter. In that case, we write the corresponding function as
fλ and observe that:

fλ(u) = −1 + σ(λu) + σ(−λu) =
2 cosλu

α(1 + λ2u2)
. (31)

To show that some set of cardinality n can be shattered, for arbitrary given
n, we pick any n and any n real numbers with the property that π, u1, . . . , un
are rationally independent (i.e., r0+

∑
riui = 0, with the ri’s integers, implies

r0 = · · · = rn = 0). It is easy to prove that a “random” choice of (u1, . . . , un)
has this property, with probability one, and that the set of vectors

{(λu1, . . . , λun) | λ ∈ N} (32)

modulo 2π is dense in [0, 2π]n. Hence, also the set of vectors

{(cos(λu1), . . . , cos(λun)) | λ ∈ N} (33)

is dense in [−1, 1]n. This implies, in particular, that (fλ(u1), . . . , fλ(un)) can
be made to have any sign sequence, by choice of appropriate parameters λ,
so the set {u1, . . . , un} can indeed be shattered.

5.2 Compositions (Cascades)

As another application of the fundamental Theorem 3, we now estimate the
VC dimension of classes of functions obtained as compositions (cascades, or
series connections) of basic function classes. The basic setup is as follows. We
suppose given a set F of functions U→ V and a set G of functions V→W,
and define

G ◦ F := {g ◦ f | g ∈ G, f ∈ F} (34)

(a set of functions U → W). We assume given “growth functions” for each
class, which bound the numbers γ of possible classifications, that is, two
functions p and q so that:

1. for each S ⊆ U with cardS ≤ n, cardF|S ≤ p(n), and
2. for each R ⊆ V with cardR ≤ n, cardG|R ≤ q(n).

The following totally elementary remark plays a central role.
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Lemma 3. For each S ⊆ U with cardS ≤ n, card (G ◦ F)|S ≤ p(n)q(n).

Proof. Let S = {u1, . . . ,un}. Pick a subclass F0 = {f1, . . . , fp(n)} of F such
that F0|S = F|S . For each i ∈ {1, . . . , p(n)}, we consider the following subset
of V:

Ri := {fi(u1), . . . , fi(un)} . (35)

For each such subset Ri, there exists, in turn, a subclass of functions Gi =
{gi1, . . . , giq(n)} of G so that Gi|Ri = G|Ri . Now pick any element g ◦f ∈ G ◦F .
Choose i so that f |S = fi|S and j so that g|Ri = gij |Ri . thus (g ◦ f)|S =
(gij ◦ fi)|S . It follows that

(G ◦ F)|S =
{
gij ◦ fi | i = 1, . . . , p(n) , j = 1, . . . , q

}
|S , (36)

and this proves the Lemma.

By induction, card (F1 ◦ . . . ◦ F`)|S ≤ p1(n)...p`(n) if we have growth
functions pi for each i.

Multilayer Nets with Binary Activations. As an application of Lemma 3,
we consider multilayer networks with H activations. The functions computed
by (k − 1)-hidden layer nets are, by definition, those functions of the form

fk ◦ . . . ◦ f1 , (37)

where, for each i,

fi = (f1
i , . . . , f

ni
i ) ; Rni−1 → Rni (38)

is a binary-vector valued perceptron: f ji (u) = H(Ajiu+bji ). The integers ni for
i = 1, . . . , k−1 are the numbers of units at the ith level, while n0 is the number
of inputs m and we take scalar outputs: nk = 1. Note that the intermediate
values are all Boolean. We may allow some of the weights (entries of Aji ’s,
and bji ’s) to be fixed and others to be variable, and let ρij be the number
of variable weights for f ji . (If all weights are variable, ρij = ni−1 + 1 for all
i, j.) The total number of parameters is ρ =

∑
ij ρij . As a consequence of

Theorem 3, the number of possible functions f ji (perceptrons) on any set of
cardinality n is bounded by ( enρij )ρij , because the VC dimension of perceptrons
with ρij parameters was found to be ρij . Thus, letting Fi be the set of possible
functions fi, there are ≤

∏
j ( enρij )ρij such functions on each set of cardinality

n. We conclude from Lemma 3 that the total number of functions that F can
compute on a set of cardinality n is bounded by:∏

i

∏
j

(
en

ρij

)ρij
≤
∏
ij

(en)ρij ≤ (en)ρ . (39)

Now, if there is any set S of cardinality n which is shattered, this would imply
that 2n ≤ (en)ρ, from which, by an elementary argument, one concludes
n ≤ 2ρ log eρ, and thus:
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Theorem 4. The class of functions computed by multilayer neural networks
with binary activations and ρ weights has VC dimension O(ρ log ρ).

This upper bound on VC dimension of multilayer nets is from Cover
(1968), and was also obtained in Baum and Haussler (1989).

The bound is tight, in the sense that Maass (1994) and Sakurai (1993)
showed how to obtain ρ-parameter classes of multilayer nets whose VC di-
mension is proportional to ρ log ρ. (Maass gave a construction using three
layers and binary inputs, while Sakurai used two layers but arbitrary real
inputs.) Thus, for H-activation feedforward nets, vcd ≈ cρ log ρ.

5.3 Counting Weights

The arguments given for multilayer nets with binary activations cannot be
generalized to real-valued activations. The reason for this is that the number
of functions on a set of size n is no more finite, in general.

This fact is most strikingly illustrated, perhaps, by simply adding linear
activations to the threshold model: the VC dimension of a ρ-parameter class
jumps from being proportional to ρ log ρ to the far larger number ρ2. We
discuss such nets with linear and threshold activations next. This serves the
purpose of introducing a very different technique for upper bounding VC
dimensions. This technique is not based on counting functions on inputs, but
instead relies upon the “dual” idea of counting functions on weights.

Multilayer Nets with Both H and Linear Activations. The basic
technical fact needed arose in 19th century work by L. Schläfli, see also Cover
(1965). It states that the number of regions into which Euclidean space can
be partitioned, using n hyperplanes, does not grow like 2n, but only as a
polynomial, nd, whose degree is the dimension d of the space.

Precisely, let Ψ(n, d) be the largest number of regions into which n hy-
perplanes can partition Rd. That is, given hyperplanes H1, . . . , Hn in Rd,
Ψ(n, d) is the best possible bound on the number of connected components
of the set N = Rd \ (H1

⋃
. . .
⋃
Hn). (For example, a little thought shows

that Ψ(1, d) = 2, Ψ(n, 1) = n+ 1, Ψ(2, 2) = 4, and (see Fig. 3) Ψ(3, 2) = 7.)

A
A
A
AA

,
,

,
,
,

Fig. 3. Seven regions formed by three lines in the plane.

Lemma 4. For n ≥ d, Ψ(n, d) ≤ Φ(n, d).
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Proof. Suppose that some n hyperplanes in Rd define q regions, and now
add a new hyperplane H. Take any of these q regions, and pick one which
H intersects; since the region is a convex set, it can be divided into at most
two subregions. Thus, one extra region may be created due to each such
intersection. On the other hand, the total number of regions intersected is at
most Ψ(n, d− 1), the number of regions into which Rd−1 can be decomposed
by n hyperplanes (because if two regions were different, they would make
different regions as intersections with H, which has dimension d − 1). In
conclusion, after adding one more hyperplane, the number of regions is at
most q + Ψ(n, d− 1). As q ≤ Ψ(n, d), we have, therefore:

Ψ(n+ 1, d) ≤ Ψ(n, d) + Ψ(n, d− 1) . (40)

This inequality, valid for all d, n, together with the boundary conditions
Ψ(1, d) = 2 and Ψ(n, 1) = n + 1 remarked earlier, and properties of com-
binatorial coefficients give us

Ψ(n, d) ≤
d∑
i=0

(
n

i

)
, (41)

as desired.

Actually, the inequality in the Lemma is an equality; in fact, any n hyper-
planes in “general position” achieve the bound, but the inequality is enough
for our purposes.

Consider now any feedforward first-order architecture with gates which
are either linear or Heaviside activations (that is, a feedforward threshold
network in which “skip” or “direct” connections are allowed between levels.)
Such an architecture computes a parametric class of functions β : W×U→ R,
in the sense discussed earlier, where β can be written as a composition of
linear combinations and activations H. We omit the formal definition of such
an object, which could be given in fairly obvious graph-theoretic terms (for
which see, for instance, the paper Koiran and Sontag (1997)), and instead
illustrate with an example.

Take the architecture that has two H activations and one linear function
at a first level, and a linear function at the top level. This means that

β(w,u) = c0 + c1H(a11u1 + a12u2 + b1) (42)
+c2H(a21u1 + a22u2 + b2) + c3u1 + c4u2

where the parameters are given by the list

w = (b1, b2, a11, a12, a21, a22, c0, c1, c2, c3, c4) . (43)

The critical observation, for this example, but also leading to a general
fact, is that if these 6 functions:

H(a11u1 + a12u2 + b1)
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H(a21u1 + a22u2 + b2)
H(c0 + c1+ c2 + c3u1 + c4u2)
H(c0 + c1 + c3u1 + c4u2)
H(c0 + c2 + c3u1 + c4u2)
H(c0 + c3u1 + c4u2)

happen to coincide on two given pairs (w,u) and (w′,u′), then it must be
the case that H(β(w,u)) = H(β(w′,u′)). Observe that the last 4 functions
are the sign-functions of the input u = (u1, u2) which could potentially be
computed by the “top” level function c0 + c1h1 + c2h2 + c3u1 + c4u1, when
taking into account all the possible combinations (h1, h2) of binary outputs
produced by the binary gates at the lower level. This observation may be
summarized by the following property: H(β(w,u)) is a Boolean function of
the six Boolean functions on the above list.

The general fact, which can be proved in exactly the same manner, by
introducing a Boolean function attached to each gate and each possible com-
bination of binary outputs from the (at most 2g−1) gates in lower levels, is
as follows:

Proposition 1. Consider an architecture as described above, and suppose
that there are a total of g Heaviside gates (including one at the top level).
Then, there exist r ≤ g2g−1 Boolean functions of the form

Qi(w,u) = H(Li(w,u)) , (44)

where each Li is an affine function of u with parameters w, and a Boolean
function b of r arguments, such that

H(β(w,u)) = b(Q1(w,u), . . . , Qr(w,u)) (45)

for all (w,u).

Note that the expression for r is an overly conservative estimate. For the
example that we discussed above it gives r = 12, but 6 was enough, because
gates at the first level do not get inputs from other gates. This rough estimate
is all we need, however, to allow us to prove the following counterpart of
Theorem 4:

Theorem 5. The class of functions computed by multilayer neural networks
with binary as well as linear activations and ρ weights has VC dimension
O(ρ2).

Proof. Take any sequence of inputs u1, . . . ,un, and let s := γ(u1,u2, . . . ,un).
Pick parameters w1, . . . ,ws so that the s distinct classifications

H(β(w1,u1)), . . . ,H(β(w1,un))
...

H(β(ws,u1)), . . . ,H(β(ws,un))
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result.
The fact that these classifications are all distinct means that, for each

pair i 6= j, there must be some k ∈ {1, . . . , n} so that H(β(wi,uk)) 6=
H(β(wj ,uk)). It follows therefore from Proposition 1 that there must be
some index ` ∈ {1, . . . , r} so that

H(L`(wi,uk)) 6= H(L`(wj ,uk)) . (46)

Consider the set of rn hyperplanes

Hk` := {w | L`(w,uk) = 0} ⊂ Rρ . (47)

The inequality (46) implies that, for each i 6= j there is some k and some `
such that wi and wj , as points in the Euclidean space Rρ, belong to different
half-spaces determined by Hk` (possibly one of them being in Hk` itself, but
not both of them). Let us assign, to each index i ∈ {1, . . . , s}, a symbol θ(i)
which denotes the connected component of

Rρ \

⋃
k,l

Hk`

 (48)

in which wi lies, or the hyperplane Hk` in which wi lies if it happens to fall
in one such hyperplane.

We have just proved that the mapping that sends i into θ(i) is one-to-
one. Therefore, s is upper bounded by the sum of rn (number of hyperplanes)
and Ψ(rn, ρ), the number of possible connected components determined by
the rn hyperplanes in Rρ. We know, from Lemma 4 and Equation (19), that
Ψ(rn, ρ) ≤ ( crnρ )ρ for some constant c, so s ≤ ( crnρ )ρ. On the other hand,
it also holds that r ≤ g2g−1, where g is the number of gates, and an upper
bound on the number of gates is the number of parameters ρ. We conclude
that there can be at most

s ≤ (c2ρn)ρ ≤ (c′n)ρ 2ρ
2

(49)

distinct classifications on a set of cardinality n, where c′ is some constant
that does not depend on n nor ρ. If such a set is shattered, then s = 2n ≤
(c′n)ρ 2ρ

2
. It follows using a little calculus that n = O(ρ2), as desired.

An upper bound of order ρ2 is best possible, in the following sense: one can
find a family of maps βρ, each realizable by a network architecture having cρ
linear and threshold units (where c is some constant), so that vcd (βρ) = ρ2

for each ρ. We next sketch this construction, which was given in Koiran and
Sontag (1997). For each ρ ∈ N, consider the set of real numbers in the interval
[0, 1] which have a binary expansion with ρ digits:

Bρ :=

{
w ∈ R

∣∣∣∣∣w =
ρ∑
i=1

bi
2i

, b1, . . . , bρ ∈ {0, 1}
}
, (50)
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let
Sρ := {1, . . . , ρ}2 , (51)

and define βρ : Rρ × R2 → R so that, for each w ∈ Bρ and each (i, j) ∈ S,

βρ ((w1, . . . , wρ), (i, j)) = ith bit of wj . (52)

Claim: Sρ is shattered by Fβρ . Indeed, suppose that we write the desired
binary classifications, for each element of Sρ, as a matrix M ∈ {0, 1}ρ×ρ (the
(i, j)th entry indicates how (i, j) is to be labeled). Pick w := (w1, . . . , wρ),
where wj is that dyadic rational whose expansion gives the bits in the jth
column of M . Then, β(w, (i, j)) is the ith bit of wj , that is, the ith element
of the jth column of M , as wanted.

It remains to show that βρ can be seen as the response of network made
up of linear and threshold activations with O(ρ) parameters. To achieve this,
we construct such a net as a cascade of 3 subnets, implementing, respectively,
the following subfunctions:

1. j 7→ wj
2. wj 7→ first ρ binary fractional bits (b1, . . . , bρ)
3. ((b1, . . . , bρ), i) 7→ bi.

These subnets are, in turn, computed as follows. The map j 7→ wj is obtained
from

w1 +
ρ∑
k=2

(wk − wk−1) H(j − k + 0.5) . (53)

The second one, wj 7→ bits (b1, . . . , bρ), is obtained recursively using:

bk = H
[

2k−1

(
wj −

k−1∑
`=1

2−`b`

)
− 0.5 + 2−(ρ+1)

]
. (54)

Finally, ((b1, . . . , bρ), i) 7→ bi is easy if multiplications are allowed:

b1 +
ρ∑
`=2

(b` − b`−1) H(i− `+ 0.5) . (55)

We cannot multiply directly, but can emulate binary multiplication via:

uv = H(u+ v − 1.5) , (56)

so this step can also be implemented by nets using linear and threshold ac-
tivations. For more details, see Koiran and Sontag (1997). (The construction
in that paper was motivated by a related one, given in Goldberg and Jerrum
(1995), which showed that real-number programs, in the Blum-Shub-Smale
model of computation, with running time T have VC dimension Ω(T 2).)
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6 Algebraic Techniques

Recall that in general one may have infinite VC dimension, even for fairly
simple function classes such as those arising from networks with two hid-
den units, each of which computes a simple-looking increasing function. The
formula for the activation (29) used in that example shows that there is a
“hidden oscillation” given by the trigonometric function which is used in its
definition. If the activations that are used in network can be expressed in
terms of “purely algebraic” operations, or even using exponentiation, this
pathological behavior cannot arise. The mathematical techniques required in
order to discuss these facts are a bit less elementary than the simple com-
binatorial and linear algebra tools used so far in this exposition. We briefly
sketch some of them in this section.

The first general finiteness result was obtained by Stengle and Yukich
(1989). It states that if β can be defined purely in terms of polynomials, then
vcd (β) < ∞. To formulate a precise statement, we need to employ some
logic formalism.

We say that β is algebraic if the inequality β(w,u) > 0 can be expressed
entirely in terms of multiplications, additions, real constants, logical connec-
tives, equalities and inequalities, and quantifiers, that is, if there exists a
first-order formula F in the theory of real numbers Th(R,+, ·) such that

β(w,u) > 0 ⇐⇒ F (w,u) is true . (57)

As an illustration, suppose that σ is the saturated-linear activation

σ(x) =
{
x if |x| ≤ 1
signx otherwise, (58)

and
β((a, b, c, d), u) = c σ(au+ b) + d . (59)

This is algebraic, because the value is positive if and only if

(∃ z) [cz + d > 0 & z = σ(au+ b)] (60)

where we may in turn replace “z = σ(au+ b)” by:

[(z = 1) & (au+ b > 1)] or [(−1 ≤ z ≤ 1) & (z = au+ b)]
or [(z = −1) & (au+ b < −1)] .

(Note how the quantified variable z appears as a hidden-unit activation.)
Similarly, using instead of this σ a rational activation such as σ(x) = x

1+|x| is
also allowed, since we can write “z = σ(au+b)” as (1+|au+b|)z−(au+b) = 0
and in turn express the absolute values in terms of basic inequalities. In
general, any network with polynomial, rational, or even piecewise rational
activations will give rise to algebraic β.
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The first main observation in this context is that it is possible to apply the
Tarski-Seidenberg elimination of quantifiers theorem in order to show that
one may always rewrite F as a Boolean function of polynomials: there are
polynomials Pi, i = 1, . . . , k and a Boolean function b so that

F (w,u) ≡ b[H(P1(w,u)), . . . ,H(Pk(w,u))] . (61)

(A typical example of such an elimination step for quantified real formulas is
the usual discriminant for quadratic equations: “(∃ z)(z2 + wz + u = 0)” is
equivalent to “not (4u−w2 > 0)”.) Thus,H(β(w,u)) = b(fw

1 (u), . . . , fw
k (u)),

where, for each i, fw
i = H(Pi(w, ·)). If we let Fi = {fw

i | w ∈ Rρ}, we have
from Lemma 2 that vcd (b(F1, . . . ,Fk)) ≤ ck maxi=1,...,k{vcd (Fi)}, where
ck is a constant which depends only on k.

On the other hand, and this is the second important observation, vcd (Fi)
is finite, for each i. This is because

Fi ⊆ Gi := {H ◦ P | P = poly of degree ≤ di} ,

where di := degree of Pi on u ∈ Rm, and Gi is a vector space of finite
dimension (namely,

(
di+m
m

)
). In general, it is obvious from the definition of

VC dimension that if F ⊆ G then vcd (F) ≤ vcd (G). We then conclude:

Theorem 6. For algebraic β, vcd (β) <∞.

All this assumes that β is algebraic. Unfortunately, most continuous acti-
vations used in neural network applications are not algebraic. It would appear
at first sight that the situation is then hopeless, as illustrated by the 1-2 net
with infinite VC dimension given earlier. However, it turns out that it is
possible to add exponentials and still preserve finiteness, and thus one may
include the standard saturations built in terms of rational operations and ex,
such as tanh or the close variation 1

1+e−x . Even certain inverse-trig functions
such as arctanx can be used as activations and still vcd (β) <∞ holds. This
is proved in the paper Macintyre and Sontag (1993). as an easy application of
deep work in logic carried out by van den Dries, Wilkie, Khovanskii, Shelah,
Laskowski, and others.

Back to the algebraic case, it turns out that one may actually obtain
explicit bounds for VC dimension. Specifically, suppose that activations are
piecewise polynomial (or rational), with definitions involving polynomials of
degree at most D in each of at most p pieces. Then, Goldberg and Jerrum
(1995) shows that the VC dimension of the class determined by β is

O( ρ + (log p+ logD)ρ2 ) . (62)

Note that this elegantly generalizes the cases of linear and H activations
(D = 1 and p = 2) and perceptrons (D = p = 1). The proof, like in the
“linear and H” case, relies upon counting connected components of a set
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analogous to N = Rd \ (
⋃
Hk`), where now each “Hk`” is an algebraic set

(set of zeroes of polynomial) instead of a hyperplane. Note that

Rρ \
(
{P1 = 0}

⋃
. . .
⋃
{Ps = 0}

)
= {w | P1(w)P2(w) · · ·Ps(w) 6= 0}

(63)
and that the last set is a projection of

{(w, z) | 1 − z P1(w) · · ·Ps(w) = 0} . (64)

As projections do not increase the number of connected components, it is in
principle only required to count components of algebraic sets. Such counts
can be found in work by Milnor and Thom in the early 1960s (there are
upper bounds of the type (csD)ρ for sets defined by s polynomials of degree
D in ρ variables), as well as later more precise estimates due to Warren and
discussed in the above reference.

For a fixed algebraic sigmoid, the Goldberg and Jerrum bound gives us
a VC dimension O(ρ2). This bound is best possible, as shown in Koiran
and Sontag (1997). This builds upon the quadratic lower bound explained
earlier for networks made up of linear and H activations. The trick is to use
the fact that any sigmoidal activation is – in the very appropriate words of
an anonymous reviewer of Koiran and Sontag (1997) – “locally linear and
globally threshold”. Precisely, let us say that σ is sigmoidal if there is at least
one point x0 where the derivative σ′(x0) exists and is nonzero, and also the
following two limits exist and are different:

lim
x→∞

σ(x) 6= lim
x→−∞

σ(x) (65)

(without loss of generality, we may take these limits as 1 and 0 respectively).
Then

σε(x) =
σ(x0 + εx)− σ(x0)

εσ′(x0)
≈ x (66)

and
σ(x/ε) ≈ H(x) (67)

for small ε, which allow us to replace linear and H activations by instances of
σ. This provides lower bounds of order ρ2 for architectures that use algebraic
sigmoids (such as saturation). Note that the derivative property excludes
σ = H, as should be the case since for threshold nets one gets a smaller VC
dimension, O(ρ log ρ).

For the non-algebraic activation σ = tanh (and some other related ones),
Karpinski and Macintyre (1997) proved, using similar counting arguments for
sets defined by exponential formulas, that the VC dimension is O(ρ4). (See
also Sakurai (1995).) Whether for sigmoidal nets this fourth-order bound can
be decreased is still open; the only known (to the author) lower bound is of
order ρ2, and follows by the constructions for general sigmoidal activations
discussed in the previous paragraph.
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Finally, we should mention a recent result obtained by Bartlett, Maiorov
and Meir (1997). It states that if the number of layers is fixed then the VC
dimension of feedforward networks which use piecewise polynomial activation
functions grows as ρ log ρ.

7 Some Further Remarks

We close with remarks concerning other notions of shattering as well some
facts about recurrent networks.

7.1 How Special are Shattered Sets?

We defined the VC dimension as the largest k such that some k-element set
is shattered. In general, one cannot shatter all sets of that size; for instance,
half-spaces in R2 shatter all sets of three points which do not lie in a segment,
and more generally, for perceptrons (half-spaces), one may shatter all affinely
independent (ρ + 1)-subsets, but not dependent sets. This leads however to
the question: when can one shatter “generic” sets of size equal to the VC
dimension?

To make this precise, we fix a concept class and let, for each k, Sk be the
subset of Uk, possibly empty, consisting of the ordered sets of k inputs that
can be shattered. Note that Sk 6= ∅ if and only if k ≤ vcd . To talk about
genericity, we need to have more structure on the space of inputs, so let us
assume from now on that inputs are m-vectors, so S ⊆ (Rm)k = Rmk. We
define then, a new notion of dimension:

µ := sup
{
k ≥ 1 | Sk is a dense subset of Rmk

}
.

(One could substitute the words “open dense” instead of just “dense” in
this definition, with no change, as long as the class of concepts is defined
in terms of continuous mappings, because in that case if a set is shattered
then a small perturbation of the set also is.) This measure of classifying
power was introduced in Sontag (1992), where basic properties and bounds
were provided. As an example, for perceptrons we have µ = vcd = m + 1.
Generally, any time that one has a vector space of analytically parametrized
class of functions, if the VC dimension is k then generic sets of that size can
be shattered, as simply a determinant must be nonzero, so for such linear
classes one gets equality of VC dimension and µ. However, µ may be strictly
less that the VC dimension, as shown by the class of concepts “intersections
of two halfspaces in R2” (which we may think of as 2-1 “and” nets): there
µ = 3 (we cannot shatter a four-point set if one point is in the convex hull
of the other three, and the set of such configurations is open), but the VC
dimension is 4 (any 4 vertices of a quadrilateral will be shattered).
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It was shown in Sontag (1997b) that, for parametric classes β : Rρ×U→ R
defined in terms of rational functions and exponentials, and in particular for
any architecture using the standard activation tanh(x) (or 1/(1 + e−x)):

µ ≤ 2ρ+ 1 . (68)

In conclusion, while the VC dimension for neural networks may be very high
(order ρ4 being the best known bound), whenever k > 2ρ+1, shattered k-sets
are “special”.

7.2 VC Dimension for Dynamical Systems

For processing by dynamical systems, for which inputs are presented sequen-
tially as opposed to in parallel, the VC dimension scales not only with the
number of parameters (weights) but also with the size k of the “input win-
dow” being processed. This leads to a very different set of estimates, analo-
gous to the work in learning theory in which one studies the learning of strings
of length k by n-state automata (work by Gold, Angluin, Rivest-Shapire, and
others). In order to illustrate these, we briefly discuss recurrent networks.

Feedback, or recurrent, networks, are specified by recursions such as

x(t+ 1) = σ (Ax(t) +Bu(t)) , t = 0, 1, 2, . . .

where x(t) is the n-vector of states at time t, and u(t) is the scalar input
at time t, σ(z1, . . . , zn) := (σ(z1), . . . , σ(zn)) represents the componentwise
application of a scalar nonlinearity σ (the activation), and the matrices A
and B encode the weights or parameters defining the system. One may also
consider the initial state x(0) as a parameter. Thus there are ρ = n2 + 2n
weights, in the n×nmatrix A, the n vectorB, and the initial state vector x(0).
We think as one coordinate of x(t), let us say the first one, as indicating the
output. It is also possible to consider continuous-time (differential equation)
models, of course. See Sontag (1997a) for an introduction to the subject and
many more details. For each fixed dynamic order (dimension) n and fixed
activation σ, and we may introduce a family of concepts: for each input
length k, there is the class Pn,k of input sequences which lead to a positive
output at time k + 1.

The results in Dasgupta and Sontag (1996) and Koiran and Sontag (1998)
show that, in rough terms (see the papers for the precise statements):

1. when σ = H, vcd (Pn,k) ≈ p(n) log k, for some polynomial p;
2. when σ is the identity, vcd (Pn,k) ≈ p(n) log k;
3. for sigmoidal piecewise polynomial activations, vcd (Pn,k) ≈ p(n)k.

For the sigmoid 1/(1 + e−z), the bounds known are between orders k and k2

on the input length k. See also Sontag (1998) for a continuous-time result.
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