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Abstract 

For analytic discrete-time systems, it is shown that uniform forward accessibility implies the generic existence of universal 
nonsingular control sequences. A particular application is given by considering forward accessible systems on compact 
manifolds. For general systems, it is proved that the complement of the set of universal sequences of infinite length is of 
the first category. For classes of systems satisfying a descending chain condition, and in particular, for systems defined by 
polynomial dynamics, forward accessibility implies uniform forward accessibility. (~ 1998 Elsevier Science B.V. All rights 
reserved. 
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I. Introduction 

In a number of  recent papers the question of  exis- 
tence of  controls with certain universal properties has 
been addressed for continuous as well as discrete- 
time systems. Both aspects o f  the theory, namely 
observation and control, have been studied. Interest 
in this subject started with the analysis of  univer- 
sally distinguishing :inputs, that is inputs that lead 
to different outputs fiJr any pair o f  initial conditions 
that is distinguishable, see [8, 12, 11]. Subsequently, 
the problem of  existence and genericity of  universal 
nonsingular controls, that is, controls that steer every 
point of  the state space into the interior o f  its reach- 
able set was studied in [9]; this notion is in a sense 
dual to distinguishability. In this short note, a remain- 
ing gap is closed in that we study the existence of  
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universal nonsingular (or universally regular) control 
sequences for analytic discrete- t ime systems. This 
problem turned up in a study of  exponential growth 
rates of  perturbed time-varying linear systems [15]. 
For this setup it is also necessary to study discrete- 
time systems with a transition map that is not de- 
fined for all pairs o f  states and control values (x, u), 
which is done by introducing analytic "exceptional" 
sets. 

This paper is organized as follows. After defining 
the precise class of  discrete-time systems and stat- 
ing the problem in Section 2 we prove the main re- 
suits on universal nonsingular controls in Section 3 
under the condition of  uniform forward accessibility. 
In the ensuing Section 4 certain classes of  systems are 
discussed where the structure of  the system guaran- 
tees uniform forward accessibility from the entire state 
space if forward accessibility holds. This discussion 
depends on stationarity of  descending chains of  sin- 
gularity loci, which holds for algebraic systems (those 
defined by polynomial dynamics).  Section 5 is used 
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as an appendix to review some facts on analytically 
defined sets. 

2. Preliminaries 

We begin with a discussion of  the problem and the 
main results for standard analytic, discrete-time in- 
vertible systems. Let M, U be real-analytic, connected, 
paracompact manifolds o f  dimension n, resp. m. An 
analytic map f : M × U ~ M gives rise to an analytic 
discrete-time system of  the form 

x ( t + l ) = f ( x ( t ) , u ( t ) ) ,  t E ~ ,  
(1) 

x(0) = x0 E M. 

For now let us consider the standard assumption that 
for each u E U the map f ( . , u ) : M  --~ M is a dif- 
feomorphism of  M. This class is o f  special interest 
as it contains, in particular, sampled continuous-time 
systems. The solution of  system (1) corresponding to 
an initial value x0 and an admissible control sequence 
u E U ~ is denoted by x(.; x0, u). 

The forward orbit at time t from x is defined by 

(9+(x) :=  {y E M; 3u E U t with y = x(t; x, u)} 

and the forward orbit from x is 

c;+(x):= U c;+(x)' 
tCN 

The system (1) is said to be forward accessible if 
int (9+(x) ¢ ~ for all x E M and uniformly forward ac- 
cessible from V C M if  there exists a t E N such that 
int (9+(x) ¢ 0 for all x E V. Lie-algebraic conditions 
for forward accessibility o f  invertible discrete-time 
systems have been presented in [5, 1, 2]. In this paper 
we are not concerned with providing conditions for 
forward accessibility, but rather with presenting con- 
sequences o f  this property. 

Forward accessibility may be characterized by 
a rank condition on the iterates o f  f as follows. 
We define f l (x ,  u) :=  f ( x ,  u) and recursively 
ft+l(X, uo . . . . .  ut) :=  f ( f t ( x ,  uo . . . . .  ut-1 ), u, ). A pair 
(x, u) E M x U t is called regular if the rank of  the 
Jacobian o f  f t  with respect to the control variables is 
full, i.e. if 

d f ,  
r(t; x, u) :=  rk duo.., dut-i (x, u) = n. (2) 

It is easy to see that int (9+(x)¢  0 is equivalent to 
the existence of  a t E N satisfying int C+(x) ¢ 0. 

By Sard's theorem this is in turn equivalent to the 
existence of  a u E U t such that the rank condition 
r(t; x, u ) =  n is satisfied. The interesting question is 
whether uniform forward accessibility from V C_ M 
implies the existence of  a single control u E U t such 
that (x,u) is a regular pair for all x E  V. Such a con- 
trol sequence is called universal nonsingular for V. 
To be precise, we call a finite control sequence u E U t 
universal nonsingular for M (or V) if (x, u) is a regu- 
lar pair for every x E M (respectively, every x E V). 
An infinite sequence u E U ~ is called universal if for 
every x E M  (or V) there exists a tx such that for all 
t>~tx it holds that r(t; x ,u )=n.  We denote the sets 
of  universal nonsingular controls by S(t,M), S(t, V), 
S ( ~ , M )  etc. 

We now formulate the main results in terms of  this 
standard discrete-time setup. The proofs are omitted 
here, as they will follow from the more general the- 
orems proved in Section 3. For a discussion of  semi- 
analytic sets and our use o f  the term generic we refer 
to Section 5. 

Proposition 1. Let V c M be semi-analytic. Assume 
that system (1) is uniformly forward accessible from 
V in t* steps. Then S(t, V) is generic in U t for all 
t >>. (n + 1)t*. I f  furthermore, V is compact then the 
complement of  S(t, V) is contained in a closed, an- 
alytically thin, subanalytic subset of  U t for all t >~ 
(n ÷ 1)t*. 

Uniform forward accessibility can be inferred from 
accessibility if either M is compact or the system (1) 
is algebraic. We will discuss the latter assumption in 
more detail in Section 4. Thus we also obtain the fol- 
lowing corollaries. 

Corollary 2. Assume that M is compact and that 
system (1) is forward accessible, then the complement 
of  S( t ,M) is a closed, subanalytic, analytically thin 
subset of  U t for all t E ~ large enough. 

Corollary 3. Let M, U be real-algebraic manifolds 
and assume that the map f & algebraic, l f  system (1) 
is forward accessible then there exists a t such that 
it is uniformly accessible from M in time i. Hence 
S(t, V) is generic in U t for all t 1> (n + 1 )?. 

The above statements are proved in the follow- 
ing more general context. Assume we are given a 
proper analytic subset X C M x U and an analytic 
map f : W --*M, where W :=  (M × U)  \ X .  For fixed 
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u E U the domain of definition of f ( . ,  u) is denoted 
by W(u) c_ M, while the domain of definition o f f t  is 
denoted by Wt c_ M >', U t. For x E M define the set of  
admissible control values U(x) by {x} × U(x)=({x} × 
U) \ X ,  and denote in a similar fashion the admissi- 
ble sequences for x of length t or of  infinite length by 
Ut(x), U~(x). We cc~nsider the discrete-time system 

x(t + 1) = f (x( t ) ,u( t ) ) ,  

x(0) =x0 c M, 

u ~ U~(xo). 

t E ~ ,  

(3) 

We assume that the set of  admissible control values 
U and the map f satisfy: 

(i) For all x E M it: holds that {x} × U CX.  
(ii) Usub :---- {u E U; W(u) = M and f ( . , u ) : M  

M is submersive} is the complement of  a proper 
analytic subset of  U. (Recall that f ( . ,  u) is called 
submersive if ~.f(., u)/Ox has full rank for every 
x E M . )  

(iii) For all t E ~,  ~md all x E M ,  f t (x , . )  is nontriv- 
ial with respect to u, i.e. if aft(x, .)/Ouo... ~ut-l 
has full rank in some point u E Ut(x), then in 
each connected component of Ut(x) there exists 
a point where this rank condition is satisfied. 

Remark 4. (i) Note that the condition u E Usub means 
in particular that f ( . ,  u) is defined on all of M. I f  we 
denote Ustub := (Usub) t then an application of the chain 
rule shows that ft( ' ,  u) is submersive for u E Ustub. Fur- 
thermore, the complement of  Ustub is a proper analytic 
subset of U t. (ii) With respect to assumption (iii) note 
that in each connected component of Wt the set of 
points where ~ft/~u~ ... .  Out_ 1 does not have full rank 
is analytic. Thus, the assumption states that either the 
rank condition is generically satisfied in Ut(x) or not 
at all. In the case X := 0, this assumption is automati- 
cally fulfilled by the connectedness of  U. 

Note that Xt := (M x U t) \ Wt need not be analytic 
in M × U t for t > 1. The reason for this is that 

x,+i = ( x ,  x U ) u  {(x, uo . . . . .  u,) c w, x U; 

( Z ( x ,  uo . . . . .  u,_~ ) ,u , )  ~ X } ,  

(4) 

and the set on the right-hand side is only an analytic 
set in Wt × U and may not be analytic in M x U t+l . For 
details on this question see [7], Ch. IV, Proposition 4'. 

Let us note that from Eq. (4) it follows that Xt is 
a closed, cr-analytic subset of M x U t. This may be 
seen in an inductive manner, as follows. For t = 1, the 
statement is clear by assumption. Assume by induction 
that Xt is a closed, a-analytic subset o f M  × U t. Then 
Xt x U is a cr-analytic subset of M x U t+l. Further- 
more, the set 

A := {(x, u0, . . . ,ut)  E Wt x U; 

(ft(x, uo . . . . .  ut-1),ut) E X}  

is an analytic subset of  Wt x U, and thus is, in par- 
ticular, closed in Wt x U. An elementary topology 
argument implies that then also (Xt x U) t_J A is a 
closed subset o f M  × U t+l . This set is a-analytic, be- 
cause each of the two sets is a-analytic. The induction 
step is complete. We give an example to illustrate the 
situation. 

Example 5. Let M = ~, U = ~2  and 

X = {(x, u, v); u = O} U {(x, u, v); x = u and v = 0}. 

Consider the system 

x(t + 1) = f (x ( t ) ,  u(t), v(t)) 

- - v ( t ) x ( t ) + s i n ( u - ~ ) .  

For x ( 0 ) = 0  it follows that x(1)---- sin(i/u(0)). We 
claim that the exceptional set X2 is not analytic in 
M x U 2. Indeed, consider the following set: 

B :=X2 A {(x, Ul, vl, u2, v2); x = u2 = Vl = v2 = 0}. 

Observe that B = {(0,Ul,0,0,0), Ul E Bo}, where 

B o =  {Ul; U l - - 0  , o r u l • 0 a n d  sin ( 1 )  = - 0 } .  

I f  X2 were an analytic subset o f M  × U 2, then B0 would 
be an analytic subset of  ~. But this is false, as 0 is a 
limit point of isolated points of  B0, but analytic subsets 
have finitely many connected components when inter- 
sected with any compact subset of  the ambient space. 

For systems of the form (3) the definitions of  for- 
ward accessibility, uniform forward accessibility, reg- 
ularity and universal nonsingularity remain the same, 
with the possible exception that the defining equations 
should only be considered where they make sense. 
Note, in particular, that i fu E S(t, V) for some V C M 
then it follows that the transition map is defined i.e. 
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(x, u) E Wt for all x E V. The relation between acces- 
sibility and regularity is clarified by the following ob- 
servation, which is a reformulation of  results from [1]. 
The proof  is included for the sake of  completeness. 

L e m m a  6. Let  V be a semi-analytic subset o f  M.  
Sys tem (3) is uniformly forward  accessible f r o m  F 
iff there exists a t E ~ such that all pairs (x, u) f rom 
a generic subset Z c (V × U t) M Wt are regular and 
fo r  all x E V it holds that {x} × U t fq Z is generic in 
{ x }  x U ~'. 

Proof.  I f  system (3) is uniformly forward accessible 
from V we may choose a t E ~ such that int C+(x) ~ 0 
for all x E V. By Sard's theorem for each x C V there 
exists a Ux E Ut(x)  with r(t; X, Ux) = n. The singu- 
lar set o f  f t  restricted to V x U t N Wt is defined by 
the simultaneous vanishing of  principal minors of  the 
Jacobian of  f t  with respect to the control variables 
and thus analytic in V × U t rq Wt, i.e. given by the in- 
tersection of  an analytic set with the semi-analytic set 
V x U t rq get. By the existence of  the pairs (x, ux) this 
set contains no set o f  the form {x} x Ut(x)  and using 
Assumption (iii) it contains no connected component 
of  (V  x U t) N Wt. This shows the existence of  the 
generic set with the desired properties. The converse 
implication follows using local surjectivity (w.r.t. the 
control variables) of  the map f t  in (x ,u)  which is 
guaranteed due to regularity. [] 

To conclude this section let us point out that by the 
assumptions we have made so far sets o f  the form 

. . . . .  il ) : :  { (x, uo . . . . .  ut-1)'~ Yt(il 

aft  (x, uo . . . . .  ut-1)  < n }  rk 8ui, . . .  8uit 

(5) 

for some index set {il . . . . .  it} C {0 . . . . .  t -  1 } are only 
analytic in Wt as only there the derivatives are defined. 
In some cases a stronger property holds (for instance 
for the systems studied in [15]). We formulate this in 
the following assumption 

Assumption 7. For each t E N and any index set 
{il . . . . .  il} C {0 . . . . .  t -- 1} the set rt(il . . . . .  il) UXt is 
analytic in M × U t. 

In particular this holds if  f is defined on M × U, 
i.e. in the situation of  Proposition 1. 

3. Universal nonsingniar controls 

The main result o f  this paper shows that uniform 
forward accessibility from V implies that the set 
o f  universal nonsingular control sequences for V 
are generic, i f  the length of  the control sequence is 
large enough. The idea of  the proof  is taken from 
[10] and differs from an approach taken in [14], 
which gives less information on the length of  control 
sequences sufficient for the existence of  universal 
nonsingular controls. 

Proposition 8. Let  V C M be semi-analytic. Assume 
that system (3) is uniformly forward  accessible f r o m  
V in t* steps. Then S(t, V)  is generic in U t f o r  all 
t >1 (n + 1 )t*. I f  furthermore,  V is compact and As- 
sumption 7 holds then the complement o f  S(t, V)  is 
contained in a closed, analytically thin, subanalytic 
subset o f  U t f o r  all t >1 (n + 1 )t*. 

Proof.  Throughout this proof  we will assume without 
loss of  generality that t* = 1, otherwise we may con- 
sider the map f t*  and the control range U t• . Consider, 
for each element x E V and each t ~> 0 the following 
set: 

Bt(x) := Iu  Ut(x); 

rk ~u ( f t -  1 (x, u0 . . . . .  ut-2),  ut-1 ) < n . 

For each x, B l ( x )  is an analytic subset o f  U(x)  since it 
is the set defined by the simultaneous vanishing of  the 
principal minors of  the Jacobian o f f  with respect to u. 
By uniform forward accessibility and the nontriviality 
o f f  it follows that the dimension Of Bl(X) is at most 
m - 1. Observe that, for each t 

(uo . . . . .  ut) E Bt+l(x) i f f  ut E B l ( f t ( x ,  uo . . . . .  ut-1 )). 

Consider also, for each t the 
I~t := Wt N (V  x U t) given by 

Gt := {(x, u0 . . . . .  ut-1); 

(6) 

analytic subset o f  

(uo . . . . .  ui) E Bi+l(X), Vi = 0 . . . . .  t - 1}. 

The analyticity of  Gt follows as each of  the defini- 
tions describing the set can be expressed in terms of  
vanishing principal minors. We claim that Gt has di- 
mension at most n + t(m - 1 ). This is obviously true 
for t = 0 so we may by induction assume it to be true 
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for t and consider the: analytic map 

 t+l 

(x ,  uo . . . .  , u t )  ( x ,  uo . . . .  , u , _ l  ). 

Note that 

A := 7zt(Gt+ 1 ) C Gt 

by definition of these sets. For each fixed (~, tTo . . . . .  
fi t-l)  CA, 

~ t l (  -~,/~0 . . . . .  fit--1 ) fl Gt+l 

× × ' " ×  

x B l ( f  t(£,uo,. . . ,ut-1)) 

CWt x U, 

by Eq. (6). Thus, this fiber has dimension at most 
m - 1. Applying Pro,position A.1 Part (ii) it follows 
that 

dim Gt+l ~< [n + t ( m -  1)] ÷ [ m -  1] 

= n + ( t +  1 ) ( m -  1) 

as claimed. We conclude, for the special case t = n + 1 
that the set Gn+l has dimension at most 

n + (n + 1 ) ( m -  1)--=m(n + 1 ) -  1. 

Finally consider the projection n of Gn+l onto U n+l. 
As analytic maps cannot increase dimensions by 
Proposition A. 1, rc(Gn+l ) can have dimension at most 

n+l m(n+ 1 ) -  1. By assumption (ii) the set U~u b \~(Gn+l ) 
is generic in U n+l. This set consists of universal 
nonsingular controls by definition of (-/sub. 

In case that the :map n is proper it follows by 
definition that rc(Gn+l) is subanalytic. In particular 
under the assumptions of the second part of the 
proposition (Xt U Gt) rq (V x U t) is a semi-analytic 
subset of M x U t. Due to the compactness of V 
we obtain that 7z((G,+I U Xn+l) rq (V x un+l)) is 
subanalytic in U n+~ and closed. 

For the case of t > (n + 1)t* note that the con- 
catenation of a universal nonsingular control sequence 
with u E Usub is universal nonsingular, which follows 
from an application of the chain rule. This shows 
genericity of the universal nonsingular controls for all 
t/> (n + 1)t* and completes the proof. [] 

Corollary 9. Assume that M is compact and that 
system (3) is forward accessible, then the complement 

of  S( t ,M) is closed and analytically thin in U t for 
all t c P~ large enouoh. I f  furthermore, Assumption 7 
holds, then the complement of  S( t ,M) is subanalytic 
in U t for all t E ~ large enouoh. 

Proof. Using a standard compactness argument it is 
easy to see that system (3) is uniformly forward ac- 
cessible from M for some time t*. With a similar ar- 
gument it follows that the set of universal nonsingular 
control sequences is open. Now, the previous Propo- 
sition 8 shows the assertion. [] 

It is worth noting that for systems defined on com- 
pact, complex manifolds satisfying Assumption 7, 
a stronger statement holds because of the holomor- 
phic structure. Note that in this case condition (iii) 
is superfluous as analytic subsets of complex mani- 
folds are nowhere separating so that in this case Wt 
and Ut(x) have only one connected component, see 
[6], Proposition 7.4. 

Corollary 10. Let M, U be complex manifolds and 
let M be compact. Assume that the map f : (M x 
U) \X---~M is holomorphic, where again X is an 
analytic subset of  M × U. We assume the complex 
analogues of assumptions (i) and (ii) and Assumption 
7. I f  Eq. (3) is forward accessible, then there exists 
a t* c ~ such that for all t >~ t* the complement of  
S( t ,M) is a proper analytic subset of  U t. 

Proof. As system (3) is forward accessible we 
have regular pairs (z, u) for every z c M. We may 
interpret M, U as real analytic manifolds of dimen- 
sions 2n, resp. 2m. Writing (in local coordinates) x + 
iy = z, v + i w  = u and f ( z , u ) =  9(x+iy ,  v + i w ) +  
ih(x + iy, v + iw) we may consider the real-analytic 
system given by the maps 9, h which is also forward 
accessible. We follow the steps of the proof of Propo- 
sition 8 with a few modifications. First of all the sets 
Bt(x, y)  are defined using the complex derivative: 

Bt(x,y) : =  {(V,w) C Ut(x, y); 

a f  rk-~u(ft_l(X + iy, Vo + iw0 . . . . .  

t~t--2 + iwt - -2 ) ,  Vt--1 + iwt--1) < n} .  

Note that for each (x, y) the dimension of Bt(x, y)  is at 
most 2m - 2  because of the underlying complex struc- 
ture. Considering again the map rc and the sets Gt, Xt 
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of  the proof  of  Proposition 8 it follows by Remmert ' s  
proper mapping theorem [6], Theorem 45.17 that the 
complement of  the universal nonsingular control se- 
quences is an analytic subset of  U t. As it is not equal 
to U t for all t large enough the assertion follows. [] 

Corol lary 11. Let system (3) be forward accessible. 
The complement o f  S( ~ , M  ) is o f  first category in U ~ 
endowed with the topology o f  pointwise convergence. 

Proof.  Let / I ,  be an exhaustion of  M (i.e. V1 C V2 C • • • 
a n d  UnE[~ Vn : M )  consisting of  compact, semi- 
analytic sets V,. Denote by tn the time at which 
system (3) is uniformly forward accessible from Vn. 
For each n E N consider the set 

S(tn, Vn) x Usub X Usub X "" " C S ( ~ , V n ) .  

Note that the closure of  U ~ \ S (~ ,  Vn) has empty in- 
terior. It holds that 

N S(M, V.) c S(~ ,M)  
nEN 

and thus 

U ~ \ S ( ~ ' M ) C  U U ~ \ S ( ~ ' V " ) "  
nEt~ 

Thus U ~ \ S([%,M) is a countable union of  nowhere 
dense sets. This completes the proof. [] 

4. Uniform accessibility 

As we have seen in Proposition 8 uniform acces- 
sibility implies the generic existence of  universal 
controls. It is therefore useful to ask under which 
conditions a system of  the form (3) is uniformly 
accessible from the whole state-space M. In [2] 
some conditions guaranteeing forward accessibil- 
ity of  discrete-time systems have been investigated. 
These depend on the topology of  M or on the dy- 
namical behavior of  the system. In this section, we 
investigate certain system classes which guarantee 
(forward) uniform accessibility on M from forward 
accessibility. 

Definition 12. We say that the map f : W ~ M sat- 
isfies a descending chain condition i f  any descending 
chain Z0 _~ ZI D . .  • of  sets o f  the form 

Zt = {x E M; (x,u) is not a regular pair, Vu E Ut} 

is stationary, where for each t E ~ the set U / i s  a set 
of  control sequences. 

Note that in general a descending chain of  analytic 
sets is only stationary on compact subsets o f  M,  see 
[7], Corollary 1 to Theorem V.2.1. 

Theorem 13. Let system (3) be forward acces- 
sible and assume that f satisfies a descending 
chain condition. Then, there exists a ?E ~ such 
that system (3) is uniformly accessible from M in 
time i. 

Proof.  Consider the family of  sets given by 

Zt:={x E M; int C+(x) = 0}. 

Applying Lemma 6 to V = {x} and using Assump- 
tion (ii) we obtain 

l Zt = {x E M; r(t; x,u) < n, Vu E U~ub}. 

We wish to show that Zto = 0 for some to. To this 
end we show that the family (Zt)tE~ is descending. I f  
x f[ Zt then there exists a u E Ustub such that r(t; x, u) 
- -n  and if  u~E Usub it follows from the chain rule 

that also r(t + 1; x,(u,u~)) = n and thus x ~ Zt+l. 
Hence, the family (Z t ) t~  is descending 

M=ZoD_ZI D_... D_ZtD_... 

and it is stationary at some to, that is, Zto ~--Zlo+I 
. . . .  . We claim that Zto = 0. Otherwise, let x E Zto 

to and choose u E U~u b. As (3) is forward accessible 
we have intC+(x(to; x, uo))~O for some t E t~ and 
using Lemma 6 again it follows that there exists 
a u E U~tub such that n = r ( t ;  x(to; x, uo),u) = r(to ÷ 
t, x, (u0, u)). This shows that x f[ Zto+t and thus the 
family (Zt)tE~ is not stationary at to, a contradiction. 

[] 

A first application lies in the consideration of  
real-algebraic systems. For an introduction to real- 
algebraic manifolds, i.e. real-algebraic varieties that 
do not have singular points we refer to [4], Ch. 3. 
To keep technicalities to a minimum, we will restrict 
ourselves to embedded real-algebraic manifolds here. 
We briefly recall the basic notions of  real-algebraic 
sets. A set X C R a is called algebraic if  it is the 
zero locus of  a set o f  polynomials in d indetermi- 
nates. To an algebraic set X we may associate the 
ideal J ( X )  of  polynomials that vanish on X. By the 
Hilbert basis theorem any increasing chain of  ideals 
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in ~[X1 . . . . .  Xd] is stationary, i.e. the ring is Noethe- 
rian, see [3], Ch. 7. As a consequence, a descending 
chain of  algebraic sets in R d is stationary as )(1 _~)(2 
implies J (X1 ) c J (X2) .  

There are two equivalent ways to view algebraic 
subsets o f  an algebraic set X C Rd: They are either 
given as the intersection of  an algebraic subset o f  Ed 
with X or as the zero locus of  a family of  functions 
contained in R[X1 . . . . .  Xn]/J(X).  Hence, a descend- 
ing family of  algebraic subsets o f  X is stationary. 

An embedded real-algebraic manifold M C Ed is a 
smooth embedded manifold that is an algebraic subset 
o f  R d at the same time. We note that if  M is a real- 
algebraic manifold and X is an algebraic subset of  M 
then also M \ X  may be interpreted as an embedded 
real-algebraic manifold, see [4], Proposition 3.2.10. 
Given two real-algebraic embedded manifolds Y, Z a 
map f : Y ---+ Z is calted algebraic (or regular in [4]) 
i f  each coordinate function is an element of  the ring 
of  algebraic functions on Y given by 

{ P ;  p, qE"[X1 . . . . .  Xn]/J(Y),  q(x)¢O Vx E Y } .  

We are now in a position to formulate the following 
corollary. 

Corollary 14. Let M, 0 be real-algebraic, embed- 
ded manifolds. Assume that f f  C M  x (J is algebraic 
and that f : W---~M is algebraic. Let U be an open, 
connected subset of  U. Define the exceptional set 
X := (M × U) n .~ and consider system (3) given 
by the restriction o f f  to (M x U) \X.  I f  system 
(3) is forward accessible, then there exists a ? such 
that it is uniformly .forward accessible from M in 
time L 

Proof .  The assumptions of  Theorem 13 are satisfied as 
any descending family of  algebraic sets is stationary, 
and under the assumptions of  this corollary the sets 
considered in Definitiion 12 are algebraic as they can 
be expressed in terms of  vanishing principal minors 
o f  algebraic functions. [] 

It is worth noting, that we cannot expect that t" de- 
pends on the dimension of  M or U. This is shown in 
the following example. 

Example 15. Let M = ~, U = (a, b) C R for some 
constants 0 < a < b ~md X = 0. Let g(x) = x + 1 and 
h(x) = cx(x - 1) . . .  (x - 2k) for some k E ~ ,  c > 0. 

For the system 

x( t -t- 1 ) = g(x ) + uh(x ) 

we see that  ~+k+l (0)  = {0, 1 . . . . .  2k + 1}. It is easy 
to see that in this example the system is uniformly 
accessible from M in 2k + 2 steps. Note furthermore, 
that we can choose the constant c in such a way that 
h'(x) > - 1/b, Vx E E which ensures that condition 
(ii) on the genericity of  submersive control values 
holds. 

Appendix: Some remarks on analytically defined sets 

A subset of  an analytic manifold M is called ana- 
lytic if  it is closed in M and can be locally described 
as the zero locus of  a family of  analytic functions. 
One of  the celebrated results of  the theory of  holo- 
morphic mappings in several variables is Remmer t ' s  
proper mapping theorem [6], Theorem 45.17, which 
states that in the complex case the image of  an ana- 
lytic set under a proper map is itself analytic. In the 
real case this property fails to hold. In order to remedy 
the situation, the class of  subanalytic sets has been in- 
troduced, see [13] for an overview of  the theory. Let 
us briefly indicate the main notions: A subset Z C M 
is called semi-analytic i f  for each x E Z there exists a 
neighborhood W such that W n Z can be represented 
as a finite union of  solution sets of  a finite number 
of  analytic equalities g i ( x )  = 0 and inequalities hj(x) 
> 0. A subset S in M is called subanalytic, i f  there are 
an analytic manifold N,  a semi-analytic subset T of  N 
and an analytic map ~b : N --* M that is proper on the 
closure of  T such that ~b(T) = S. A further generaliza- 
tion of  this is given by the notion of  a-analytic sets: 
Recall that an embedded manifold N of  an analytic 
manifold is a set with the property that around each 
point in N there exists a coordinate chart (¢p, W) such 
that ~o(W n N )  = {(xi)i=l,..., n E ~n; Xq+l . . . . .  Xn 
= 0 }  for some 1 <.q<.n. A a-analytic set is defined as 
an at most countable union of  embedded manifolds. 
(This extends the class of  subanalytic sets as a subana- 
lytic set can always be decomposed into a locally finite 
countable union of  embedded submanifolds, see [13], 
Sections 8, 9. To summarize we have now defined an- 
alytic, semi-analytic, subanalytic and a-analytic sets, 
where each class is an extension of  the previous one. 

The dimension of  a a-analytic set is defined as the 
maximal dimension of  one of  its components. This 
definition is compatible with the definitions of  dimen- 
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sion of the other classes of analytic sets. Note in partic- 
ular, that it does not depend on the particular countable 
decomposition of a a-analytic set. If the dimension of 
a a-analytic setX is strictly less than the dimension of 
the manifold M, then a set Y with M \ Y C X is called 
generic. The reason for this terminology is that X has 
measure zero and is of first category, i.e. a countable 
union of nowhere dense sets. The complement of a 
generic set will be called analytically thin. 

In the proofs we have used the following results on 
a-analytic sets and analytic maps. For a proof we refer 
to [11], Proposition A.2. 

Proposition A.1. Assume that M, N and Mi, i = 
1 . . . . .  k are analytic manifolds. Le t  f : M ~ N be an 
analytic mapping. Then: 

(i) I f  Z is a a-analytic subset o f  M, then f ( Z )  
is a a-analytic subset o f  N, and dim f(Z)~< 
dim Z. 

(ii) For all Z c_ M, 

dimZ~< dimN + max [dim f - l ( y )  tO Z] .  
ycN 

(iii) I f  Zi is analytically thin in Mi, f o r  i =  1 . . . . .  k, 
then Z = Z1 x . . .  × Zk is analytically thin in 
M1 × . . .  × Mk and 

Z =  Z1 × . . .  × Zk C MI × . . .  × Mk 

satisfies dim Z = ~--~i dim Zi. 
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