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Abstract The theory of monotone dynamical systems has been found very useful
in the modeling of some gene, protein, and signaling networks. In monotone sys-
tems, every net feedback loop is positive. On the other hand, negative feedback loops
are important features of many systems, since they are required for adaptation and
precision. This paper shows that, provided that these negative loops act at a compar-
atively fast time scale, the main dynamical property of (strongly) monotone systems,
convergence to steady states, is still valid. An application is worked out to a double-
phosphorylation “futile cycle” motif which plays a central role in eukaryotic cell
signaling.
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1 Introduction

Monotone dynamical systems constitute a rich class of models, for which global
and almost-global convergence properties can be established. They are particu-
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Fig. 1 Dual futile cycle. A substrate S0 is ultimately converted into a product S2, in an “activation”
reaction triggered or facilitated by an enzyme E and, conversely, S2 is transformed back (or “deactivated”)
into the original S0, helped on by the action of a second enzyme F

larly useful in biochemical applications and also appear in areas like coordination
(Moreau 2004) and other problems in control (Chisci and Falugi 2005). One of
the fundamental results in monotone systems theory is Hirsch’s Generic Conver-
gence Theorem (Hirsch 1983, 1985, 1988; Hirsch and Smith 2005; Smith 1995).
Informally stated, Hirsch’s result says that almost every bounded solution of a
strongly monotone system converges to the set of equilibria. There is a rich lit-
erature regarding the application of this powerful theorem, as well as of other re-
sults dealing with everywhere convergence when equilibria are unique (Dancer 1998;
Jiang 1994; Smith 1995), to models of biochemical systems. See, for instance, Sontag
(2004, 2005) for expositions and many references.

Unfortunately, many models in biology are not monotone, at least with respect to
any standard orthant order. This is because in monotone systems (with respect to or-
thant orders) every net feedback loop should be positive; on the other hand, in many
systems negative feedback loops often appear as well, as they are required for adap-
tation and precision. Intuitively, however, negative loops that act at a comparatively
fast time scale should not affect the main characteristics of monotone behavior. The
main purpose of this paper is to show that this is indeed the case, in the sense that sin-
gularly perturbed strongly monotone systems inherit generic convergence properties.
A system that is not monotone may become monotone once fast variables are re-
placed by their steady-state values. In order to prove a precise time-separation result,
we employ tools from geometric singular perturbation theory.

This point of view is of special interest in the context of biochemical systems;
for example, Michaelis Menten kinetics are mathematically justified as singularly
perturbed versions of mass action kinetics (Edelstein-Keshet 1988; Murray 2002).
One particular example of great interest in view of current systems biology re-
search is that of dual “futile cycle” motifs, as illustrated in Fig. 1. As discussed in
Samoilov et al. (2005), futile cycles (with any number of intermediate steps, and also
called substrate cycles, enzymatic cycles, or enzymatic interconversions) underlie
signaling processes such as guanosine triphosphatase cycles (Donovan et al. 2002),
bacterial two-component systems and phosphorelays (Bijlsma and Groisman 2003;
Grossman 1995), actin treadmilling (Chen et al. 2000), and glucose mobilization
(Karp 2002), as well as metabolic control (Stryer 1995) and cell division and apopto-
sis (Sulis and Parsons 2003) and cell-cycle checkpoint control (Lew and Burke 2003).
A most important instance is that of Mitogen-Activated Protein Kinase (MAPK)
cascades, which regulate primary cellular activities such as proliferation, differen-
tiation, and apoptosis (Asthagiri and Lauffenburger 2001; Chang and Karin 2001;
Huang and Ferrell 1996; Widmann et al. 1999) in eukaryotes from yeast to humans.
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MAPK cascades usually consist of three tiers of similar structures with multiple feed-
backs (Burack and Sturgill 1997; Ferrell and Bhatt 1900; Zhao and Zhang 2001).
Here we focus on one individual level of a MAPK cascade, which is a dual futile cy-
cle as depicted in Fig. 1. The precise mathematical model is described later. Numer-
ical simulations of this model have suggested that the system may be monostable or
bistable, see Markevich et al. (2004). The latter will give rise to switch-like behavior,
which is ubiquitous in cellular pathways (Gardner et al. 2000; Pomerening et al. 2003;
Sel’kov 1975; Sha et al. 2003). In either case, the system under meaningful biolog-
ical parameters shows convergence, not other dynamical properties such as periodic
behavior or even chaotic behavior. Analytical studies done for the quasi-steady-state
version of the model (slow dynamics), which is a monotone system, indicate that the
reduced system is indeed monostable or bistable, see Ortega et al. (2006). Thus, it is
of great interest to show that, at least in certain parameter ranges (as required by sin-
gular perturbation theory), the full system inherits convergence properties from the
reduced system, and this is what we do as an application of our results. We remark
that the simplified system, consisting of a unary conversion cycle (no S2), is known
to admit a unique equilibrium (subject to mass conservation constraints) which is a
global attractor, see Angeli and Sontag (2008).

A feature of our approach is the use of geometric invariant manifold theory
(Fenichel 1979; Jones 1995; Nipp 1992). There is a manifold Mε , invariant for the full
dynamics of a singularly perturbed system, which attracts all near-enough solutions.
However, we need to exploit the full power of the theory, and especially the fibration
structure and an asymptotic phase property. The system, restricted to the invariant
manifold Mε , is a regular perturbation of the slow (ε = 0) system. As remarked in
Theorem 1.2 in Hirsch’s early paper (Hirsch 1985), a C1 regular perturbation of a
flow with eventually positive derivatives also has generic convergence properties. So,
solutions in the manifold will generally be well-behaved, and asymptotic phase im-
plies that solutions near Mε track solutions in Mε , and hence also converge to equi-
libria if solutions on Mε do. A key technical detail is to establish that the tracking
solutions also start from the “good” set of initial conditions, for generic solutions of
the large system.

A preliminary version of these results in Wang and Sontag (2006) dealt with the
special case of singularly perturbed systems of the form:

ẋ =f (x, y),

εẏ =Ay + h(x),

on a product domain, where A is a constant Hurwitz matrix and the reduced system
ẋ = f (x,−A−1h(x)) is strongly monotone. However, for the application to the above
futile cycle, there are two major problems with that formulation: first, the dynamics
of the fast system have to be allowed to be nonlinear in y, and second, it is crucial to
allow for an ε-dependence on the right-hand side as well as to allow the domain to
be a convex polytope depending on ε. We provide a much more general formulation
here.

We note that no assumptions are imposed regarding global convergence of the
reduced system, which is essential because of the intended application to multistable
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systems. This seems to rule out the applicability of Lyapunov-theoretic and input-to-
state stability tools (Christofides and Teel 1996; Teel et al. 2003).

This paper is organized as follows. The main result is stated in Sect. 2. In Sect. 3,
we review some basic definitions and theorems about monotone systems. The detailed
proof of the main theorem can be found in Sect. 4, and applications to the MAPK
system and another set of ordinary differential equations are discussed in Sect. 5.
Finally, in Sect. 6, we summarize the key points of this paper.

2 Statement of the Main Theorem

In this paper, we focus on the dynamics of the following prototypical system in sin-
gularly perturbed form:

dx

dt
= f0(x, y, ε),

ε
dy

dt
= g0(x, y, ε).

(1)

We will be interested in the dynamics of this system on an ε-dependent domain Dε .
For 0 < ε � 1, the variable x changes much slower than y. As long as ε �= 0, one
may also change the time scale to τ = t/ε, and study the equivalent form:

dx

dτ
= εf0(x, y, ε),

dy

dτ
= g0(x, y, ε).

(2)

Within this general framework, we will make the following assumptions (some tech-
nical terms will be defined later), where the integer r > 1 and the positive number ε0

are fixed from now on:

A1 Let U ⊂ R
n and V ⊂ R

m be open and bounded. The functions

f0 : U × V × [0, ε0] → R
n

and

g0 : U × V × [0, ε0] → R
m

are both of class Cr
b , where a function f is in Cr

b if it is in Cr and its derivatives
up to order r as well as f itself are bounded.

A2 There is a function

m0 : U → V

of class Cr
b , such that g0(x,m0(x),0) = 0 for all x in U .
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It is often helpful to consider z = y − m0(x), and the fast system (2) in the new
coordinates becomes:

dx

dτ
= εf1(x, z, ε),

dz

dτ
= g1(x, z, ε),

(3)

where

f1(x, z, ε) = f0
(
x, z + m0(x), ε

)
,

g1(x, z, ε) = g0
(
x, z + m0(x), ε

) − ε
[
Dxm0(x)

]
f1(x, z, ε).

When ε = 0, the system (3) degenerates to

dz

dτ
= g1(x, z,0), x(τ ) ≡ x0 ∈ U, (4)

seen as equations on {z | z + m0(x0) ∈ V }.
A3 The steady state z = 0 of (4) is globally asymptotically stable on {z | z+m0(x0) ∈

V } for all x0 ∈ U .
A4 All eigenvalues of the matrix Dyg0(x,m0(x),0) have negative real parts for

every x ∈ U , i.e., the matrix Dyg0(x,m0(x),0) is Hurwitz on U . (The nota-
tion Dyg0(x,m0(x),0) means the partial derivatives of g0(x, y, ε) with respect
to y evaluated at the point (x,m0(x),0).)

A5 There exists a family of convex compact sets Dε ⊂ U × V , which depend con-
tinuously on ε ∈ [0, ε0], such that (1) is positively invariant on Dε for ε ∈ (0, ε0].

A6 The flow ψ0
t of the limiting system (set ε = 0 in (1)):

dx

dt
= f0

(
x,m0(x),0

)
(5)

has eventually positive derivatives on K0 with respect to some cone, where K0 is
the projection of

D0 ∩ {
(x, y) | y = m0(x), x ∈ U

}

onto the x-axis.
A7 The set of equilibria of (1) on Dε is totally disconnected.

Remark 1 Assumption A3 implies that y = m0(x) is a unique solution of g0(x, y,0)

= 0 on U .
Continuity in A5 is understood with respect to the Hausdorff metric.
In mass-action chemical kinetics, the vector fields are polynomials. So, A1 follows

naturally.

Our main theorem is:



532 J Nonlinear Sci (2008) 18: 527–550

Theorem 1 Under assumptions A1 to A7, there exists a positive constant ε∗ < ε0

such that for each ε ∈ (0, ε∗), the forward trajectory of (1) starting from almost
every point in Dε converges to some equilibrium.

3 Monotone Systems of Ordinary Differential Equations

In this section, we review several useful definitions and theorems regarding monotone
systems. As we wish to provide results valid for arbitrary orders, not merely orthants,
and some of these results, though well-known, are not readily available in a form
needed for reference, we provide some technical proofs.

Definition 1 A nonempty, closed set C ⊂ R
N is a cone if

1. C + C ⊂ C

2. R+C ⊂ C

3. C ∩ (−C) = {0}.

We always assume C �= {0}. Associated to a cone C is a partial order on R
N . For

any x, y ∈ R
N , we define

x ≥ y ⇐⇒ x − y ∈ C,

x > y ⇐⇒ x − y ∈ C, x �= y.

When IntC is not empty, we can define

x 
 y ⇐⇒ x − y ∈ IntC.

Definition 2 The dual cone of C is defined as

C∗ = {
λ ∈ (

R
N

)∗ | λ(C) ≥ 0
}
.

An immediate consequence is

x ∈ C ⇐⇒ λ(x) ≥ 0, ∀λ ∈ C∗,

x ∈ IntC ⇐⇒ λ(x) > 0, ∀λ ∈ C∗ \ {0}.

With this partial ordering on R
N , we analyze certain features of the dynamics of

an ordinary differential equation:

dz

dt
= F(z), (6)

where F : R
N → R

N is a C1 vector field. We are interested in a special class of equa-
tions that preserve the ordering along the trajectories. For simplicity, the solutions of
(6) are assumed to exist for all t ≥ 0 in the sets considered in the following.
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Definition 3 The flow φt of (6) is said to have (eventually) positive derivatives on
a set V ⊆ R

N , if [Dzφt (z)]x ∈ IntC for all x ∈ C \ {0}, z ∈ V , and t ≥ 0 (t ≥ t0 for
some t0 > 0 independent of z).

It is worth noticing that [Dzφt (z)]x ∈ IntC is equivalent to λ([Dzφt (z)]x) > 0 for
all λ ∈ C∗ with norm one. We will use this fact in the proof of the next lemma, which
deals with “regular” perturbations in the dynamics. The proof is in the same spirit as
in Theorem 1.2 of Hirsch (1983), but generalized to the arbitrary cone C.

Lemma 1 Assume V ⊂ R
N is a compact set in which the flow φt of (6) has eventually

positive derivatives. Then there exists δ > 0 with the following property. Let ψt denote
the flow of a C1 vector field G such that the C1 norm of F(z) − G(z) is less than δ

for all z in V . Then there exists t∗ > 0 such that if ψs(z) ∈ V for all s ∈ [0, t] where
t ≥ t∗, then [Dzψt(z)]x ∈ IntC for all x ∈ C \ {0}.

Proof Pick t∗ = t0 > 0 so that λ([Dzφt (z)]x) > 0 for all t ≥ t0, z ∈ V,λ ∈ C∗, x ∈ C

with |λ| = 1, |x| = 1. Then there exists δ > 0 with the property that when the C1

norm of F(z) − G(z) is less than δ, we have λ([Dzψt(z)]x) > 0 for t0 ≤ t ≤ 2t0.
When t > 2t0, we write t = r + kt0, where t0 ≤ r < 2t0 and k ∈ N. If ψs(z) ∈ V

for all s ∈ [0, t], we can define zj := ψjt0(z) for j = 0, . . . , k. For any x ∈ C \ {0},
using the chain rule, we have:

[
Dzψt(z)

]
x = [

Dzψr(zk)
][

Dzψt0(zk−1)
] · · · [Dzψt0(z0)

]
x.

It is easy to see that [Dzψt(z)]x ∈ IntC. �

Corollary 1 If V is positively invariant under the flow ψt , then ψt has eventually
positive derivatives in V .

Proof If V is positively invariant under the flow ψt , then for any z ∈ V the condition
ψs(z) ∈ V for s ∈ [0, t] is satisfied for all t ≥ 0. By the previous lemma, ψt has
eventually positive derivatives in V . �

Definition 4 The system (6) or the flow φt of (6) is called monotone (resp. strongly
monotone) in a set W ⊆ R

N , if for all t > 0 and z1, z2 ∈ W ,

z1 ≥ z2 ⇒ φt (z1) ≥ φt (z2)
(
resp. φt (z1) 
 φt (z2) when z1 �= z2

)
.

It is eventually (strongly) monotone if there exists t0 > 0 such that φt is (strongly)
monotone for all t ≥ t0.

Definition 5 An set W ⊆ R
N is called p-convex, if W contains the entire line seg-

ment joining x and y whenever x ≤ y, x, y ∈ W .

Proposition 1 Let W ⊆ R
N be p-convex. If the flow φt has (eventually) positive

derivatives in W , then it is (eventually) strongly monotone in W .
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Proof For any z1 > z2 ∈ W,λ ∈ C∗ \ {0} and t ≥ 0 (t ≥ t0 for some t0 > 0), we have
that λ(φt (z1) − φt (z2)) equals

∫ 1

0
λ
([

Dzφt (sz1 + (1 − s)z2)
]
(z1 − z2)

)
ds > 0.

Therefore, φt is (eventually) strongly monotone in W . �

The following two lemmas are variations of Hirsch’s Generic Convergence Theo-
rem.

Lemma 2 Suppose that the flow φt of (6) has eventually positive derivatives in a p-
convex open set W ⊆ R

N . Let Wc ⊆ W be the set of points whose forward orbit has
compact closure in W . If the set of equilibria is totally disconnected (e.g., countable),
then the forward trajectory starting from almost every point in Wc converges to an
equilibrium.

This result follows from a generalization of Theorem 4.1 in Hirsch (1985) to an
arbitrary cone.

Definition 6 A point x in a set W ⊆ R
N is called strongly accessible from below

(resp., above) if there exists a sequence {yn} in W converging to x such that yn <

yn+1 < x (resp., yn > yn+1 > x).

In our motivating example, as well as in most biochemical systems after reduc-
tion by elimination of stoichiometric constraints, the set of equilibria is discrete, and
thus Lemma 2 will apply. However, the following more general result is also true,
and applies even when the set of equilibria is not discrete. This follows as a direct
application of Theorem 2.26 in Hirsch and Smith (2005).

Lemma 3 Suppose that the flow φt of (6) has compact closure and eventually pos-
itive derivatives in a p-convex open set W ⊆ R

N . If any point in W can be strongly
accessible either from above or from below in W , then the forward trajectory from
every point, except for initial conditions in a nowhere dense set, converges to an
equilibrium.

4 Details of the Proof

Our approach to solve the varying domain problem is motivated by Nipp (1992). The
idea is to extend the vector fields from U ×V ×[0, ε] to R

n ×R
m ×[0, ε0], then apply

geometric singular perturbation theorems (Sakamoto 1990) on R
n ×R

m ×[0, ε0], and
finally restrict the flows to Dε for the generic convergence result.
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4.1 Extensions of the Vector Fields

For a given compact set K ⊂ R
n (K0 ⊆ K ⊂ U ), the following procedure is adopted

from Nipp (1992) to extend a Cr
b function with respect to the x coordinate from U to

R
n, such that the extended function is Cr

b and agrees with the old one on K . This is a
routine “smooth patching” argument.

Let U1 be an open subset of U with Cr boundary and such that K ⊂ U1 ⊆ U . For
�0 > 0 sufficiently small, define

U
�0
1 := {

x ∈ U1 | �(x) ≥ �0
}
, where �(x) := min

u∈∂U1
|x − u|,

such that K is contained in U
�0
1 . Consider the scalar C∞ function ρ:

ρ(a) :=
⎧
⎨

⎩

0, a ≤ 0,

exp(1 − exp(a − 1)/a), 0 < a < 1,

1, a ≥ 1.

Define

�̂(x) :=
⎧
⎨

⎩

0, x ∈ R
n \ U1,

�(x), x ∈ U1 \ U
�0
1 ,

�0, x ∈ U
�0
1 ,

and

�̄(x) := ρ

(
�̂(x)

�0

)
.

For any q ∈ Cr
b(U), let

¯̄q(x) :=
{

q(x), x ∈ U1,

0, x ∈ R
n \ U1,

and q̄(x) := �̄(x) ¯̄q(x).

Then q̄(x) ∈ Cr
b(R

n) and q̄(x) ≡ q(x) on K .
We fix some d0 > 0 such that

Ld0 := {
z ∈ R

m | |z| ≤ d0
} ⊂

⋂

x∈K

{
z | z + m0(x) ∈ V

}
.

Then we extend the functions f1 and m0 to f̄1 and m̄0, respectively, with respect to
x in the above way. To extend g1, let us first rewrite the differential equation for z as

dz

dτ
= [

B(x) + C(x, z)
]
z + εH(x, z, ε) − ε

[
Dxm0(x)

]
f1(x, z, ε),

where

B(x) = Dyg0
(
x,m0(x),0

)
and C(x,0) = 0.
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Following the above procedures, we extend the functions C and H to C̄ and H̄ , but
the extension of B is defined as

B̄(x) := �̄(x) ¯̄B(x) − μ
(
1 − �̄(x)

)
In,

where μ is the positive constant such that the real parts of all eigenvalues of B(x) is
less than −μ for every x ∈ K . According to the definition of B̄(x), all eigenvalues of
B̄(x) will have negative real parts less than −μ for every x ∈ R

n. The extension ḡ1,
defined as

[
B̄(x) + C̄(x, z)

]
z + εH̄ (x, z, ε) − ε

[
Dxm̄0(x)

]
f̄1(x, z, ε),

is then Cr−1
b (Rn × Ld0 × [0, ε0]) and agrees with g1 on K × Ld0 × [0, ε0].

To extend functions f̄1 and ḡ1 in the z direction from Ld0 to R
m, we use the same

extension technique but with respect to z. Let us denote the extensions of f̄1, C̄, H̄

and the function z = z by f̃1, C̃, H̃ and z̃, respectively, then define g̃1 as
[
B̄(x) + C̃(x, z)

]
z̃(z) + εH̃ (x, z, ε) − ε

[
Dxm̄0(x)

]
f̃1(x, z, ε),

which is now Cr−1
b (Rn × R

m × [0, ε0]) and agrees with g1 on K × Ld1 × [0, ε0] for
some d1 slightly less than d0. Notice that z = 0 is a solution of g̃1(x, z,0) = 0, which
guarantees that for the extended system in (x, y) coordinates (y = z + m̄0(x))

dx

dτ
= εf (x, y, ε),

dy

dτ
= g(x, y, ε),

(7)

y = m̄0(x) is the solution of g(x, y,0) = 0. To summarize, (7) satisfies

E1 The functions

f ∈ Cr
b

(
R

n × R
m × [0, ε0]

)
,

g ∈ Cr−1
b

(
R

n × R
m × [0, ε0]

)
,

m̄0 ∈ Cr
b

(
R

n
)
, g

(
x, m̄0(x),0

) = 0, ∀x ∈ R
n.

E2 All eigenvalues of the matrix Dyg(x, m̄0(x),0) have negative real parts less than
−μ for every x ∈ R

n.
E3 The function m̄0 coincides with m0 on K , and the functions f and g coincide

with f0 and g0, respectively, on

�d1 := {
(x, y) | x ∈ K, |y − m0(x)| ≤ d1

}
.

Conditions E1 and E2 are the assumptions for geometric singular perturbation
theorems, and condition E3 ensures that on �d1 the flow of (2) coincides with
the flow of (7). If we apply geometric singular perturbation theorems to (7) on
R

n × R
m × [0, ε0], the exact same results are true for (2) on �d1 . For the rest of

the paper, we identify the flow of (7) and the flow of (2) on �d1 without further men-
tioning this fact. (Later, in Lemmas 5–8, when globalizing the results, we consider
again the original system.)
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4.2 Geometric Singular Perturbation Theory

The theory of geometric singular perturbation can be traced back to the work of
Fenichel (1979), which first revealed the geometric aspects of singular perturbation
problems. Later on, the works by Knobloch and Aulbach (1984), Nipp (1992), and
Sakamoto (1990) also presented results similar to Fenichel (1979). By now, the the-
ory is fairly standard, and there have been enormous applications to traveling waves
of partial differential equations, see Jones (1995) and the references there.

To apply geometric singular perturbation theorems to the vector fields on R
n ×

R
m × [0, ε0], we use the theorems stated in Sakamoto (1990). The following lemma

is a restatement of the theorems in Sakamoto (1990), and we refer to Sakamoto (1990)
for the proof.

Lemma 4 Under conditions E1 and E2, there exists a positive ε1 < ε0 such that for
every ε ∈ (0, ε1]:
1. There is a Cr−1

b function

m : R
n × [0, ε1] → R

m

such that the set Mε defined by

Mε := {
(x,m(x, ε)) | x ∈ R

n
}

is invariant under the flow generated by (7). Moreover,

sup
x∈Rn

∣∣m(x, ε) − m̄0(x)
∣∣ = O(ε), as ε → 0.

In particular, we have m(x,0) = m̄0(x) for all x ∈ R
n.

2. The set consisting of all the points (x0, y0) such that

sup
τ≥0

∣∣y(τ ;x0, y0) − m(x(τ ;x0, y0), ε)
∣∣e

μτ
4 < ∞,

where (x(τ ;x0, y0), y(τ ;x0, y0)) is the solution of (7) passing through (x0, y0) at
τ = 0, is a Cr−1-immersed submanifold in R

n × R
m of dimension n+m, denoted

by Ws(Mε), the stable manifold of Mε .
3. There is a positive constant δ0 such that if

sup
τ≥0

∣∣y(τ ;x0, y0) − m(x(τ ;x0, y0), ε)
∣∣ < δ0,

then (x0, y0) ∈ Ws(Mε).
4. The manifold Ws(Mε) is a disjoint union of Cr−1-immersed manifolds Ws

ε (ξ) of
dimension m:

Ws(Mε) =
⋃

ξ∈Rn

Ws
ε (ξ).
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Fig. 2 An illustration of the
“positive invariant” and
“asymptotic phase” properties.
Let p0 be a point on the fiber
Ws

ε (q0) (vertical curve).
Suppose the solution of (7)
starting from q0 ∈ Mε evolves to
q1 ∈ Mε at time τ1, then the
solution of (7) starting from p0
will evolve to p1 ∈ Ws

ε (q1) at
time τ1. At time τ2, they evolve
to q2,p2 respectively. These
two solutions are always on the
same fiber. If we know that the
one starting from q0 converges
to an equilibrium, then the one
starting from p0 also converges
to an equilibrium

For each ξ ∈ R
n, let Hε(ξ)(τ ) be the solution for τ ≥ 0 of

dx

dτ
= εf (x,m(x, ε), ε), x(0) = ξ ∈ R

n.

Then, the manifold Ws
ε (ξ) is the set

{
(x0, y0) | sup

τ≥0

∣∣x̃(τ )
∣∣e

μτ
4 < ∞, sup

τ≥0

∣∣ỹ(τ )
∣∣e

μτ
4 < ∞

}
,

where

x̃(τ ) = x(τ ;x0, y0) − Hε(ξ)(τ ),

ỹ(τ ) = y(τ ;x0, y0) − m
(
Hε(ξ)(τ ), ε

)
.

5. The fibers are “positively invariant” in the sense that Ws
ε (Hε(ξ)(τ )) is the set

{(
x(τ ;x0, y0), y(τ ;x0, y0)

) | (x0, y0) ∈ Ws
ε (ξ)

}

for each τ ≥ 0, see Fig. 2.
6. The fibers restricted to the δ0 neighborhood of Mε , denoted by Ws

ε,δ0
, can be pa-

rameterized as follows. There are two Cr−1
b functions

Pε,δ0 : R
n × Lδ0 → R

n,

Qε,δ0 : R
m × Lδ0 → R

m,

and a map

Tε,δ0 : R
n × Lδ0 → R

n × R
m

mapping (ξ, η) to (x, y), where

x = ξ + Pε,δ0(ξ, η), y = m(x, ε) + Qε,δ0(ξ, η)
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such that

Ws
ε,δ0

(ξ) = Tε,δ0(ξ,Lδ0).

Remark 2 The δ0 in property 3 can be chosen uniformly for ε ∈ (0, ε0]. Without loss
of generality, we assume that δ0 < d1.

Notice that property 4 ensures that for each (x0, y0) ∈ Ws(Mε), there exists a ξ

such that

∣∣x(τ ;x0, y0) − Hε(ξ)(τ )
∣∣ → 0,

∣∣y
(
τ ;x0, y0

) − m
(
Hε(ξ)(τ ), ε

)∣∣ → 0.

as τ → ∞. This is often referred to as the “asymptotic phase” property, see Fig. 2.

4.3 Further Analysis of the Dynamics

The first property of Lemma 4 concludes the existence of an invariant manifold Mε .
There are two reasons to introduce Mε . First, on Mε the x-equation is decoupled from
the y-equation:

dx

dt
= f

(
x,m(x, ε), ε

)
,

y(t) = m
(
x(t), ε

)
.

(8)

This reduction allows us to analyze a lower dimensional system, whose dynamics
may have been well studied. Second, when ε approaches zero, the limit of (8) is (5)
on K0. If (5) has some desirable property, it is natural to expect that this property is
inherited by (8). An example of this principle is provided by the following lemma:

Lemma 5 There exists a positive constant ε2 < ε1, such that for each ε ∈ (0, ε2), the
flow ψε

t of (8) has eventually positive derivatives on Kε , which is the projection of
Mε ∩ Dε to the x-axis.

Proof Assumption A6 states that the flow ψ0
t of the limiting system (5) has even-

tually positive derivatives on K0. By the continuity of m(x, ε) and Dε at ε = 0, we
can pick ε2 small enough such that the flow ψ0

t has eventually positive derivatives on
Kε for all ε ∈ (0, ε2). Applying Corollary 1, we conclude that the flow ψε

t of (8) has
eventually positive derivatives on Kε provided Kε is positively invariant under (8),
which follows easily from the facts that (7) is positively invariant on Dε and Mε is an
invariant manifold. �

The next lemma asserts that the generic convergence property is preserved for (8),
see Fig. 3.

Lemma 6 For each ε ∈ (0, ε2), there exists a set Cε ⊆ Kε such that the forward
trajectory of (8) starting from any point of Cε converges to some equilibrium, and
the Lebesgue measure of Kε \ Cε is zero.
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Fig. 3 This is a sketch of the
manifolds M0 (surface bounded
by dashed curves), Mε (surface
bounded by dotted curves), and
Dε (the cube). It highlights two
major characteristics of Mε .
First, Mε is close to M0.
Second, the trajectories on Mε

converge to equilibria if those on
M0 do

Proof There exists a convex open set Wε containing Kε such that flow ψε
t of (8) has

eventually positive derivatives on Wε . Assumption A5 assures that Kε ⊆ Wc
ε . The

proof is completed by applying Lemma 2 under the assumption A7. �

By now, we have discussed flows restricted to the invariant manifold Mε . Next, we
will explore the conditions for a point to be on Ws(Mε), the stable manifold of Mε .
Property 3 of Lemma 4 provides a sufficient condition, namely, any point (x0, y0)

such that

sup
τ≥0

∣∣y(τ ;x0, y0) − m
(
x(τ ;x0, y0), ε

)∣∣ < δ0 (9)

is on Ws(Mε). In fact, if we know that the difference between y0 and m(x0, ε) is
sufficiently small, then the above condition is always satisfied. More precisely, we
have:

Lemma 7 There exists ε3 > 0, δ0 > d > 0, such that for each ε ∈ (0, ε3), if the initial
condition satisfies |y0 − m(x0, ε)| < d , then (9) holds, i.e., (x0, y0) ∈ Ws(Mε).

Proof Follows from the proof of Claim 1 in Nipp (1992). �

Before we get further into the technical details, let us give an outline of the proof of
the main theorem. The proof can be decomposed into three steps. First, we show that
almost every trajectory on Dε ∩ Mε converges to some equilibrium. This is precisely
Lemma 6. Second, we show that almost every trajectory starting from Ws(Mε) con-
verges to some equilibrium. This follows from Lemma 6 and the “asymptotic phase”
property in Lemma 4, but we still need to show that the set of nonconvergent initial
conditions is of measure zero. The last step is to show that all trajectories in Dε will
eventually stay in Ws(Mε), which is our next lemma:
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Lemma 8 There exist positive τ0 and ε4 < ε3, such that (x(τ0), y(τ0)) ∈ Ws(Mε)

for all ε ∈ (0, ε4), where (x(τ ), y(τ )) is the solution to (2) with the initial condition
(x0, y0) ∈ Dε .

Proof It is convenient to consider the problem in (x, z) coordinates. Let (x(τ ), z(τ ))

be the solution to (3) with initial condition (x0, z0), where z0 = y0 − m(x0,0). We
first show that there exists a τ0 such that |z(τ0)| ≤ d/2.

Expanding g1(x, z, ε) at the point (x0, z,0), the equation of z becomes

dz

dτ
= g1(x0, z,0) + ∂g1

∂x
(ξ, z,0)(x − x0) + εR(x, z, ε)

for some ξ(τ ) between x0 and x(τ) (where ξ(τ ) can be picked continuously in τ ).
Let us write

z(τ ) = z0(τ ) + w(τ),

where z0(τ ) is the solution to (4) with initial the condition z0(0) = z0, and w(τ)

satisfies

dw

dτ
= g1(x0, z,0) − g1(x0, z

0,0) + ∂g1

∂x
(ξ, z,0)(x − x0) + εR(x, z, ε)

= ∂g1

∂z
(x0, ζ,0)w + ε

∂g1

∂x
(ξ, z,0)

∫ τ

0
f1(x(s), z(s), ε) ds + εR(x, z, ε), (10)

with the initial condition w(0) = 0 and some ζ(τ ) between z0(τ ) and z(τ ) (where
ζ(τ ) can be picked continuously in τ ).

By assumption A3, there exist a positive τ0 such that |z0(τ )| ≤ d/4 for all τ ≥ τ0.
Notice that we are working on the compact set Dε , so τ0 can be chosen uniformly for
all initial conditions in Dε .

We write the solution of (10) as

w(τ) =
∫ τ

0

∂g1

∂z
(x0, ζ,0)w ds

+ ε

∫ τ

0

(
∂g1

∂x
(ξ, z,0)

∫ s′

0
f1(x, z, ε) ds′ + R(x, z, ε)

)
ds.

Since the functions f1,R and the derivatives of g1 are bounded on Dε , we have

∣∣w(τ)
∣∣ ≤

∫ τ

0
L|w|ds + ε

∫ τ

0

(
M1

∫ s′

0
M2 ds′ + M3

)
ds,

for some positive constants L,Mi , i = 1,2,3. The notation |w| means the Euclidean
norm of w ∈ R

m. Moreover, if we define

α(τ) =
∫ τ

0

(
M1

∫ s′

0
M2 ds′ + M3

)
ds,
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then
∣∣w(τ)

∣∣ ≤
∫ τ

0
L|w|ds + εα(τ0),

for all τ ∈ [0, τ0] as α is increasing in τ . Applying Gronwall’s inequality (Sontag
1990), we have

∣∣w(τ)
∣∣ ≤ εα(τ0)e

Lτ ,

which holds in particular at τ = τ0. Finally, we choose ε4 small enough such that
εα(τ0)e

Lτ0 < d/4 and |m(x, ε) − m(x,0)| < d/2 for all ε ∈ (0, ε4). Then we have
∣∣y(τ0) − m(x(τ0), ε)

∣∣ ≤ ∣∣y(τ0) − m(x(τ0),0)
∣∣ + ∣∣m(x(τ0), ε) − m(x(τ0),0)

∣∣

<
∣
∣z(τ0)

∣
∣ + d/2

< d/2 + d/2 = d.

That is, (x(τ0), y(τ0)) ∈ Ws(Mε) by Lemma 7. �

By now, we have completed all three steps, and are ready to prove Theorem 1.

4.4 Proof of Theorem 1

Proof Let ε∗ = min{ε2, ε4}. For ε ∈ (0, ε∗), it is equivalent to prove the result for the
fast system (2). Pick an arbitrary point (x0, y0) in Dε , and there are three cases:

1. y0 = m(x0, ε), that is, (x0, y0) ∈ Mε ∩ Dε . By Lemma 6, the forward trajectory
converges to an equilibrium except for a set of measure zero.

2. 0 < |y0 −m(x0, ε)| < d . By Lemma 7, we know that (x0, y0) is in Ws(Mε). Then,
property 4 of Lemma 4 guarantees that the point (x0, y0) is on some fiber Ws

ε,d(ξ),
where ξ ∈ Kε . If ξ ∈ Cε , that is, the forward trajectory of ξ converges to some
equilibrium, then by the “asymptotic phase” property of Lemma 4, the forward
trajectory of (x0, y0) also converges to an equilibrium. To deal with the case when
ξ is not in Cε , it is enough to show that the set

Bε,d =
⋃

ξ∈Kε\Cε

Ws
ε,d(ξ)

has measure zero in R
m+n. Define

Sε,d = (Kε \ Cε) × Ld.

By Lemma 6, Kε \Cε has measure zero in R
n, thus Sε,d has measure zero in R

n ×
R

m. On the other hand, property 6 in Lemma 4 implies Bε,d = Tε,d(Sε,d). Since
Lipschitz maps send measure zero sets to measure zero sets, Bε,d is of measure
zero.

3. |y0 − m(x0, ε)| ≥ d . By Lemma 8, the point (x(τ0), y(τ0)) is in Ws(Mε) and we
are back to case 2. The proof is completed if the set φε−τ0

(Bε,d) has measure zero,
where φε

τ is the flow of (2). This is true because φε
τ is a diffeomorphism for any

finite τ . �
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5 Applications

5.1 An Application to the Dual Futile Cycle

Our structure of futile cycles in Fig. 1 implicitly assumes a sequential instead of a
random mechanism. By a sequential mechanism, we mean that the kinase phospho-
rylates the substrates in a specific order, and the phosphatase works in the reverse or-
der. A few kinases are known to be sequential, for example, the auto-phosphorylation
of FGF-receptor-1 kinase (Furdui et al. 2006). This assumption dramatically reduces
the number of different phospho-forms and simplifies our analysis. In a special case
when the kinetic constants of each phosphorylation are the same and the kinetic con-
stants of each dephosphorylation are the same, the random mechanism can be easily
included in the sequential case. We therefore write down the chemical reactions in
Fig. 1 as follows:

S0 + E
k1
�
k−1

C1
k2→ S1 + E

k3
�
k−3

C2
k4→ S2 + E,

S2 + F
h1
�
h−1

C3
h2→ S1 + F

h3
�
h−3

C4
h4→ S0 + F.

There are three conservation relations:

Stot = [S0] + [S1] + [S2] + [C1] + [C2] + [C4] + [C3],
Etot = [E] + [C1] + [C2],
Ftot = [F ] + [C4] + [C3],

where brackets indicate concentrations. Based on mass action kinetics, we have the
following set of ordinary differential equations:

d[S0]
dτ

= h4[C4] − k1[S0][E] + k−1[C1],
d[S2]
dτ

= k4[C2] − h1[S2][F ] + h−1[C3],
d[C1]
dτ

= k1[S0][E] − (k−1 + k2)[C1],
d[C2]
dτ

= k3[S1][E] − (k−3 + k4)[C2],
d[C4]
dτ

= h3[S1][F ] − (h−3 + h4)[C4],
d[C3]
dτ

= h1[S2][F ] − (h−1 + h2)[C3].

(11)
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After rescaling the concentrations and time, (11) becomes

dx1

dt
= −k1Stotx1(1 − y1 − y2) + k−1y1 + h4cy3,

dx2

dt
= −h1Stotcx2(1 − y3 − y4) + h−1cy4 + k4y2,

ε
dy1

dt
= k1Stotx1(1 − y1 − y2) − (k−1 + k2)y1,

ε
dy2

dt
= k3Stot(1 − x1 − x2 − εy1 − εy2 − εcy3 − εcy4)

× (1 − y1 − y2) − (k−3 + k4)y2,

ε
dy3

dt
= h3Stot(1 − x1 − x2 − εy1 − εy2 − εcy3 − εcy4)

× (1 − y3 − y4) − (h−3 + h4)y3,

ε
dy4

dt
= h1Stotx2(1 − y3 − y4) − (h−1 + h2)y4,

(12)

where

x1 = [S0]
Stot

, x2 = [S2]
Stot

, y1 = [C1]
Etot

, y2 = [C2]
Etot

,

y3 = [C4]
Ftot

, y4 = [C3]
Ftot

, ε = Etot

Stot
, c = Ftot

Etot
, t = τε.

These equations are in the form of (1). The conservation laws suggest taking ε0 =
1/(1 + c) and

Dε = {
(x1, x2, y1, y2, y3, y4) | 0 ≤ y1 + y2 ≤ 1,

0 ≤ y3 + y4 ≤ 1, x1, x2, y1, y2, y3, y4 ≥ 0,

0 ≤ x1 + x2 + ε(y1 + y2 + cy3 + cy4) ≤ 1
}
.

For ε ∈ (0, ε0], taking the inner product of the normal of ∂Dε and the vector fields,
it is easy to check that (12) is positively invariant on Dε , so A5 holds. We want to
emphasize that, in this example, the domain Dε is a convex polytope varying with ε.

It can be proved that on Dε system (12) has at most a finite number of steady states,
and thus A7 holds. This is a consequence of a more general result, proved using some
of the ideas given in Gunawardena (2005), concerning the number of steady states of
more general systems of phosphorylation/dephosphorylation reactions, see Wang and
Sontag (2008).

Solving g0(x, y,0) = 0, we get

y1 = x1
Km1
Stot

+ Km1(1−x1−x2)
Km2

+ x1
,

y2 =
Km1(1−x1−x2)

Km2

Km1
Stot

+ Km1(1−x1−x2)
Km2

+ x1
,
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y3 =
Km3(1−x1−x2)

Km4

Km3
Stot

+ Km3(1−x1−x2)
Km4

+ x2
,

y4 = x2
Km3
Stot

+ Km3(1−x1−x2)
Km4

+ x2
,

where Km1,Km2,Km3 and Km4 are the Michaelis–Menten constants defined as

Km1 = k−1 + k2

k1
, Km2 = k−3 + k4

k3
,

Km3 = h−1 + h2

h1
, Km4 = h−3 + h4

h3
.

Now, we need to find a proper set U ⊂ R
2 satisfying assumptions A1–A4. Suppose

that U has the form

U = {
(x1, x2) | x1 > −σ, x2 > −σ, x1 + x2 < 1 + σ

}
,

for some positive σ , and V is any bounded open set such that Dε is contained in
U × V , then A1 follows naturally. Moreover, if

σ ≤ σ0 := min

{
Km1Km2

Stot(Km1 + Km2)
,

Km3Km4

Stot(Km3 + Km4)

}
,

A2 also holds. To check A4, let us look at the matrix:

B(x) := Dyg0(x,m0(x),0) =
(

B1(x) 0
0 B2(x)

)
,

where the column vectors of B1(x) are

B1
1 (x) =

(−k1Stotx1 − (k−1 + k2)

−k3Stot(1 − x1 − x2)

)
,

B2
1 (x) =

( −k1Stotx1
−k3Stot(1 − x1 − x2) − (k−3 + k4)

)
,

and the column vectors of B2(x) are

B1
2 (x) =

(−h3Stot(1 − x1 − x2) − (h−3 + h4)

−h1Stotx2

)
,

B2
2 (x) =

( −h3Stot(1 − x1 − x2)

−h1Stotx2 − (h−1 + h2)

)
.

If both matrices B1 and B2 have negative traces and positive determinants, then A4
holds. The trace of B1 is

−k1Stotx1 − (k−1 + k2) − k3Stot(1 − x1 − x2) − (k−3 + k4).
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It is negative provided that

σ ≤ k−1 + k2 + k−3 + k4

Stot(k1 + k3)
.

The determinant of B1 is

k1(k−3 + k4)Stotx1 + k3(k−1 + k2)Stot(1 − x1 − x2) + (k−1 + k2)(k−3 + k4).

It is positive if

σ ≤ (k−1 + k2)(k−3 + k4)

Stot(k1(k−3 + k4) + k3(k−1 + k2))
.

The condition for B2 can be derived similarly. To summarize, if we take

σ = min

{
σ0,

k−1 + k2 + k−3 + k4

Stot(k1 + k3)
,

(k−1 + k2)(k−3 + k4)

Stot(k1(k−3 + k4) + k3(k−1 + k2))
,

h−1 + h2 + h−3 + h4

Stot(h1 + h3)
,

(h−1 + h2)(h−3 + h4)

Stot(h1(h−3 + h4) + h3(h−1 + h2))

}
,

then the assumptions A1, A2 and A4 will hold.
Notice that dy/dt in (12) is linear in y when ε = 0, so g1 (defined as in (3)) is

linear in z, and hence the equation for z can be written as

dz

dτ
= B(x0)z, x0 ∈ U,

where the matrix B(x0) is Hurwitz for every x0 ∈ U . Therefore, A3 also holds.
It remains to show that assumption A6 is satisfied. Let us look at the reduced

system (ε = 0 in (12)):

dx1

dt
= − k2x1

Km1
Stot

+ Km1(1−x1−x2)
Km2

+ x1
+ h4c

Km3(1−x1−x2)
Km4

Km3
Stot

+ Km3(1−x1−x2)
Km4

+ x2
:= F1(x1, x2)

(13)
dx2

dt
= − h2cx2

Km3
Stot

+ Km3(1−x1−x2)
Km4

+ x2
+ k4

Km1(1−x1−x2)
Km2

Km1
Stot

+ Km1(1−x1−x2)
Km2

+ x1
:= F2(x1, x2).

It is easy to see that F1 is strictly decreasing in x2, and F2 is strictly decreasing in
x1 on

K0 = {
(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1

}
.

The reduced system (13) is a strictly competitive system. By Theorem 1.1 of Hirsch
(1985), flows of (13) have positive derivatives with respect to the cone

{
(x1, x2) | x1 ≤ 0, x2 ≥ 0

}
,

and thus assumption A6 is satisfied. Applying Theorem 1, we have:
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Theorem 2 There exist a positive ε∗ < ε0 such that for each ε ∈ (0, ε∗), the forward
trajectory of (12) starting from almost every point in Dε converges to some equilib-
rium.

It is worth pointing out that the conclusion we obtained from Theorem 2 is valid
only for small enough ε; that is, the concentration of the enzyme should be much
smaller than the concentration of the substrate. Unfortunately, this is not always true
in biological systems, especially when feedbacks are present. However, if the sum of
the Michaelis–Menten constants and the total concentration of the substrate are much
larger than the concentration of enzyme, a different scaling,

x1 = [S0]
A

, x2 = [S2]
A

, ε′ = Etot

A
, t = τε′,

where A = Stot +Km1 +Km2 +Km3 +Km4 allows us to obtain the same convergence
result.

5.2 Another Example

The following example demonstrates the importance of the smallness of ε. Consider
an m + 1-dimensional system,

dx

dt
= γ (y1, . . . , ym) − β(x)

ε
dyi

dt
= −diyi − αi(x), di > 0, i = 1, . . . ,m,

(14)

under the following assumptions:

1. There exists an integer r > 1 such that the derivatives of γ,β , and αi are of class
Cr

b for sufficiently large bounded sets.
2. The function β(x) is odd, and it approaches infinity as x approaches infinity.
3. The function αi(x) (i = 1, . . . ,m) is bounded by positive constant Mi for all

x ∈ R.
4. The number of roots to the equation

γ (α1(x), . . . , αm(x)) = β(x)

is countable.

We are going to show that on any large enough region, and provided that ε is
sufficiently small, almost every trajectory converges to an equilibrium. To emphasize
the need for small ε, we also show that when ε > 1, limit cycles may appear.

Assumption 4 implies A7, and because of the form of (14), A3 and A4 follow
naturally. A6 also holds, as every one-dimensional system is strongly monotone. For
A5, we take

Dε = {
(x, y) | |x| ≤ a, |yi | ≤ bi, i = 1, . . . ,m

}
,
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where bi is an arbitrary positive number greater than Mi

di
and a can be any positive

number such that

β(a) > Nb := max|yi |≤bi

γ (y1, . . . , ym).

Picking such bi and a assures

x
dx

dt
< 0, yi

dyi

dt
< 0,

i.e., the vector fields point transversely inside on the boundary of Dε . Let U and V be
some bounded open sets such that Dε ⊂ U ×V , and assumption 1 holds on U and V .
Then A1 and A2 follow naturally. By our main theorem, for sufficiently small ε, the
forward trajectory of (14) starting from almost every point in Dε converges to some
equilibrium.

On the other hand, convergence does not hold for large ε. Let

β(x) = x3

3
− x, α1(x) = 2 tanhx,

m = 1, γ (y1) = y1, d1 = 1.

It is easy to verify that (0,0) is the only equilibrium, and the Jacobian matrix at (0,0)

is
(

1 1
−2/ε −1/ε

)
.

When ε > 1, the trace of the above matrix is 1 − 1/ε > 0, its determinant is 1/ε > 0,
so the (only) equilibrium in Dε is repelling. On the other hand, the set Dε is chosen
such that the vector fields point transversely inside on the boundary of Dε . By the
Poincaré–Bendixson Theorem, there exists a limit cycle in Dε .

6 Conclusions

Singular perturbation techniques are routinely used in the analysis of biological sys-
tems. The geometric approach is a powerful tool for global analysis, since it permits
one to study the behavior for finite ε on a manifold in which the dynamics are “close”
to the slow dynamics. Moreover, and most relevant to us, a suitable fibration structure
allows the “tracking” of trajectories and hence the lifting to the full system of the ex-
ceptional set of nonconvergent trajectories, if the slow system satisfies the conditions
of Hirsch’s Theorem. Using the geometric approach, we were able to provide a global
convergence theorem for singularly perturbed strongly monotone systems, in a form
that makes it applicable to the study of double futile cycles.
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