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Abstract

Recurrent perceptron classifiers generalize the usual perceptron model. They correspond
to linear transformations of input vectors obtained by means of “autoregressive moving-
average schemes”, or infinite impulse response filters, and allow taking into account those
correlations and dependences among input coordinates which arise from linear digital fil-
tering. This paper provides tight bounds on sample complexity associated to the fitting of
such models to experimental data. The results are expressed in the context of the theory of
probably approximately correct (PAC) learning.
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1 Introduction

One of the most popular approaches to binary pattern classification, underlying many statis-
tical techniques, is based on perceptrons or linear discriminants; see for instance the classical
reference [10]. In this context, one is interested in classifying k-dimensional input patterns
v = (v1, . . . , vk) into two disjoint classes A+ and A−. A perceptron P which classifies vectors
into A+ and A− is characterized by a vector (of “weights”) ~c ∈ Rk, and operates as follows. One
forms the inner product ~c.v = c1v1 + . . .+ ckvk. If this inner product is positive, v is classified
into A+, otherwise into A−; see Figure 1. (A variation allows for an additional constant term
c0, corresponding geometrically to a partition of Rk by a hyperplane not passing through the
origin, but this term, can be incorporated into the remaining weights if one input variable is
always set to the value “1”.)
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Figure 1: Usual view of perceptron classifiers

In practice, given a large number of labeled (“training”) samples (v(i), εi), where εi ∈ {+,−},
one attempts to find a vector ~c so that ~c.v(i) is positive when εi = “+” and negative (or
zero) otherwise. Finding such a vector amounts to solving a linear programming problem, and
recursive algorithms (“perceptron learning method”) are popular for its solution. The resulting
perceptron corresponding to one such vector ~c is then used to classify new, previously unseen,
examples. There are two ways of justifying this procedure. The first is under the hypothesis
that the sets A+ and A− are indeed linearly separable, that is, there is some hyperplane having
them on opposite sides. In addition, it is assumed that the training samples are in either A+ or
A−, and are labeled accordingly. Provided that the training set is large enough, a hyperplane
separating the samples is a good approximation of a true separating hyperplane for A+ and
A−. A second justification (called sometimes “agnostic learning” in computational learning
theory) is based on the fact that, if a large proportion of samples can be linearly separated,
then it is very likely that future samples will be correctly classified when using the same rule.
Both of these justifications can be made precise on the basis of sample complexity bounds (“VC
dimension” as discussed below), and can be found in classical references (see e.g. [27]) as well
as [14]. These bounds give estimates of the number of random training samples needed so
that a perceptron consistent with (a large proportion of) the seen samples will also, with high
probability, perform well on unseen data; see in particular the exposition in [17]. The bounds
are linear in the input dimensionality, k, for any fixed confidence levels.
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Recurrent Perceptrons

In signal processing and control applications, the size k of the input vectors v is typically
very large. As perceptron theory says that a number of training samples proportional to k is
required for reliable prediction, this means that a very large number of samples is needed in such
applications. However, perceptron theory does not take into account the fact that the signals
of interest may exhibit context dependence and correlations, and this prior information can
help in narrowing down the search for a classifier. It is often the case in such applications that
the classes A+ and A− can be separated by means of a linear dynamical system of fairly small
dimensionality . In that case, the inner product ~c.v represents a convolution by a separating
vector ~c that is the impulse-response of a recursive digital filter of some order n � k. In this
model, we think of the inputs as being presented sequentially instead of in parallel, to a linear
filter, as shown in Figure 2. (In general, at each time t, vt can be itself a vector, though for
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Figure 2: Recurrent perceptron classifiers

simplicity we will restrict our analysis to the case in which these are scalars.) This dynamic
behavior can be represented in various ways, for instance by means of an “autoregressive moving
average” update

yt = α1yt−n + . . .+ αnyt−1 + β1vt−n + . . .+ βnvt−1 t = n+ 1, . . . , k + 1

for appropriate coefficients αi’s and βi’s (with the recursion initialized at y1 = . . . = yn = 0, and
where the sign of the last output yk+1 determines the classification), or equivalently, letting ~c
denote the impulse response sequence, as a classical perceptron yk+1 = ~c.v in which the weight
vector ~c has a special form, namely ~c is n-recursive, meaning that there exist real numbers
r1, . . . , rn so that

cj =
n∑
i=1

cj−iri , j = n+ 1, . . . , k .

Seen in this context, the usual perceptrons are nothing more than the very special subclass of
“finite impulse response” systems (all poles at zero); thus it is appropriate to call the more
general class “recurrent” or “IIR (infinite impulse response)” perceptrons (as done in [1, 2]).

The BPS (“backpropagation for sequences”) approach developed by Bengio and coauthors
(see [6], Section 4.4) is an example of an application of these ideas in signal processing. The au-
toregressive equation is seen as determining the behavior of dynamical processing units (cf. [6],
equation 4.17), and there is an output nonlinearity given by a “squashing” function, corre-
sponding in our case to taking the sign of the output. (Sometimes cascades of these units
are allowed, which makes the model capable of handling more highly nonlinear data as well.)
The reference [6] describes experimental data regarding the use of the BPS architecture in sev-
eral applications, including the speech recognition task of speaker-independent discrimination
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between the consonants “b” and “d” (in this case, at each t the input vt is a vector whose
coordinates consist of Fourier-like parameters associated to speech samples as well as some
additional information on signal levels). There is also related work in control theory dealing
with such classifying, or more generally quantized-output, linear systems; see [9, 16, 22]. Vari-
ous dynamical system models for classification appear also when learning finite automata and
languages —see e.g. [12]— and in signal processing as a channel equalization problem (at least
in the simplest 2-level case) when modeling linear channels transmitting digital data from a
quantized source —see [3] and also the related paper [19].

Thus we are motivated to look into the theoretical issue that arises from the fitting data to
perceptrons in which the weight vector ~c is constrained to lie in the class of n-recursive (with
fixed n � k) vectors. One may expect that the size of learning samples required in order to
reliably classify future unlabeled inputs will be much smaller than k. Indeed, roughly speaking
the main result is that the number of samples needed is proportional to the just logarithm of
the length k (as opposed to k itself, as would be the case if one did not take advantage of the
recurrent structure). This number is in general larger than the number of parameters 2n, a
perhaps surprising fact (see Remark 4.4). The precise formulation is in terms of computational
leaning theory (or, in more classical statistical language, in terms of generalized Glivenko-
Cantelli theorems for uniform convergence of empirical probabilities) and is reviewed below. We
also make some remarks on the actual computational complexity of finding a vector ~c consistent
with the training data, and we also discuss briefly the identification of linear dynamical systems,
in which the complete output (as opposed to merely the sign) is of interest.

Sample Complexity and VC Dimension

We next very briefly review some (by now standard) notions regarding sample complexity, with
the purpose of motivating the main results, which deal with the calculation of VC dimensions.
For more details see the books [27, 28], the paper [7], or the survey [17].

In the general classification problem, an input space X as well as a collection F of maps
X → {−1, 1} are assumed to have been given. (The set X is assumed to be either countable
or an Euclidean space, and the maps in F are assumed to be measurable. In addition, mild
regularity assumptions are made which insure that all sets appearing below are measurable,
but details are omitted since in our context these assumptions are always satisfied.) Let W be
the set of all sequences

w = (u1, ψ(u1)), . . . , (us, ψ(us))

over all s ≥ 1, (u1, . . . , us) ∈ Xs, and ψ ∈ F . An identifier is a map ϕ : W → F . The value of
ϕ on a sequence w as above will be denoted as ϕw. The error of ϕ with respect to a probability
measure P on X, a ψ ∈ F , and a sequence (u1, . . . , us) ∈ Xs, is

Errϕ(P, ψ, u1, . . . , us) := Prob [ϕw(u) 6= ψ(u)]

(where the probability is being understood with respect to P ).
The class F is said to be (uniformly) learnable if there is some identifier ϕ with the following

property: For each ε, δ > 0 there is some s so that, for every probability P and every ψ ∈ F ,

Prob [Errϕ(P, ψ, u1, . . . , us) > ε] < δ
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(where the probability is being understood with respect to P s on Xs).
In the learnable case, the function s(ε, δ) which provides, for any given ε and δ, the smallest

possible s as above, is called the sample complexity of the class F . It can be proved that
learnability is equivalent to finiteness of the Vapnik-Chervonenkis (VC) dimension ν of the
class F , a combinatorial concept whose definition we recall later. In fact, s(ε, δ) is bounded by
a polynomial in 1/ε and 1/δ and is proportional to ν in the following precise sense (cf. [7, 26]):

s(ε, δ) ≤ max
{

8ν
ε

log
(

13
ε

)
,
4
ε

log
(

2
δ

)}
Moreover, lower bounds on s(ε, δ) are also known, in the following sense (cf. [7]): for 0 < ε < 1

2 ,
and assuming that the collection F is not trivial (i.e., F does not consist of just one mapping
or a collection of two disjoint mappings, see [7] for details), we must have

s(ε, δ) ≥ max
{

1− ε
ε

ln
(

1
δ

)
, ν(1− 2(ε(1− δ) + δ))

}
The above bounds motivate the studies dealing with estimating VC dimension, as we pursue
here.

When there is an algorithm that allows computing an identifier ϕ in time polynomial on the
sample size, the class is said to be learnable in the PAC (“probably approximately correct”)
sense of Valiant (cf. [25]). In this paper, we first study the question of uniform learnability
in the sample complexity sense, for recurrent perceptron concept classes, and we also prove a
result, in Section 5 regarding PAC learnability for such classes.

There is a variation of the PAC learning results, in which the objective is not to obtain
arbitrary small errors but merely to approximate the smallest possible error rate achievable
with a given class of functions F . This is much more realistic in applications, as there is
no reason to assume that a given structure (such as recurrent perceptrons of a given order)
will represent the data precisely. The VC dimension appears again in the sample complexity
estimates associated to this “agnostic learning” problem (the term originates in the fact that
we do not wish to assume a particular “target concept” that generates the observed samples).
A typical result in this area is as follows (cf. [17], based on [18, 14], for more details). Let A be
any distribution over X×{−1, 1}. Pick any ε, δ > 0. Suppose that a sample (u1, y1), . . . , (us, ys)
of length s = s(ε, δ) is drawn according to A, where

s(ε, δ) ≥ 576
ε2

(2ν ln
48e
ε

+ ln
8
δ

) .

Assume that we now approximately minimize the empirical risk, in the sense that we find a
function ψ ∈ F so that the average number of missclassifications µ(ψ) := (1/s)card {i|ψ(ui) 6=
yi} when using ψ is within ε/3 of the minimal possible number infψ′∈F µ(ψ′). Then, with
probability ≥ 1 − δ (with respect to the random drawing of the sample), the expectation of
the error made by ψ on samples drawn according to the same distribution A is within ε of the
minimal possible expected error among all possible ψ′ ∈ F .

Generalizations to the learning of real-valued (as opposed to Boolean) functions, by evalua-
tion of the “pseudo-dimension” of recurrent maps, are also possible; see the brief discussion in
Section 6.
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2 Definitions and Statements of Main Results

The concept of VC dimension is classically defined in terms of abstract concept classes. Assume
that we are given a set X, called the set of inputs , and a family of subsets C of X, called the set
of “concepts.” A subset X ⊆ X is said to be shattered (by the class C) if for each subset B ⊆ X
there is some C ∈ C such that B = C

⋂
X. The VC dimension is then the largest possible

positive integer n (possibly +∞) so that there is some X ⊆ X of cardinality n which can be
shattered. An equivalent manner of stating these notions, somewhat more suitable for our
purposes, proceeds by identifying the subsets of X with Boolean functions from X to {−1, 1}
(we pick {−1, 1} instead of {0, 1} for notational convenience): to each such Boolean function
φ there is an associated subset, namely {x ∈ X |φ(x) = 1}, and conversely, to each set B ⊆ X
one can associate its characteristic function φB defined on the set X. Similarly, we can think
of the sets C ∈ C as Boolean functions on X and the intersections C

⋂
X as the restrictions of

such functions to X. Thus we restate the definitions now in terms of functions.
Given the set X, and a subset X of X, a dichotomy on X is a function

δ : X → {−1, 1} .

Assume given a class F of functions X→ {−1, 1}, to be called the class of classifier functions.
The subset X ⊆ X is shattered by F if each dichotomy on X is the restriction to X of some
φ ∈ F . The Vapnik-Chervonenkis dimension vc (F) is the supremum (possibly infinite) of the
set of integers κ for which there is some subset X ⊆ X of cardinality κ which can be shattered
by F .

Pick any two integers n>0 and q≥0. A sequence

~c = (c1, . . . , cn+q) ∈ Rn+q

is said to be n-recursive if there exist real numbers r1, . . . , rn so that

cn+j =
n∑
i=1

cn+j−iri , j = 1, . . . , q .

(In particular, every sequence of length n is n-recursive, but the interesting cases are those in
which q 6= 0, and in fact q � n.) Given such an n-recursive sequence ~c, we may consider its
associated perceptron classifier. This is the map

φ~c : Rn+q → {−1, 1} : (x1, . . . , xn+q) 7→ sign

(n+q∑
i=1

cixi

)

where the sign function is understood to be defined by sign (z) = −1 if z ≤ 0 and sign (z) = 1
otherwise. (Changing the definition at zero to be +1 would not change the results to be
presented in any way.) We now introduce, for each two fixed n, q as above, a class of functions:

Fn,q :=
{
φ~c | ~c ∈ Rn+q is n-recursive

}
.

This is understood as a function class with respect to the input space X = Rn+q, and we are
interested in estimating vc (Fn,q).

Our main result will be as follows (in this paper, all logarithms are understood to be in base
2):
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Theorem 1 max
{
n, nblog(b1 + q−1

n c)c
}
≤ vc (Fn,q) ≤ min {n+ q , 18n+ 4n log(q + 1)} .

The upper bound is a simple consequence of an argument based on parameter counts, and
is given in Section 4. Much more interesting is the almost matching lower bound, which will
involve a result on dual VC dimensions which we prove in Section 3.

Some particular cases are worth discussing. When q = O(n) then both the upper and the
lower bounds are of the type cn for some (different) constants c. If q = Ω(n1+ε) (for any
constant ε > 0), then both the upper and the lower bounds are of the form cn log( qn) for some
constants c. In this latter case, assume that one is interested in the behavior of vc (Fn,q) as
n → +∞ while q grows polynomially in n; then the upper and lower bounds are both of the
type cn logn, for some constants c. If instead q grows exponentially on n, both the upper and
lower bounds are polynomial in n.

The organization of the rest of the paper is as follows. In Section 3 we prove an abstract
result on VC-dimension, which is then used in Section 4 to prove Theorem 1. In Section 5,
we show that the consistency problem for recurrent perceptrons can be solved in polynomial
time, for any fixed n; some recent facts regarding representations of real numbers and decision
problems for real-closed fields, needed in this Section, are reviewed in an Appendix. Finally,
in Section 6 we make some final comments about bounds on the sample complexity needed
for identification of linear dynamical systems, that is to say, the real-valued functions obtained
when not taking “signs” when defining the maps φ~c.

3 An Abstract Result on VC Dimension

Assume that we are given two sets X and Λ, to be called in this context the set of inputs and
the set of parameter values respectively. Suppose that we are also given a function

F : Λ× X→ {−1, 1} .

Associated to this data is the class of functions

F := {F (λ, ·) : X→ {−1, 1} |λ ∈ Λ}

obtained by considering F as a function of the inputs alone, one such function for each possible
parameter value λ. We will prove lower bounds in Theorem 1 by studying the VC dimension
of classes obtained in this parametric fashion.

Note that, given the same data one could, dually, study the class

F∗ : {F (·, ξ) : Λ→ {−1, 1} | ξ ∈ X}

which is obtained by fixing the elements of X and thinking of the parameters as inputs. It is
well-known (cf. [11], Theorem 9.3.2, and in any case, a consequence of the much more general
result to be presented below) that

vc (F) ≥ blog(vc (F∗))c,
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which provides a lower bound on vc (F) in terms of the “dual VC dimension.” A sharper
estimate is possible when Λ can be written as a product of n sets

Λ = Λ1 × Λ2 × . . .× Λn (1)

and that is the topic which we develop next.
We assume from now on that a decomposition of the form in Equation (1) is given, and

will define a variation of the dual VC dimension by asking that only certain dichotomies on Λ
be obtained from F∗. We define these dichotomies only on “rectangular” subsets of Λ, that is,
sets of the form

L = L1 × . . .× Ln ⊆ Λ

with each Li ⊆ Λi a nonempty subset. Given any index 1 ≤ κ ≤ n, by a κ-axis dichotomy
on such a subset L we mean any function δ : L → {−1, 1} which depends only on the κth
coordinate, that is, there is some function φ : Lκ → {−1, 1} so that δ(λ1, . . . , λn) = φ(λκ) for
all (λ1, . . . , λn) ∈ L; an axis dichotomy is a map that is a κ-axis dichotomy for some κ. A
rectangular set L will be said to be axis-shattered if every axis dichotomy is the restriction to
L of some function of the form F (·, ξ) : Λ→ {−1, 1}, for some ξ ∈ X.

Theorem 2 If L = L1 × . . .×Ln ⊆ Λ can be axis-shattered and each set Li has cardinality ri,
then vc (F) ≥ blog(r1)c+ . . .+ blog(rn)c.

Note that in the special case n = 1 one recovers the result vc (F) ≥ blog(vc (F∗))c. We
will prove this theorem below, after a couple of small observations.

Remark 3.1 Assume that L = L1 × . . . × Ln ⊆ Λ can be axis-shattered. Pick any indices
(possibly equal) κ1, κ2 ∈ {1, . . . , n} and any functions φi : Lκi → {−1, 1}, i = 1, 2. By
definition of axis-shattering, there exist elements ξ1, ξ2 ∈ X, such that

F (λ1, . . . , λn, ξi) = φi(λκi) ∀(λ1, . . . , λn) ∈ L1 × . . .× Ln . (2)

We then have:

(a) If κ1 = κ2 and ξ1 = ξ2 then φ1 = φ2.

(b) If κ1 6= κ2 and ξ1 = ξ2 then both φ1 and φ2 are constant functions.

Property (a) is obvious. Property (b) is proved as follows. Without loss of generality, we may
take κ1 = 1 and κ2 = 2. Now pick λ̂2, . . . , λ̂n arbitrarily. Then

φ1(λ) = F (λ, λ̂2, . . . , λ̂n, ξ) = φ2(λ̂2)

for all λ ∈ L1, and a similar argument shows that φ2 is constant as well. 2

Remark 3.2 Let S = {s1, s2, . . . , sr} be a set of cardinality r = 2m, where m is a positive
integer. Let M be the m×r matrix whose columns are the 2m possible vectors in {−1, 1}m and
define the functions φi by the formula φi(sj) = Mij for all 1 ≤ i ≤ m and 1 ≤ j ≤ r. Then, it is
easy to see that the the set of m (distinct) dichotomies φ1, φ2, . . . , φm on S have the following
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property: For each vector (a1, a2, . . . , am) ∈ {−1, 1}m, there exists a unique index j ∈ {1, . . . r}
such that

φi(sj) = ai , i = 1, . . . ,m . (3)

Moreover, none of the functions φi is a constant function. 2

Proof of Theorem 2. We may assume without loss of generality that each rκ = 2mκ for some
positive integers m1, . . . ,mn. This is because any possible indices so that rκ = 1 can be dropped
(and the result proved with smaller n), and, for each rκ > 1, a subset L′κ of Lκ, of cardinality
2blog rκc, could be used instead of the original Lκ if rκ is not a power of two.

To prove the Theorem, it will be enough to find n disjoint subsets X1, X2, . . . , Xn of X, of
cardinalities m1, . . . ,mn respectively, so that the set X = X1

⋃
X2
⋃
. . .
⋃
Xn is shattered. Pick

any κ ∈ {1, . . . , n}. Consider the set Lκ = {lκ,1, lκ,2, . . . , lκ,rκ}. By Remark 3.2 applied to this
set, there exists a set of mκ distinct and nonconstant dichotomies φκ,1, φκ,2, . . . , φκ,mκ on Lκ so
that, for any vector (a1, a2, . . . , amκ) ∈ {−1, 1}mκ , there exists a unique index 1 ≤ jκ ≤ rκ so
that

φκ,i(lκ,jκ) = ai , i = 1, . . . ,mκ . (4)

Since L can be axis-shattered, each of the axis dichotomies φκ,i can be realized as a function
F (·, ξ). That is, there exists a set inputs

Xκ = {ξκ,1, ξκ,2, . . . , ξκ,mκ}

so that, for each i = 1, . . . ,mκ,

F (λ1, . . . , λn, ξκ,i) = φκ,i(λκ) , ∀(λ1, . . . , λn) ∈ L1 × . . .× Ln . (5)

Note also that, by construction, ξκ,i 6= ξκ,i′ for i 6= i′, since the corresponding functions φκ,i are
distinct (recall Remark 3.1, part (a)).

Summarizing, for each vector (a1, a2, . . . , amκ) ∈ {−1, 1}mκ and for each κ ∈ {1, . . . , n}
there is some 1 ≤ jκ ≤ rκ so that

F (λ1, . . . , λκ−1, lκ,jκ , λκ+1, . . . , λn, ξκ,i) = φκ,i(lκ,jκ) = ai , i = 1, . . . ,mκ (6)

for all λq∈Lq (q 6=κ). We do this construction for each κ and define X := X1
⋃
X2
⋃
. . .
⋃
Xn.

Note that the sets Xκ are disjoint, since ξκ,i 6= ξκ′,i′ whenever κ 6= κ′ (by part (b) of Remark 3.1
and the fact that the functions φκ,i are all nonconstant). The set X can be shattered. Indeed,
assume given any dichotomy δ : X → {−1, 1}. Using Equation (6), with the vector a =
(δ(ξκ,1), . . . , δ(ξκ,mκ)) for each κ, it follows that for each κ ∈ {1, . . . , n} there is some 1 ≤ jκ ≤ rκ
so that

F (l1,j1 , . . . , ln,jn , ξκ,i) = δ(ξκ,i) , i = 1, . . . ,mκ.

That is, the function F (λ, ·) coincides with δ on X, when one picks λ = (l1,j1 , . . . , ln,jn).
Note that the lower bound in the above result is almost tight, because by Lemma 4.2

there is a set of the form L = L1 × . . . × Ln ⊆ Λ which can be axis-shattered and for which
vc (F) = O(n log(rn)), with cardinality of each Li greater or equal to r for each i.
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4 Proof of Main Result

We recall the following result; it was proved, using Milnor-Warren bounds on the number of
connected components of semi-algebraic sets, by Goldberg and Jerrum:

Fact 4.1 ([13]) Assume given a function F : Λ × X → {−1, 1} and the associated class of
functions F := {F (λ, ·) : X → {−1, 1} |λ ∈ Λ}. Suppose that Λ = Rk and X = Rn, and that
the function F can be defined in terms of a Boolean formula involving at most s polynomial
inequalities in k + n variables, each polynomial being of degree at most d. Then, vc (F) ≤
2k log(8eds). 2

Lemma 4.2 vc (Fn,q) ≤ min {n+ q , 18n+ 4n log(q + 1)}

Proof. Since Fn,q ⊆ Fn+q,0,

vc (Fn,q) ≤ vc (Fn+q,0) = n+ q

where the last equality follows from the fact that vc (sign (G)) = dim(G) when G is a vector
space of real-valued functions (the standard “perceptron” model). On the other hand, it is
easy to see (by induction on j) that, for n-recursive sequences, cn+j (for 1 ≤ j ≤ q) is a
polynomial in c1, c2, . . . , cn, r1, r2, . . . , rn of degree exactly j + 1. Thus one may see Fn,q as a
class obtained parametrically, and applying Fact 4.1 (with k = 2n, s = 1, d = q + 1) gives
vc (Fn,q) < 18n+ 4n log(q + 1).

Lemma 4.3 vc (Fn,q) ≥ max{n, nblog(b1 + q−1
n c)c}

Proof. As Fn,q contains the class of functions φ~c with ~c = (c1, . . . , cn, 0, . . . , 0), which in turn
being the set of signs of an n-dimensional linear space of functions, has VC dimension n, we know
that vc (Fn,q) ≥ n. Thus we are left to prove that if q > n then vc (Fn,q) ≥ nblog(b1 + q−1

n c)c.
The set of n-recursive sequences of length n+q includes the set of sequences of the following

special form:

cj =
n∑
i=1

αil
j−1
i , j = 1, . . . , n+ q (7)

where αi, li ∈ R for each i = 1, . . . , n. (More precisely, this is a characterization of those n-
recursive sequences of length n + q for which the characteristic roots, that is, the roots of the
polynomial determined by the recursion coefficients, are all real and distinct; such facts are
classical in the theory of recurrences.) In turn, this includes the sequences as in Equation (7)
in which one uses only α1 = . . . = αn = 1. Hence, to prove the lower bound, it is sufficient to
study the class of functions induced by

F : Rn × Rn+q → {−1, 1} , (λ1, . . . , λn, x1, . . . , xn+q) 7→ sign

 n∑
i=1

n+q∑
j=1

λj−1
i xj

 (8)
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Let r = b q+n−1
n c and let L1, . . . , Ln be n disjoint sets of real numbers (if desired, integers), each

of cardinality r. Let L =
⋃n
i=1 Li. In addition, if rn < q+n−1, then select an additional set B

of (q+n−rn−1) real numbers disjoint from L.
We will apply Theorem 2, showing that the rectangular subset L1 × . . . × Ln can be axis-

shattered. Pick any κ ∈ {1, . . . , n} and any φ : Lκ → {−1, 1}. Consider the (unique) interpo-
lating polynomial

p(λ) =
n+q∑
j=1

xjλ
j−1

in λ of degree q+n−1 such that

p(λ) =

{
φ(λ) if λ ∈ Lκ
0 if λ ∈ (L ∪B)− Lκ.

One construction of such a polynomial is via the Lagrange formula

∑
l∈Lκ

φ(l)
Πlj∈L∪B ; lj 6=l(λ− lj)
Πlj∈L∪B ; lj 6=l(l − lj)

.

Now pick ξ = (x1, . . . , xn+q−1). Observe that

F (l1, l2, . . . , ln, x1, . . . , xn+q) = sign

(
n∑
i=1

p(li)

)
= φ(lκ)

for all (l1, . . . , ln) ∈ L1× . . .×Ln, since p(l) = 0 for l 6∈ Lκ and p(l) = φ(l) otherwise. It follows
from Theorem 2 that vc (Fn,q) ≥ nblog(r)c, as desired.

Remark 4.4 The dependence of vc (Fn,q) on q in Lemma 4.3 is perhaps a somewhat surprising
combinatorial fact, since there are only 2n free parameters c1, . . . , cn, r1, . . . , rn. Intuitively, the
explanation for this dependence is that, although the number of free parameters is independent
of q, the degree of the polynomial computed does depend on q, and this degree influences
the number of distinct sign assignments that the polynomial can achieve. In general, the VC
dimension of a concept class may be far larger than the number of free parameters, even infinite
(cf. [21]), and is roughly equal to the square of the number of parameters for general classes
of “neural network” classifiers (cf. [15]). As a related remark, observe that, as follows from a
simple continuity argument, once that parameters have been found to achieve the shattering
of a set of samples, any other set of samples near this set can also be shattered (using the
same sets of parameters). In other words, one can always shatter an open set of samples (when
viewing such sequences of samples as elements of an appropriate product Euclidean space) of
cardinality equal to the VC dimension. One may ask about the shattering of more arbitrary
sequences, for instance, the shattering of all sequences in “general position”. In [23], a result is
given which implies, in particular, that when there are 2n parameters it is impossible to shatter
all general position sets of more than 4n + 2 points. So the “dimension” obtained when one
asks for shattering of all sets in general position (a concept studied also in [21], and related to
Cover’s capacity measures) is linearly proportional to the number of parameters. 2

11



5 The Consistency Problem

We next briefly discuss polynomial time learnability of recurrent perceptron mappings. As
discussed in e.g. [24], in order to formalize this problem we need to first choose a data structure
to represent the hypotheses in Fn,q. In addition, since we are dealing with complexity of
computation involving real numbers, we must also clarify the meaning of “finding” a hypothesis,
in terms of a suitable notion of polynomial-time computation. Once this is done, the problem
becomes that of solving the consistency problem:

Given a set of s ≥ s(ε, δ) inputs ξ1, ξ2, . . . , ξs ∈ Rn+q, and an arbitrary dichotomy
∆ : {ξ1, ξ2, . . . , ξs} → {−1, 1} find a representation of a hypothesis φ~c ∈ Fn,q such
that the restriction of φ~c to the set {ξ1, ξ2, . . . , ξs} is identical to the dichotomy ∆
(or report that no such hypothesis exists).

The representation to be used should provide an efficient encoding of the values of the param-
eters r1, . . . , rn, c1, . . . , cn: given a set of inputs (x1, . . . , xn+q) ∈ Rn+q, one should be able to
efficiently check concept membership (that is, compute sign (

∑n+q
i=1 cixi)). Regarding the precise

meaning of polynomial-time computation, there are at least two models of complexity possible.
The first, the unit cost model of computation, is intended to capture the algebraic complexity
of the problem; in that model, each arithmetic and comparison operation on two real numbers
is assumed to take unit time, and finding a representation in polynomial time means doing so
in time polynomial on s + n + q. An alternative, the logarithmic cost model , is closer to the
notion of computation in the usual Turing machine sense; in this case one assumes that the
inputs (x1, . . . , xn+q) are rational numbers, with numerators and denominators of size at most
L bits, and the time involved in finding a representation of r1, . . . , rn, c1, . . . , cn is required to
be polynomial on L as well.

We study the complexity of the learning problem for constant n (but varying q). The
key step is treating consistency, since if the decision version of a consistency problem is NP-
hard, then the corresponding class is not properly polynomially learnable under the complexity
theoretic assumption RP6=NP, cf. [7]. For a suitable choice of representation, we will prove the
following result:

Theorem 3 For each fixed n > 0, the consistency problem for Fn,q can be solved in time
polynomial in q and s in the unit cost model, and time polynomial in q, s, and L in the
logarithmic cost model.

Since vc (Fn,q) = O(n+n log(q+ 1)), it follows from here that the class Fn,q is learnable in
time polynomial in q (and L in the log model). Our proof will consist of a simple application
of several recent results and concepts, given in [4, 5, 20], which deal with the computational
complexity aspects of the first-order theory of real-closed fields. Note that we do not study
scaling with respect to n: for q = 0, this reduces to the still-open question of polynomial time
solution of linear programming problems, in the unit cost model.
Proof of Theorem 3. For asymptotic results we may assume, without loss of generality,
that s > 2n from the bound of Theorem 1. We will use the representation discussed in the
Appendix for the coefficients c1, . . . , cn, r1, . . . , rn, seen as vectors in Rk, k = 2n. We first write
the consistency problem as a problem of the following type:
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(?) find some c1, . . . , cn, r1, . . . , rn ∈ R such that ∧si=1 (Qi ∆i 0) (or report that no such
parameter values exist)

where each Qi is a certain real polynomial in the variables r1, . . . , rn, c1, . . . , cn of degree at most
q + 1, and ∆i is the relation > (resp. ≤) if δ(ξi) = 1 (resp. δ(ξi) = −1). Next, we determine
all non-empty sign conditions of the set Q = {Q1 . . .Qs}. See Fact A.2 in the Appendix for an
algorithm achieving this. For constant n, and this can be done in polynomial time in either the
unit cost or the logarithmic cost model. Now, we check each non-empty sign condition to see if
it corresponds to the given dichotomy ∆, i.e. if all the (Qi ∆i 0) hold. If there is no match, we
report a failure. Otherwise, we output the representation of the coefficients c1, . . . , cn, r1, . . . , rn.

6 A Comment on Real-Valued Function Learning

As a final comment, we wish to simply remark that it is possible to obtain results on the
learnability of linear systems dynamics, that is, the class of functions obtained if one does not
take the sign when defining recurrent perceptrons. The connection between VC dimension
and sample complexity is only meaningful for classes of Boolean functions; in order to obtain
learnability results applicable to real-valued functions one needs metric entropy estimates for
certain spaces of functions. These can be in turn bounded through the estimation of Pollard’s
pseudo-dimension. The reader is referred to [14] for the appropriate definitions and the results
linking pseudo-dimension PD and learnability. One example result possible in our context is as
follows. For any two nonnegative integers n, q, consider the class

F ′n,q :=
{
φ̂~c

∣∣∣ ~c ∈ Rn+q is n-recursive
}

where

φ̂~c : Rn+q → R : (x1, . . . , xn+q) 7→
n+q∑
i=1

cixi .

Assume that we wish to learn with respect to the loss function `(y1, y2) = max{|y1 − y2|2 , 1}
and that n+ q ≥ 4. Then we have that

pd

[
F ′n,q

]
≤ 20n log(n+ q) .

The proof follows easily from the Milnor-type bounds and the appropriate definitions.

A Appendix: Representations of Real Numbers and Decision
Problems

We collect here some facts regarding Thom encodings of real numbers and their use in decision
problems for real-closed fields.
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Let f(x) be a real univariate polynomial of degree d, and let α be a real root of f . The
Thom encoding of α relative to f(x), denoted Th (α, f), or just Th (α) if f is clear from the
context, is the sign vector(

sg[f(α)], sg[f ′(α)], . . . , sg[f (d)(α)]
)
∈ {−1, 0, 1}d+1

where sg[x] = x/|x| if x 6= 0 and sg[0] = 0. It is known (cf. [8]) that Th (α, f) uniquely
characterizes α among the roots of f .

In this paper, by a representation of a vector (y1, y2, . . . , yk) ∈ Rk we mean a vector

(f(t), g0(t), . . . , gk(t), ρ)

consisting of:

(a) a univariate polynomial f(t),

(b) k + 1 univariate polynomials g0(t), . . . , gk(t), and

(c) a vector ρ ∈ {−1, 0, 1}deg(f)+1,

so that ρ is the Thom encoding Th (α) of some root α of f , and yi = gi(α)
g0(α) for each 1 ≤ i ≤ k.

The polynomials are represented by vectors providing their degrees and listing all coefficients.
When dealing with the logarithmic cost model, we assume in addition that the coefficients of
the polynomials f and gi are all rational numbers. In the unit cost model, the size of such a
representation is defined to be the total number of reals needed so as to specify the coefficients,
that is, the sum of the degrees of all the polynomials plus k + 3 + deg(f). In the logarithmic
cost model, the size is the above plus the total number of bits needed in order to represent the
coefficients of the polynomials, each written in binary as the quotient of two integers.

In the paper, we use these representations for the parameters defining concepts, while inputs
are given directly as real numbers (rationals in the log model); thus we need to know that signs
of polynomial expressions involving vectors represented in the above manner as well as reals
can be evaluated efficiently. We next state a result that assures this. By the complexity of a
multi-variable polynomial H(z1, . . . , zq) we mean the sum of the number of nonzero monomials
plus the sum of the total degrees of all these monomials (for instance, 2z2

1z
3
2−z7

1 has complexity
2 + 5 + 7 = 14); in the log cost model, we assume that the coefficients of H are rational and we
add the number of bits needed to represent the coefficients.

Lemma A.1 In the unit cost model, there is an algorithm A which, given a polynomial H of
complexity h on variables x1, . . . , xl, y1, . . . , yk, and given real numbers x1, . . . , xl and a represen-
tation (f(t), g0(t), . . . , gk(t), ρ) of a vector y1, . . . , yk, can compute sg[H(x1, . . . , xl, y1, . . . , yk)]
in time polynomial on l, h, and the size of this representation. The same result holds in the
logarithmic cost model, assuming that the inputs xi are all rational, with time now polynomial
on the size of these inputs as well. 2

Proof. Note that, in general, if p1(t) and p2(t) are two rational functions with numerator and de-
nominators of degree bounded by d, then both p1(t)p2(t) and p1(t)+p2(t) are rational functions
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with numerator and denominator of degree at most 2d. Moreover, these algebraic operations
can be computed in time polynomial on d as well as, in the log model, on the size of coefficients.
Working iteratively on all monomials of H, we conclude that it is possible to construct from
the gi’s and xj ’s, in polynomial time, two polynomials R1(t) and R2(t) with real (rational, in
the log model) coefficients so that H(x1, . . . , xl, y1, . . . , yk) = R1(α)/R2(α), where α is the root
encoded by ρ. Note that

sign
(
R1(α)
R2(α)

)
=

{
1 if sign (R1(α)) = sign (R2(α)) and R1(α) 6= 0
−1 otherwise

Thus it is only necessary to evaluate sign (Ri(α)), i = 1, 2. The evaluation can be done efficiently
because of the following fact from [20]:

There is an algorithm B with the following property. Given any univariate real
polynomial f(t), a real root α of f specified by means of its Thom encoding Th (α),
and another univariate polynomial g(t), B outputs sign (g(α)), using a number of
arithmetic operations polynomial on deg(f)+deg(g); in the logarithmic cost model,
if all input coefficients are rationals of size at most L, then B uses a number of bit
operations polynomial on deg(f) + deg(g) + L.

This provides the desired sg[H(x1, . . . , xl, y1, . . . , yk)].

The main reason that representations of the type (f(t), g0(t), . . . , gk(t), ρ) are of interest is
that one can produce solutions of algebraic equations and inequalities represented in that form.
We explain this next.

One says that a vector σ = (σ1, σ2, . . . , σs) ∈ {−1, 0,+1}s is a nonempty sign condition for
an ordered set of s real polynomials P = {P1,P2, . . . ,Ps} in k < s real variables if there exists
some point (y1, . . . , yk) ∈ Rk such that σi = sg[Pi(y1, y2, . . . , yk)] for all i; the corresponding
point (y1, y2, . . . , yk) ∈ Rk is said to be a witness of σ.

Fact A.2 ([4, 5]) There is an algorithm A as follows. Given any set P of s real polynomials
in k < s variables, where each polynomial is of degree at most d, A computes, for each non-
empty sign-condition of P, the sign condition σ as well as a representation of a witness for
σ. Moreover, A runs in O((sd)O(k)) time in the unit cost model, and in the corresponding
representation, deg(f) ≤ (sd)O(k). In the logarithmic cost model, assuming that coefficients of
the given polynomials are rationals of size at most L, A runs in time O(skdO(k)LO(1)), and the
degrees and coefficients of all the polynomials f, g0, . . . , gk (and, consequently the number of
components in Th (α)) are rational numbers of size at most O(dO(k)LO(1)). 2
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