
NEURAL NETS AS SYSTEMS MODELS AND CONTROLLERS∗

Eduardo D. Sontag
Dept. of Mathematics, SYCON - Rutgers Center for Systems and Control

Rutgers University, New Brunswick, NJ 08903
E-mail: sontag@hilbert.rutgers.edu

Abstract

Repr. from Proc. Seventh Yale Workshop on Adaptive and Learning Systems , pp. 73-79, May 1992.

This paper briefly surveys some recent results rele-
vant to the suitability of “neural nets” as models for
dynamical systems as well as controllers for nonlinear
plants. In particular, it touches upon questions of ap-
proximation, identifiability, construction of feedback
laws, classification and interpolation, and computa-
tional capabilities of nets. No discussion is included of
“learning” algorithms, concentrating instead on repre-
sentational issues.

1. Introduction

The basic paradigm for control is that of a “plant”
or physical device P interconnected with a controller
C. The controller uses measurements from P in order

P

C

Figure 1: Basic Paradigm

to compute signals, which are then fed back into the
plant so as to attain a given regulation objective. (This
description can be extended to incorporate the effect
of external disturbances, the specification of desired
trajectories, and so forth.)

The plant P represents an existing system, and it is
essential to have a mathematical model of P which is
accurate and useful both for theoretical analysis and
controller synthesis. Sometimes, a good model can be
derived from physical principles involving equations of
motion, fluid dynamics, or chemical balance consider-
ations. Often, however, only behavioral —also called

∗Research supported in part by US Air Force Grant 91-
0343

input/output— data is available. In that case, one typ-
ically postulates a general parametric model for P , its
values to be fit using a numerical procedure. “Neu-
ral nets” have been proposed as one such source of
parameterizations.

A related but different issue to that of deciding upon
an appropriate model for P is that of choosing the type
of controller C to be employed. While in the classical
—linear— case it is reasonable to use a linear C, the
choice is far less clear in general. Neural nets have
been suggested, too, in this dual mode as controllers.

What is meant precisely by the term neural net
varies, depending on the author. The general consen-
sus is that this means a simple, often linear, intercon-
nection of static nonlinear scalar processors, supple-
mented sometimes by memory elements (integrators,
or delay lines). The coefficients of the interconnec-
tions, called “weights”, play a role vaguely analogous
to the concentrations of neurotransmitters in biolog-
ical neuronal systems, while the nonlinear processors
in this over-simplified analogy correspond to the neu-
rons themselves. In engineering practice, one decides
a priori on the class of “neurons” to be used, that is,
the type of nonlinearity allowed —typically of the “sig-
moidal” type reviewed below— and the weights are the
parameters that are numerically adjusted in order to
either model the plant, in the identification applica-
tion, or to obtain a controller.

Motivating the use of nets is the belief —as of yet
not fully theoretically formalized— that in some sense
such nets are an especially appropriate family of pa-
rameterized models, from a numerical and practical
point of view.

In this presentation we briefly survey some theoreti-
cal results, especially those obtained by the author and
his coworkers, dealing with the use of nets for iden-
tification and control. As a general rule, we ignore
numerical questions and algorithms, concentrating in-
stead on the ultimate capabilities of nets for the above
purposes. The discussion is mainly intuitive, and most
details will not be included, but references to the liter-
ature are given for the precise definitions and proofs.

We return now to the issue of what a neural net —
from now on, just a “net”— is. As explained above, by
a net one typically means a system which is built by
linearly combining memory-free scalar elements, each
of which performs the same nonlinear transformation
σ : IR→ IR on its input.

One of the functions σ that we will focus on is
sign (x) = x/|x| (zero for x = 0), or its relative,

the hardlimiter, threshold, or Heaviside functionH(x),
which equals 1 if x > 0 and 0 for x ≤ 0 (one could de-
fine the value at zero differently; results do not change
much). Often one wants a differentiable saturation,
and for this, especially in the neural network field, it is
customary to consider the hyperbolic tangent tanh(x),
which is close to the sign function when the “gain” γ
is large in tanh(γx). (Equivalently, up to translations
and change of coordinates, one usually finds the stan-
dard sigmoid σs(x) = 1

1+e−x .) Also common in prac-
tice is a piecewise linear function, π(x) := x if |x| < 1
and π(x) = sign (x) otherwise; this is sometimes called
a “semilinear” or “saturated linearity” function.

Whenever time behavior is of interest, one also in-
cludes in nets dynamic elements, namely delay lines
if dealing with discrete-time systems, or integrators in
the continuous-time case.

In the static case, we consider nets formed by inter-
connections without loops , as otherwise the behavior
is not always well-defined; we call these “feedforward”
nets, in contrast to the terms “feedback,” “recurrent,”
or “dynamic” nets used in the general case.

σ

σ σ

σ

+
u

u

1

2

y

5

1

1

-1

2

0

3

2

-3

-1

1

2

5

Figure 2: Static Net Computing the Function
2σ(3σ(5u1−u2)+2σ(u1+2u2+1)+1)+5σ(−3σ(u1+2u2+1)−1)

σ

σ

-1

-1

11

2

3 x

x

2

1

u

u
1

2

y

Figure 3: Dynamic Net Representing the System
ẋ1=σ(2x1+x2−u1+u2),ẋ2=σ(−x2+3u2),y=x1

1.1. What Do Nets Do?

In the purely static case, nets can be thought of as
merely computing functions. Such memory-free nets
are natural in at least two control applications:

— as direct implementations of static feedback laws;
— as “pattern recognition” devices which choose

among various controllers.
In the latter case, different —typically simple linear—
controllers are employed depending on which region

of the state space or output-value space the current
measurement is in; see Figure 4. This is known some-
times as “gain scheduling” or, if switching between
controllers is replaced by a soft switching or blending
of control laws, “fuzzy control.” It is a useful control
architecture when dealing with plants exhibiting qual-
itatively different modes of operation, such as reconfig-
urable aircraft or robotic manipulators under variable
loads. In the first role, nets typically compute func-
tions with continuous values, while in the second case
nets are used as classifiers, producing a binary or more
generally a finite-valued output. Mathematically, the
first case gives rise to the study of questions of function
approximation and interpolation, while the second fo-
cuses on classification. We will discuss results relating
with both of these aspects. One of the conclusions is
that static nets are capable of controlling fairly general
nonlinear plants, if state feedback is available.

sensor
measurements

actuator

commands

C

C

C

CLASSIFIER

1

2

3switch switch

discrete
signal

discrete
signal

C

Figure 4: Hierarchical Controller

When memory elements are present, it is natural to
view nets as nonlinear dynamical systems with inputs
and outputs, in the sense of control theory. Dynamic
nets play a role as identification models, as described
above. In this context, theoretical results on approx-
imation are relevant: To what extent can a general
nonlinear system P be modeled by a net? Once that
we agree to use a net as a model, a discussion of pa-
rameter identifiability is important: To what extent
are the parameters describing the model —in other
words, the weights— uniquely determined by the in-
put/output behavior to be matched?

Dynamic nets also arise as controllers, in the case
in which direct state feedback is impossible and only
partial measurements are available. (A general intro-
duction to dynamic feedback is given in the textbook
[13], which should also be consulted for all undefined
terms from control theory.) Often dynamic controllers
may be viewed as static controllers for augmented sys-
tems: adding parallel integrators, or delay lines, to
the plant P and then controlling the enlarged system
by static feedback can be interpreted in this fashion.
Sometimes, however, new issues arise, as discussed in
the paper [10] which dealt with piecewise linear regu-
lation, an area which is very closely related to the one
of using dynamic nets as controllers.

1.2. Some Definitions

To fix terminology, we provide some definitions and
notations.

The symbol σ will always denote a fixed function
σ : IR → IR. For each positive integer r, we let σr :
IRr → IRr be the map that lets σ act coordinatewise,
that is, σr((x1, . . . , xr)′) = (σ(x1), . . . , σ(xr))′ (prime
indicates transpose), but we drop the subscript r when
clear from the context. When dealing with continuous-
time systems containing σ, we implicitely assume that
σ is globally Lipschitz, so that solutions are defined
for all times, though far less is needed. Usually, σ is
taken to be one of the sigmoidal-type maps discussed
earlier.
Feedforward Nets

We say that a a function f : IRm → IR is computable
by a zero-hidden-layer net if it is an affine function,
that is, there exist a vector v ∈ IRm and a scalar τ ∈ IR
such that f(u) = v.u + τ , where the dot indicates
inner product. For any integer d ≥ 1, the function
f : IRm → IR is computable by a d-hidden-layer net
(with processsors of type σ) if there exist an integer
l, constants w1, . . . , wl ∈ IR, and functions f1, . . . , fl
so that f(u) =

∑l
i=1 wiσ(fi(u)) and each fi is com-

putable by a (d− 1)-hidden-layer net.
In other words, the functions computable by nets

with no hidden layers are those in the span of the co-
ordinate functions and the constants, and those com-
putable by d layers constitute the span of the func-
tions σ(f(x)), for f computable with one less layer.
Note that constant terms (or “biases” in neural net ter-
minology) can always be included in the above sum,
as one could take one of the fi’s to be a constant.
A d-hidden-layer net is sometimes called a “(d + 2)-
layer net” if one counts the inputs and outputs as a
layer. We prefer the hidden-layer terminology, as it is
less ambiguous. Note that a function f is computable
by a one-hidden-layer net (it is a “1HL” function) if
there are real numbers w0, w1, . . . , wk, τ1, . . . , τk, and
vectors v1, . . . , vk ∈ IRm such that, for all u ∈ IRm,
f(u) = w0 +

∑k
i=1 wi σ(vi.u + τi) . We also say in

this case that f is a net “with k hidden neurons of
type σ” or just that f is a “(k, σ)-net.”

The results to be given on the feedforward case will
deal with d = 1 or d = 2.

A function computable by a net with possible direct
input to output connections (and d hidden layers) is
by definition a function g : IRm → IR of the form
Fu + f(u), where F is linear and f is computable
by a d-hidden-layer net as above. For multivariable
maps f : IRm → IRp, “computable by a d-hidden-layer
net” means by definition that each coordinate function
fi : IRm → IR, i = 1, . . . ,m is so computable, and sim-
ilarly if direct connections are allowed. For instance,
computable by a one-hidden-layer net means that F
factors as

F (u) = F1(σr(F2(u))) , (1)

where F1 : IRr → IRp and F2 : IRm → IRr are affine
maps.

It is by now well-known that functions computable
by nets with a single hidden layer can approximate
continuous functions, uniformly on compacts, under
only weak assumptions on σ. We review below this

fact, together with some results relating to the capa-
bilities of such nets for solving interpolation and clas-
sification problems. We also explain that for many
problems, including those typically found in nonlinear
control, two hidden layers are sometimes necessary.
Feedback or Recurrent Nets

Consider recurrent nets in discrete or continuous
time. In the first case, there are n dynamic units whose
values at time t, xi(t) ∈ IR, i = 1, . . . , n, evolve accord-
ing to difference equations (∆xi)(t) = σ(wi(t)), where
∆ indicates time-shift: (∆x)(t) = x+(t) = x(t+ 1) . In
the continuous time case, these are differential equa-
tions, and ∆ stands for the time-derivative operator:
(∆x)(t) = ẋ(t) = d

dtx(t) . In either case, wi(t) is the
input at time t to the ith device, which is a linear com-
bination of the states of all the units as well as external
signals. When σ= identity, we are dealing with ordi-
nary linear control systems. As usual in control theory,
we also assume that a particular set of measurements is
of interest, and this is modeled by specifying an ouput
map y(t) = Cx(t).

Thus, we are led to consider systems that can be
described by vector equations of the following type
(deleting the time argument t):

∆x = σn(Ax+Bu) , y = Cx , (2)

where A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n, and
∆ = x+ or = ẋ in discrete or continuous time respec-
tively. We call these σ-systems or recurrent nets.

u
- B - h+ - σ -∆−1 - C -

yx r
�A

6

Figure 5: Recurrent Net

A constant vector c could be added to the right-
hand side of equation (2), to represent what are usu-
ally called “biases” in the neural net literature, that
is, in order to allow affine rather than just linear com-
binations of states and inputs, leading to equations
∆x = σn(Ax + Bu + c). It is often simpler to ig-
nore this term by first adding a constant coordinate
x0(t) ≡ µ, where µ 6= 0 and then replacing each en-
try ci by the linear term (ci/µ)x0, which can then be
absorbed into the A matrix. (In continuous-time, as-
suming that σ(0) = 0, then x0 evolves according to
ẋ0 = σ(0); in discrete-time, we may take any nonzero
element in the image of σ, µ = σ(ν), and then use the
update x+

0 = σ((ν/µ)x0).)
Mathematically, σ-systems are interesting, among

other reasons, because:
— they are a powerful model of computation;
— they can approximate rather arbitrary plants.

Such systems have been proposed as models of large
scale parallel computation, since they are built of po-
tentially many simple processors. Electrical circuit

implementations of σ-systems, employing resistively
connected networks of n identical nonlinear amplifiers,
with the resistor characteristics used to reflect the de-
sired weights, have been suggested as analog comput-
ers, in particular for solving constrained optimization
problems and for implementing content-addressable
memories. In speech processing applications and lan-
guage induction, recurrent net models are used as iden-
tification models, and they are fit to experimental data
by means of the gradient-descent optimization (the so-
called “dynamic backpropagation” procedure) of some
cost criterion.

2. Approximation, Interpolation, Classification

Given a function σ : IR → IR, let Fσ be the affine
span of the set of all the maps σa,b(x) := σ(ax + b),
with a, b ∈ IR. That is, the elements of Fσ are those
functions IR → IR that are finite linear combinations
c0 +

∑
i ciσ(aix + bi). We say that the mapping σ is

a universal nonlinearity if for each −∞ < α < β <∞
the restrictions to the interval [α, β] of the functions
in Fσ constitute a dense subset of C0[α, β], the set of
continuous functions on [α, β] endowed with the metric
of uniform convergence. If σ is k-times continuously
differentiable, we say that it is k-universal if these re-
strictions of functions of Fσ are dense in Ck[α, β], the
set of Ck functions with the metric of uniform conver-
gence of all derivatives up to order k.

Note that, at this level of generality, we are not
requiring anything besides density. In practical appli-
cations, it may be desirable to consider special classes
of functions σ, such as those used in Fourier analy-
sis or wavelet theory, for which it is possible to pro-
vide “reconstruction” algorithms for finding, given an
f : [α, β]→ IR, a set of coefficients ai, bi, ci that result
in an approximation of f within a desired tolerance.

Not every nonlinear function is universal in the
above sense, of course; for instance, if σ is a polyno-
mial of degree k then Fσ is the set of all polynomials
of degree ≤ k, hence closed and not dense in any C0.
But most nonlinear functions are universal. Indeed,
Hornik proved in [3] that any σ which is continuous,
nonconstant, and bounded is universal (see also [2] for
related results). Moreover, he also proved there (The-
orem 3 in the paper) that if in addition to the above, σ
is of class Ck, then it is also k-universal, for each pos-
itive integer k. (M. Leshno has recently notified this
author that he has a new result showing that univer-
sality holds for any continuous function which is not a
polynomial.) In the rather general case of “sigmoidal”
functions, that is, nondecreasing functions with the
property that both limx→−∞ σ(x) and limx→+∞ σ(x)
exist (without loss of generality, assume the limits are
−1 and +1 respectively), universality is not hard to
prove, as follows. Take any continuous function f on
[α, β]. One can first approximate f uniformly by a
piecewise constant function, i.e. by an element of Fsign;
then each sign function is approximated by σ(γx), for
large enough positive γ.

It is a standard fact that universality of σ implies
that, for each m, p and each compact subset K of IRm,

the set of functions F : IRm → IRp computable by
single hidden layer nets, that is, those that can be
written in the factored form (1), is dense in C0(K). A
similar situation holds for k-universality.

One can also establish density results for Lq spaces,
q < ∞, (use density of continuous functions,) but
not in L∞, which causes serious problems in nonlinear
feedback control (see below).

2.3. Approximations of Nonlinear Systems

We now explain how the above translates into the
fact that recurrent nets provide universal identification
models, in a suitable sense. Consider a continuous- or
discrete-time, time-invariant, control system Σ:

ẋ [or x+] = f(x, u) (3)
y = h(x)

where x(t) ∈ IRn, u(t) ∈ IRm, and y(t) ∈ IRp for all t,
and f and h are continuously differentiable. For any
measurable essentially bounded control u(·) : [0, T]→
IRm, we denote by φ(t, x0, u) the solution at time t of
(3) with initial state x(0) = x0; this is defined at least
on a small enough interval [0, ε), ε > 0. For σ-systems,
when σ is bounded or globally Lipschitz with respect
to x, it holds that ε = T ; we will assume here that
we are dealing with controls for which solutions exist
globally, at least for the states on some compact set of
interest. For each control, we let λ(u) = λΣ,x0(u) be
the output function corresponding to the initial state
x(0) = x0, that is, λ(u)(t) := h(φ(t, x0, u)). We wish
to see that, on compacts, and for finite time intervals,
this system can be approximately simulated by a σ-
system. We first define what is meant by approximate
simulation.

Assume given two systems Σ and Σ̃, as in (3), where
we use tildes to denote data associated to the second
system, and with same number of inputs and outputs
(but possibly ñ 6= n). Suppose also that we are given
compact subsets K1 ⊆ IRn and K2 ⊆ IRm, as well as
an ε > 0 and a T > 0. Supposed further (this simpli-
fies definitions, but can be relaxed) that for each initial
state x0 ∈ K1 and each control u(·) : [0, T] → K2 the
solution φ(t, x0, u) is defined for all t ∈ [0, T]. We’ll
say that the system Σ̃ simulates Σ on the sets K1,K2

in time T and up to accuracy ε if there exist two con-
tinuous mappings α : IRñ → IRn and β : IRn → IRñ so
that the following property holds: For each x0 ∈ K1

and each u(·) : [0, T] → K2, denote x(t) := φ(t, x0, u)
and x̃(t) := φ̃(t, β(x0), u); then this second function is
defined for all t ∈ [0, T], and

‖x(t)− α(x̃(t))‖ < ε , ‖h(x(t))− h̃(x̃(t))‖ < ε

for all such t.
One may ask for more regularity properties of the

maps α and β as part of the definition; in any case the
maps to be constructed below can be taken to be at
least differentiable.

Assume that σ is a universal nonlinearity in the
sense defined earlier. Then, for each system Σ and for

each K1, K2, ε, T as above, there is a σ-system Σ̃ that
simulates Σ on the sets K1,K2 in time T and up to
accuracy ε. Some variations of this result were given
earlier and independently in [6] and [5], under more
restrictive assumptions and with somewhat different
definitions. As we haven’t found it in this manner in
the literature, we next sketch a proof.

The final maps α and β will be built up out of several
elementary maps. The first step is to add, if necessary,
the equation ẏ = ∂h(x)

∂x .f(x, u) in the continuous case,
or y+ = h(f(x, u)) in discrete-time, so that from now
on one may take without loss of generality h linear,
that is, y = Cx for some matrix C. The enlarged
system simulates the original one via α(x, y) = x and
β(x) = (x, h(x)).

Next one finds a 1HLN function as in equation (1)
that uniformly approximates f(x, u) (for the extended
system) close enough on K1 ×K2; this will imply the
desired approximation of solutions, by any standard
well-posedness result, as discussed e.g. in [13], Theo-
rem 37. This new function is specified by matrices and
vectors T1 ∈ IRn×r, A ∈ IRr×n, B ∈ IRr×m, α, β ∈ IRn

and f(x, u) ≈ T1σr(Ax + α + Bu) + β. Finally, one
needs to show that a system with such a right-hand
side and output y = Cx can be itself simulated by
some σ-system. Changing coordinates in IRn if nec-
essary, one may assume that T1 has the form (T ′0)′,
where T is of full row rank. Thus the equations take
the form

ẋ1 [or x+
1] = Tσr(A1x1 +A2x2 + α+Bu) + β1

ẋ2 [or x+
2] = β2

and the output function is y = C1x1 + C2x2 in these
coordinates. Write n2 = n − rankT for the size of
the x2 variable. This is essentially a σ-system after
a change of variables x = Tz and elimination of the
constant (“bias”) vectors α, β1, β2. More precisely, we
proceed as follows.

First, there is a β̃1 so that T β̃1 = β1 (since T has full
row rank). Consider the system of dimension r + n2

consisting of the above equation for x2 together with:
ż1 [or z+

1] = σr(A1Tz1 + A2x2 + α + Bu) + β̃1 and
output y = C1Tz1 + C2x2. Given any initial con-
dition (ξ1, ξ2)′ ∈ IRn, and any control u(·), pick the
solution of the (z1, x2) system that has z1(0) = ζ and
x2(0) = ξ2, where ζ is any vector so that Tζ = ξ1
(again use that T is onto). Write x1(t) := Tz1(t) along
this solution. Then (x1(t), x2(t))′ satisfies the original
equations, and has the initial value (ξ1, ξ2)′, so it is
the state trajectory corresponding to the given con-
trol. In conclusion, each trajectory of the original sys-
tem can be simulated by some trajectory of the z1, x2-
system. Let σn2(0) = γ; then the equation for x2 can
be written with right-hand side σ(0x+ 0u) + (β2− γ);
thus, redefining n as r+n2, one is reduced to studying
systems of the following special form: ẋ [or x+] =
σn(Ax + Bu + α) + β, with linear output y = Cx.
One is only left to eliminate the bias terms α and β.
Consider first treat the continuous-time case. Pick any
real numbers µ, ν so that µσ(ν) = 1 and consider these

equations in dimension n+ 2: ż=σn(Az + µzn+1Aβ +
µzn+2α+Bu), żn+1=σ(νµzn+2), żn+2=0, with output
y = C(z + µzn+1β), where z(t) ∈ IRn. Given any ini-
tial ξ ∈ IRn and any control u(·), pick the solution of
this extended system for which z(0) = ξ, zn+1(0) = 0,
and zn+2(0) = 1/µ. Consider x(t) := z(t)+µzn+1(t)β.
Observe that zn+2 ≡ 1/µ and żn+1 ≡ σ(νµ 1

µ) = 1/µ.
Therefore ẋ(t) = σn(Ax + Bu + α) + β, and x(0) =
z(0) + µzn+1(0) = ξ, so the z, zn+1, zn+2 system pro-
vides the desired simulation. In discrete time, the only
modification needed consists of replacing the z2 equa-
tion by z+

2 = σ(νµzn+2). This completes the sketch of
the proof of the approximation result.

Thus, recurrent nets approximate a wide class of
nonlinear plants. Note, however, that approximations
are only valid on compact subsets of the state space
and for finite time, so that many interesting dynamical
characteristics are not reflected. This is analogous to
the role of bilinear systems, which had been proposed
previously (work by Fliess and Sussmann in the mid-
1970s) as universal models. As with bilinear systems,
it is obvious that if one imposes extra stability as-
sumptions (“fading memory” type) it will be possible
to obtain global approximations, but this is probably
not very useful, as stability is often a goal of control
rather than an assumption.

For applications of these approximations to signal
processing see [5], and [6] for applications to control
and identification.

2.4. Number of Units

As discussed earlier, pattern recognition is involved
in the use of nets as selectors of lower-level con-
trollers. In this context, it is interesting to ask about
the number units that is needed in order to solve a
given classification or interpolation task. We formal-
ize this as follows. A labeled sample is a finite set
S = (u1, y1), . . . , (us, ys), where the u1, . . . , us ∈ IRm

are distinct and y1, . . . , ys ∈ IR are the “labels”. (The
labels are binary if yi ∈ {0, 1}.) A classifier is a func-
tion F : IRm → IR. The error of F on the labeled
sample S is defined as E(F, S) :=

∑s
i=1 ‖F (ui)− yi‖2.

A set F = {F~w : IRm → IR, ~w ∈ Rr} of functions
parameterized by ~w ∈ Rr, r = r(F), is an architec-
ture. An example is that of nets with no direct i/o
connections and m=1 inputs, k hidden units; here the
parameter set has dimension r=3k+ 1. The sample S
is loadable into F iff inf ~w∈IRr E(F~w, S) = 0. The ca-
pacity c(F) of F is defined by requiring that c(F) ≥
k iff every |S| = k is loadable. (This was called the
“testing dimension” in [7].) That is, c(F)=∞ means
that all finite S are loadable, and c(F)=k <∞ means
that each S of cardinality ≤ k is loadable but some
S of cardinality k + 1 is not. In [11], we studied the
relation between capacity and number of neurons, for
nets with one hidden layer and Heaviside or sigmoidal
activations; note that large capacity ≈ memorization,
so this is especially relevant for learning issues. Next
we review some results from [11].

Consider first the case of input dimensionm=1, that
is, nets with one input, and k hidden units of type σ

in one layer. Observe that there are 3k+1 parameters
(appearing nonlinearly) —or 3k + 2 if allowing direct
connections,— though for H, effectively only 2k + 1
matter. (In the case of the standard sigmoid, a Ja-
cobian computation shows that these parameters are
independent.) Let FINTP,k,θ be the set of all functions
like this, with no direct connections, and use a super-
script “d” if direct connections are allowed. Finally,
let FCLSF,k,θ be the set of {0, 1}-valued functions of
the form H(f(x)), for f a (k, σ)-net.

We study scaling properties as k → ∞. Let, for
each σ: CLSF(σ) := lim infk→∞ c(F)/r(F), for F =
FCLSF,k,θ, and INTP(σ) := lim infk→∞ c(F)/r(F), for
F = FINTP,k,θ. Define similarly CLSFd, INTPd when
allowing direct connections.

For any map σ, we consider the property (S1):
∃ limx→+∞ σ(x) 6= limx→−∞ σ(x) and the property
(S2): ∃ c s.t. θ is differentiable at c and θ′(c) = η 6= 0.

Then, for classification, we have:

CLSF(H) = 1/3, CLSFd(H) = 2/3, CLSF(σ) ≥ 2/3

assuming that σ is so that properties (S1)-(S2) are
satisfied. The last bound is best possible, in the sense
that for the piecewise linear π we have CLSF(π) = 2/3,
while it is the case that CLSF(σ) =∞ for some “nice”
(even, real-analytic) functions σ satisfying (S1)-(S2).

Regarding continuous-valued interpolation, we have
the results:

INTP(H) = 1/3, INTPd(H) = 1/3, INTP(σ) ≥ 2/3

assuming in the last case that (S1)-(S2) hold and σ is
continuous. Again here, INTP(π) = 2/3, and we can
also show that 2/3 ≤ INTP(σs) ≤ 1 for the standard
sigmoid (the proof of the upper bound in this latter
case involves some algebraic geometry; the value may
be infinite for more general sigmoids). Furthermore,
the inequality INTP(σ) ≥ 1/3 holds for any universal
nonlinearity.

The paper [11] includes also results when the num-
ber of inputs m > 1. Other closely related concepts
were studied there as well, such as notions of “capac-
ity” defined via the shattering of random sets, and
Vapnik-Chervonenkis (VC) dimension measures, again
comparing the power of Heaviside nets and sigmoidal
nets, as well as the effect of direct i/o connections. In
the multi-input case, it is interesting to study the par-
ticular case of binary inputs and the scaling with re-
spect to input size, for natural Boolean functions; this
gives a connection with theoretical computer science
issues in the area of “circuit complexity” as discussed
in [4].

2.5. Two-Hidden Layers, Inverse Problems

Consider now the following inversion problem:
Given a continuous function f : IRp → IRm, a com-
pact subset C ⊆ IRm included in the image of f , and
an ε > 0, find a function φ : IRm → IRp so that
‖f(φ(x))− x‖ < ε for all x ∈ C. One wants to find a

φ which is computable by a net, as done in global so-
lutions of inverse kinematics problems —in which case
the function f is the direct kinematics. It is trivial
to see that in general discontinuous functions φ are
needed, so continuous σ cannot be used. However,
and this is the interesting part, [12] establishes that
nets with just one hidden layer, even if discontinuous
σ is allowed, are not enough to guarantee the solution
of all such problems. On the other hand, it is shown
there that nets with two hidden layers (using H as
the neuron type) are sufficient, for every possible f ,
C, and ε. The basic obstruction is due, in essence, to
the impossibility of approximating by single-hidden-
layer nets the characteristic function of any bounded
polytope, while for some (non one-to-one) f the only
possible one-sided inverses φ must be close to such a
characteristic function. This brings up the need to
revive the study of training of nets with discontinu-
ous activations, an area that had been left relatively
aside during the recent interest in neural networks, but
which can be attacked by means of modern techniques
of nonsmooth optimization and set analysis.

2.6. State Feedback

We now make several remarks about nets for imple-
mentation of state-feedback controllers. The objective,
given a system

ẋ = f(x, u)

with f(0, 0)=0, is to find a stabilizer u=k(x), k(0)=0,
making x=0 a globally asymptotically stable state
of the closed-loop system ẋ=f(x, k(x)). The first re-
mark is that the existence of a continuous stabilizer
k is essentially equivalent to the possibility of sta-
bilizing using 1HL nets (with any desired continu-
ous σ). (Thus the simple classes of systems stud-
ied in many neurocontrol papers, which are typically
feedback-linearizable and hence continuously stabiliz-
able, can be controlled using such 1HL nets.)

More precisely, assume that f is twice continuously
differentiable, that k is also in C2, that the origin is
an exponentially stable point for ẋ=f(x, k(x)), and
that K is a compact subset of the domain of stability.
Pick any σ that is 2-universal (most interesting twice-
differentiable scalar nonlinearities will do, as recalled
earlier). Then, we can conclude that there is also a dif-
ferent k, this one a 1HL net with neurons σ, for which
exactly the same stabilization property holds. (Sketch
of proof: one only needs to show that if kn → k in
C2(K), with all kn(0)=0 —this last property can al-
ways be achieved by simply considering kn(x)− kn(0)
as an approximating sequence— then ẋ=f(x, kn(x))
has the origin as an exponentially stable point and K
is in the domain of attraction, for all large n. Now,
the proof of Theorem 12 in [13] shows that there is a
neighborhood V of zero, independent of n, where ex-
ponential stability will hold, for all n sufficiently large,
because f(x, kn(x))=Anx + gn(x), with An → A and
with gn(x) being o(x) uniformly on x. Now continu-
ity of solutions on the right-hand side gives the result
globally on K.

In general, continuous stabilizers fail to exist, as dis-

cussed for instance in [13], Section 4.8. Thus 1HLN
feedback laws, with continuous σ, do not provide a
rich enough class of controllers. This motivates the
search for discontinuous feedback, and maps of the
type studied in this paper provide a computational
paradigm in which to pose questions of existence of
such more general controllers. It is easy to provide ex-
amples where 1HLH-nets will stabilize but no net with
continuous activations (hence implementing a contin-
uous feedback) will. More surprisingly, 1HLN feed-
back laws, even with H activations, are not in general
enough —intuitively, one is again trying to solve in-
verse problems— but two hidden layer nets using H
(and having direct i/o connections) are always suf-
ficient. More precisely, [12] shows that the weakest
possible type of open-loop asymptotic controllability
is sufficient to imply the existence of (sampled) con-
trollers built using such two-hidden layer nets, which
stabilize on compact subsets of the state space.

3. Recurrent Nets

We saw above that recurrent nets, i.e. σ-systems
(2), have certain approximation properties. This sug-
gests their suitability as identification models, that is,
models for plants P . An alternative way of character-
izing the power of a class of models is in terms of the
computations that they can perform. Another natural
question deals with parameter (weights) identification
from i/o data. We now offer some remarks on these
two topics.

3.7. Computability

In the paper [8] with Hava Siegelmann, and related
work, we investigated the computational capabilities
of σ-systems, seen from the point of view of formal
language theory. There we studied discrete-time σ-
systems with σ = π. When restricted to binary inputs
and outputs, the computations carried out by such sys-
tems can be viewed as transformations on languages,
and hence can be compared with other, more classi-
cal, models of computation. Our main results in [8]
are: (a) with rational matrices A, B, and C, (and ra-
tional initial state), such systems are equivalent, up to
polynomial time, to Turing machines; (b) with real
matrices, all possible binary functions, recursive or
not, are “computable”. Thus one may reduce ques-
tions in computability to questions about realizability
by π-systems (2). When time constraints are imposed
on the computation length, a rich theory arises. For
instance, polynomial-time computation by π-systems
with real coefficients —a form of analog computing—
is equivalent to a notion of computability (nonuniform
polysize circuits) that appeared in abstract computa-
tion theory. Even the “P=?NP” problem has a version
for π-systems; see [9].

3.8. Identifiability

In [1], with Francesca Albertini, we were interested
in studying the following issue: To what extent does
the function of a σ-system, that is to say, the “black
box” behavior mapping external inputs to outputs,

uniquely determine the coefficients of the matrices A,
B, C? A precise formulation, for continuous-time,
is as follows. Assume that the network is started at
x(0) = 0 and the corresponding state and output tra-
jectories x(·) and y(·) are generated. In this manner
to each triple (A,B,C) we associate an input-output
mapping λ(A,B,C) : u(·) 7→ y(·) . We wish to know to
what extent are the matrices A,B,C determined by
the i/o mapping λ(A,B,C). If σ would have been the
identity, linear systems theory tells us that, generi-
cally, the triple (A,B,C) is determined only up to an
invertible change of variables in the state space. That
is, except for degenerate situations that arise due to
parameter dependencies —non-controllability or non-
observability— if two triples (A,B,C) and (A,B,C)
give rise to the same i/o behavior then there is an
invertible matrix T such that the interlacing condi-
tions T−1AT = A, T−1B = B, CT = C hold. This
is the same as saying that the two systems are equiv-
alent under a linear change of variables x(t) = Tx(t).
Conversely, any such T gives rise to another system
with the same i/o behavior. These classical facts ap-
ply only when σ is linear, as we discuss in [1]. There
we show that for nonlinear activations —under very
mild assumptions— the natural group of symmetries
is far smaller than that of arbitrary nonsingular ma-
trices, being instead just a finite group. We prove in
[1] that if two nets give rise to the same i/o behav-
ior, then (again, as for linear systems, generically,) a
matrix T will exist, providing the above interlacing
equations, but having the special form of a permuta-
tion matrix composed with a diagonal matrix perform-
ing at most a sign reversal at each neuron. That is,
the input/output behavior uniquely determines all the
weights, except for a reordering of the variables and,
for odd activation functions, possible sign reversals of
all incoming and outgoing weights. A consequence of
this uniqueness is that a dimensionality reduction of
the parameter space, as done for linear systems via
canonical forms, is not possible for recurrent nets.

References

[1] Albertini, F., and E.D. Sontag, “For neural networks,
function determines form,” submitted.

[2] Cybenko, G., “Approximation by superpositions of a
sigmoidal function,” Math. Control, Signals, and Sys-
tems 2(1989): 303-314.

[3] Hornik, K., “Approximation capabilities of multilayer
feedforward networks,” Neural Networks 4(1991): 251-
257.

[4] Maass, W., G. Schnitger, and E.D. Sontag, “On the
computational power of sigmoid versus boolean thresh-
old circuits,” Proc. of the 32nd Annual Symp. on Foun-
dations of Computer Science, 1991: 767-776.

[5] Matthews, M., “On the uniform approximation of non-
linear discrete-time fading-memory systems using neu-
ral network models,” Ph.D. Thesis, E.T.H. Zurich, Diss.
ETH No. 9635, 1992.

[6] Polycarpou, M.M., and P.A. Ioannou, “Identification
and control of nonlinear systems using neural network
models: Design and stability analysis,” Report 91-09-01,
Sept. 1991, Dept. of EE/Systems, USC, Los Angeles.

[7] Romanik, K., “Approximate testing and learnability,”
in Proc. Fifth ACM Workshop on Computational Learn-
ing Theory , Pittsburgh, July 1992.

[8] Siegelmann, H.T., and E.D. Sontag, “On the computa-
tional power of neural nets,” in Proc. Fifth ACM Work-
shop on Computational Learning Theory , Pittsburgh,
July 1992; see also SYCON Report 91-11, Rutgers Cen-
ter for Systems and Control, November 1991.

[9] Siegelmann, H.T., and E.D. Sontag, “Analog compu-
tation, neural networks, and circuits,” submitted.

[10] Sontag, E.D., “Nonlinear regulation: The piecewise
linear approach,” IEEE Trans. Autom. Control AC-
26(1981): 346-358.

[11] Sontag, E.D., “Feedforward nets for interpolation and
classification,” J. Comp. Syst. Sci., to appear, 1992.

[12] Sontag, E.D., “Feedback Stabilization Using Two-
Hidden-Layer Nets,” in Proc. Amer. Automatic Control
Conference, Boston, June 1991, pp. 815-820. To appear
in IEEE Trans. Neural Networks.

[13] Sontag, E.D., Mathematical Control Theory: Deter-
ministic Finite Dimensional Systems, Springer, New
York, 1990.

