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1. Introduction

This paper concerns problems of feedback stabilization for general nonlinear control
systems of the type

ẋ=f(x; u); x∈Rn; u∈U; (1)

where U is a locally compact metric space and f :Rn×U→Rn is a continuous func-
tion.

1.1. The problem of continuous stabilizability

The feedback stabilization problem is that of �nding a feedback control k :Rn→U
such that the origin in Rn is asymptotically stable with respect to the trajectories of
the closed-loop system

ẋ=f(x; k(x)): (2)

A powerful and popular technique for this purpose relies on smooth control Lyapunov
functions (CLF’s); see e.g. [1, 19, 22, 31]. We review some basic de�nitions. A function
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V :Rn→R≥0 is said to be positive (de�nite) if

V (x)¿0; ∀x 6=0; V (0)= 0; (3)

and it is proper if the sublevel set

{x: V (x)≤ a} is compact ∀a¿0: (4)

The function V is said to be in�nitesimally decreasing if there exists a continuous
positive function W :Rn→R≥0 such that, for each compact set X⊂Rn, there exists
a compact set U0⊂U so that

inf
u∈U0

〈∇V; f(x; u)〉≤−W (x); ∀x∈X; x 6=0: (5)

De�nition 1.1. A C1-smooth function V :Rn→R≥0 is called a smooth control
Lyapunov function if it is positive, proper and in�nitesimally decreasing.

Remark 1.2. The de�nition is slightly complicated because of the need to adequately
deal with noncompact U: In the case of U compact; which may be considered in a
�rst reading; in the de�nition of in�nitesimal decrease the set U0 would be taken to
be U itself:

Traditionally, techniques based on control Lyapunov functions exploit the following
natural observation. Let us assume given a smooth CLF V together with a (“selection”)
function k :Rn→U which is continuous on Rn\{0}, bounded near the origin in Rn,
and satis�es

〈∇V (x); f(x; k(x)) 〉≤−W (x) ∀x 6=0: (6)

Then k is a stabilizing feedback, which means that the origin in Rn is globally asymp-
totically stable with respect to solutions of the closed-loop system (2).
Thus, at �rst glance, if there exists a smooth control Lyapunov function then

the construction of stabilizing feedback is reduced to the problem of �nding a
continuous function k :Rn\{0}→U, bounded near zero, and satisfying Eq. (6).
Indeed, if the control system system (1) is a�ne in controls, that is to say it has
the form

f(x; u)=f(x)+ g(x)u;

and U ⊂Rm is a convex set, then by Artstein’s theorem [1] such a continuous feedback
does exist. Unfortunately this is not true for the general (nona�ne) case. 3 One of the
objectives of this paper is to show that, for general nonlinear systems, a stabilizing

3 However, Artstein’s theorem does provide always for the existence of relaxed or chattering feedback
laws; alternatively, a theorem of Coron and Rosier [10] shows in the general case that stabilizing time-varying
feedback laws k(t; x) also exist, if there is a smooth control Lyapunov function.
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feedback law, in general discontinuous, always exists, provided that there is a smooth
control Lyapunov function. To illustrate, we consider next a very simple example.

Example 1.3. Let us consider the three-dimensional control system

ẋ1 = u2u3;

ẋ2 = u1u3;

ẋ3 = u1u2; (7)

with U := {u∈R3: |ui|≤1; i=1; 2; 3}. A straightforward calculation shows that the
quadratic function

V (x)= x21 + x
2
2 + x

2
3 (8)

is a smooth CLF for Eq. (7), with W (x)= 2√
3
V (x)1=2. In general, if there is a stabilizing

feedback that is continuous away from zero and bounded around zero, then there exists
a smooth positive function � :R→R so that ẋ= �(|x|)f(x; k(x)) is continuous at zero,
and then a time-reparametrization argument shows that the system ẋ= �(|x|)f(x; k(x))
has again the origin as an asymptotically stable equilibrium. Equivalently, for our ex-
ample, there exists a stabilizing feedback which is continuous also at zero (namely,
�(|x|)k(x)). Now, we invoke the Brockett necessary condition [2] (see e.g. [31, The-
orem 15]), which asserts that if for the nonlinear control system (1) there exists a
continuous stabilizing feedback, then for some positive � and , it must be the case
that

B⊂f(�B;U); (9)

where B denotes closed unit ball in Rn. Our example fails this test, since there is no
u∈U such that0�

�

=
u2u3u1u3
u1u2


for arbitrary � 6=0.

This example shows the need, in general, for discontinuous feedback.
In this paper, by a feedback we mean simply any function k :Rn→U which is

bounded on bounded sets. Of course, the use of discontinuous feedback poses immedi-
ately a question: in what sense should one de�ne “solutions” of the di�erential equation
(2) with discontinuous right-hand side? That question, including a precise de�nition of
stabilizability under discontinuous feedback, is addressed next. After that, we describe
in informal terms another aspect of this paper, which turns out to be closely related to
the above considerations.
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1.2. The de�nition of solution, under discontinuous feedback

We next de�ne what we mean by a trajectory of the closed-loop system (2) under the
action of a possibly discontinuous feedback k. We use the notion introduced by Clarke
et al. in [6]. It was exploited in [6] to show that every asymptotically controllable
system can be stabilized by means of some (probably discontinuous) feedback. Its
predecessor is the concept of discontinuous positional control developed by Krasovskii
and Subbotin in the context of di�erential games [21].
Let �= {ti}i≥0 be any partition of [0;+∞)
0= t0¡t1¡ · · ·

with limi→∞ ti=+∞. The �-trajectory of system (2) for the feedback k is de�ned
recursively on the intervals [ti; ti+1]; i=0; 1; : : : ; as follows: at moment ti the initial
state x(ti) is measured, the value ui= k(x(ti)) is computed, and x(t) is de�ned on the
interval [ti; ti+1] by solving the di�erential equation

ẋ=f(x(t); ui) i∈ [ti; ti+1]; (10)

with x(0)= x0. Of course, this �-trajectory may fail to exist on the entire interval
[0;+∞) due to its blow-up on one of the intervals [ti; ti+1]. If it exists on [0;+∞),
then the �-trajectory is said to be well de�ned. We also use the same de�nition for
�nite intervals [0; T ] and partitions 0= t0¡t1¡ · · ·¡tk =T:
This concept of solution is physically meaningful, and is natural in the context of

computer control. We call the moments ti “sampling moments”. The sampling rate is
estimated by the diameter of the partition �

diam(�) := sup
i≥0
(ti+1− ti):

A sampling is faster if the diameter of partition is smaller. Then a (discontinuous)
stabilizing feedback is de�ned as a feedback law which drives all states asymptotically
to the origin, with bounded overshoot, for all fast enough sampling. This overshoot
should be arbitrary small if initial states are close enough to the origin and sampling
is fast enough. Of course, due to sampling, it is impossible to guarantee arbitrary
small displacements near the origin, unless a faster sampling rate is used. Also, one
may well need to sample faster for large states, due to the possibility of the blow-
up in �nite time of trajectories. It was shown in [6] that for every asymptotically
controllable system there exists a discontinuous stabilizing feedback in this sense. The
proof was based on a Lyapunov characterization of asymptotic controllability [30] in
terms of continuous control Lyapunov functions, nonsmooth analysis methods [3, 4, 6],
and techniques developed in di�erential game theory [21].

Remark 1.4. Note that the di�erential equation

ẋ= g(t; x) (11)

with discontinuous right-hand side g can be seen as control system

ẋ= u
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with a feedback control u= g(t; x): Then a �-trajectory for this system coincides with
the Euler polygon solution of the di�erential equation (11) [8]:

1.3. Robustness with respect to measurement errors

Let us assume that there exists a smooth CLF V for the control system (1), and let us
consider an arbitrary (discontinuous) function k :Rn→U satisfying Eq. (6). Any such
feedback k will turn out to be stabilizing in the sense just explained. Here we wish to
focus on a most important fact, namely that this feedback is automatically robust with
respect to measurement errors. In general, one of the most important reasons for using
feedback (as opposed to open-loop) control lies in feedback’s robustness properties. In
the current context, by robustness we mean that for the perturbed closed-loop system

ẋ=f(x; k(x+ e(t)))+w(t); (12)

the feedback k drives the state of the system to a small neighborhood of the origin,
even in the presence of (small enough) external disturbance w(·) and measurement
error e(·): (Evidently, the size of this neighborhood will, in general, become large
when the magnitudes of the disturbances are larger.)
In the case when k is continuous and stabilizing, classical results of stability theory

[16, 20] immediately establish that k is robustly stabilizing in this sense; in the discon-
tinuous case, the proof is more delicate. The fact is established in the current paper.
Moreover, one of our main results shows that, for general nonlinear control systems

(1), the existence of a discontinuous stabilizing feedback control which is robust with
respect to measurement errors and external disturbances is equivalent to the existence
of a smooth control Lyapunov function. In that sense, this result plays the same role
for general nonlinear control systems as Artstein’s Theorem does for a�ne control
systems; they both give the characterization of the existence of a smooth CLF in terms
of existence of a robustly stabilizing feedback.
Actually, the above-mentioned Lyapunov characterization is derived from a some-

what more general theorem on robust stabilization, which applies to control systems
under persistently acting disturbances

ẋ=f(x; u; d); (13)

where the “disturbance” d(·) is a measurable function taking values in some compact
metric space D. In order to explain this result, we need a concept, analogous to that
of control Lyapunov function, which is of interest in the context of stabilization under
persistent disturbances: a uniform control Lyapunov function (UCLF) (cf. [26, 15], the
terminology in the latter reference is “robust control-Lyapunov function (RCLF)”). 4

4 It is common in modern control literature to use the term “robust” in the context of stability of control
systems under persistence disturbances, as in Eq. (13). In order to avoid confusions, in this paper we only
use the term “robust” when referring to the insensitivity of a feedback controller’s performance with respect
to small measurement errors and small additive external disturbances in dynamics, and use this term both in
the case of traditional control systems as in Eq. (1) as well as in the case of control system under persistent
disturbances as in Eq. (13).
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De�nition 1.5. A smooth function V :Rn→R≥0 is said to be a smooth uniform control
Lyapunov function for the system (13) if V is positive (3), proper (4), and satis�es the
following in�nitesimal decrease condition: There exists a continuous positive function
W :Rn→R≥0 such that, for any bounded set X⊂Rn; there is a compact set U0⊂U
such that

min
u∈U0

max
d∈D

〈∇V (x); f(x; u; d)〉≤−W (x) ∀x∈X; x 6=0: (14)

It follows from the in�nitesimal decrease condition (14) that there always exists a
feedback k which satis�es

max
d∈D

〈∇V (x); f(x; k(x); d)〉≤−W (x) ∀x 6=0: (15)

Of course, such a feedback k will, in general, be discontinuous, so we must clarify
also in this case the meaning of trajectory, for the closed-loop system

ẋ=f(x; k(x); d) (16)

driven by k. This notion is analogous to the de�nition of trajectory for the control
system (1), discussed above, and will be formulated precisely in Section 2. It will be
shown that a feedback k satisfying Eq. (15) will drive the state of the system (16)
to the origin in Rn and, moreover, this stabilizing feedback is robust with respect to
measurement errors e(·) and external disturbances w(·) in the perturbed system

ẋ=f(x; k(x + e(t)); d(t)) + w(t): (17)

Informally, this means that such a feedback k drives all states to a small neighborhood
of the origin provided that the sampling be fast enough and that measurement errors
and external disturbances are small enough. The size of this neighborhood will depend
upon the sampling rate as well as the magnitudes of the external disturbances and
measurement errors. Thus, the existence of a smooth UCLF implies the existence of a
stabilizing feedback for system (13) which is robust with respect to small measurement
errors and external disturbances. We call such a feedback a robustly stabilizing one.
The main result of this paper is that the converse is true too, namely, if there exists

a robustly stabilizing (probably discontinuous) feedback, then there exists a smooth
uniform control Lyapunov function. We leave the precise de�nitions until Section 2
and state here the following main theorem.

Theorem 1. The control system (13) admits a smooth uniform control Lyapunov
function if and only if there exists a robustly stabilizing feedback for it: Moreover;
for any UCLF V; every feedback k satisfying Eq. (6) is a robustly stabilizing one:

Since the control system (1) is the particular case of the control system under
disturbances (13) that obtains when D is a singleton, we have from Theorem (1) the
following obvious corollary.



Y.S. Ledyaev, E.D. Sontag / Nonlinear Analysis 37 (1999) 813–840 819

Corollary 1.6. For the control system (1); there exists a smooth control Lyapunov
function if and only if there exists a robustly stabilizing feedback:

1.4. Discussion of results

These results can be viewed from two points of view. Firstly, in the case of existence
of a smooth uniform control Lyapunov function, Theorem 1 determines a procedure
for stabilizing feedback design: to determine a feedback law it is enough to �nd for
every x a value k(x) satisfying Eq. (15). This can be done for example by solving the
mathematical programming problem of minimizing the function

u→ max
d∈D

〈∇V (x); f(x; u; d)〉

with respect to u on some appropriate set U0 for every x 6=0. It is important to em-
phasize that we do not need to make an additional e�ort to insure that the function k
is continuous, since it follows from Theorem 1 that an arbitrary feedback k satisfying
Eq. (15) is robustly stabilizing with respect to measurement errors. Secondly, we have
the converse result which tells that the existence of a stabilizing feedback which is ro-
bust with respect to measurement errors and external disturbances implies the existence
of a smooth robust or control Lyapunov function.
It should be emphasized that the robustness of a stabilizing feedback with respect

to measurement errors is essential for this converse result. In an example given in
Section 4, a control system is exhibited which does not admit a smooth CLF. We
construct a stabilizing feedback for this system which is not robust with respect to
measurement errors but which is robust with respect to external disturbances. Note that
in general the existence of a smooth control Lyapunov function is the exception rather
than the rule. Even for such a simple asymptotically controllable nonlinear system as
the “non-holonomic integrator” [2]

ẋ1 = u1;

ẋ2 = u2;

ẋ3 = x1u2 − x2u1;
there is no smooth CLF. Nevertheless, it was shown in [30] (see also [32]) that for any
asymptotically controllable system there exists a continuous control Lyapunov function.
This fact was used by Clarke et al. in [6] to establish that general nonlinear asymptot-
ically controllable systems can be stabilized by some (discontinuous) feedback which
is robust with respect to external disturbances. The results of the current paper as-
sert that, in general, the stabilizing feedback constructed in [6] cannot be robust with
respect to measurement errors, and a special e�ort should be made to ensure these
robustness properties. (A “hybrid dynamical” feedback controller, which is robust with
respect to small measurement errors and external disturbances, was suggested recently
by Ledyaev and Sontag [25]. Its design incorporates an “internal model” of the control
system (1) driven by the discontinuous stabilizing feedback constructed in [6]. Such
a feedback does not �t the hypotheses of the main result in this paper, in particular
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because of its use of memory in the feedback loop, so there is no contradiction with
the results presented here.)
Although the proof of the “if ” part of Theorem 1 is straightforward and self-

contained, the “only if ” part of this Theorem requires the use of a recent converse
Lyapunov function theorem for strongly asymptotically stable di�erential inclusions
with upper semicontinuous right-hand side [7] (see also [20, 23, 27, 28]). It is shown
below that if for the control system (13) there exists a stabilizing feedback k which is
robust with respect to measurement errors and external disturbances, then the di�erential
inclusion

ẋ∈F(x) (18)

with multivalued right-hand side

F(x) :=
⋂
�¿0

cof(x; k(x+ �B);D) (19)

is strongly asymptotically stable. Since the multifunction F given by Eq. (19) is up-
per semicontinuous, we may invoke the above-mentioned converse Lyapunov function
theorem from [7] for such di�erential inclusions, in order to obtain the existence of a
smooth strong Lyapunov function for the di�erential inclusion (18) and (19), and then
observe that this function is a smooth uniform control Lyapunov function for control
system (13).

Remark 1.7. In the case of the control system (1); the di�erential inclusion (18) and
(19) reduces to this one

ẋ∈
⋂
�¿0

cof(x; k(x; + �B)): (20)

Note that solutions of the di�erential inclusion (20) are what are known as Krasovskii
solutions of the di�erential equation (2) for the discontinuous feedback k. In [17], H�ajek
demonstrated that for large class of discontinuous feedbacks k, Krasovskii
solutions coincide with the more widely known Filippov solutions [13,14] of Eq. (2)
(see also Deimling’s book [11] for related discussions, and also for general information
on di�erential inclusions). Hermes [18] was the �rst to consider the concept of (clas-
sical) solution of a di�erential equation with discontinuous right-hand side which is
robust with respect to measurement errors. He established the relation between such so-
lutions and Filippov solutions for this di�erential equation assuming that measurement
errors can be discarded on sets of Lebesgue measure zero. H�ajek [17] dropped this
assumption and established that “Hermes solutions” coincide with Krasovskii solutions
in the general case.
It was mentioned before that the concept of �-trajectory for discontinuous feedback

was introduced originally in context of di�erential games by Krasovskii and Subbotin
[21]. The coincidence of sets of limits of � trajectories (de�ned on �nite intervals),
for a control system under disturbances and discontinuous feedback which is robust
with respect to measurement errors on the one hand, and Krasovskii solutions on the
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other (namely, solutions of the di�erential inclusion (18) and (19)) were studied, for
di�erential games, by Dzhafarov [12]. His result was obtained under assumptions of
local Lipschitzness of f in x, compactness of U and D, and existence of all solutions
of the control system (13) on �nite time intervals. In the present paper, to some extent
analogous relations between limits of �-trajectories of the perturbed system (17) and
solutions of Eqs. (18) and (19) are obtained, but only under the assumption of continu-
ity of f. The omission of compactness requirements on U and of an a priori existence
of solution requirement looks rather natural for the control stabilization problem. We
obtain this relation from a general result establishing the tracking of solutions of re-
laxed di�erential inclusions by approximate solutions of the original one, assuming that
its right-hand side is only bounded on bounded sets. This result generalizes one due
to Clarke et al. [5]. We use the concept of approximate weak invariance of sets, from
[5], and derive necessary and su�cient conditions for approximate weak invariance by
using the proximal aiming technique from [8]. These invariance conditions are applied
to obtain the above-mentioned tracking result.
Finally, we need to point out in this context the generalization of Artstein’s theo-

rem, for the case of stabilization under persistent disturbances, obtained by Freeman
and Kokotovic [15]. They proved, in the case of a control system (13) under per-
sistent disturbances, that if this system is a�ne in u, then the existence of smooth
UCLF implies the existence of a continuous stabilizing feedback. To prove a converse
theorem, they imposed additional restriction that, for a stabilizing feedback k, the func-
tion (x; d)→f(x; k(x); d) is locally Lipschitz. (On the other hand, the setup in [15]
is somewhat more general than ours in another aspect, namely in that it allows for
state-dependent input and disturbance constraints.)
In the present paper, Theorem 1 asserts the existence of a smooth uniform control

Lyapunov function for a general nonlinear control system (13) if and only if there
exists a robustly stabilizing feedback. In fact, any discontinuous function k satisfying
Eq. (15) will be robustly stabilizing.
This paper is organized as follows. Section 2 contains precise statements of ro-

bust stabilizability by feedback, and the converse Lyapunov function theorem from [7]
for di�erential inclusions with upper semicontinuous right-hand side. The notion of
approximate weak invariance of sets with respect to approximate solutions of di�er-
ential inclusions, with a right-hand side which is bounded on bounded sets, is stud-
ied here too. These results are used to establish that a feedback k is robustly sta-
bilizing if and only if the di�erential inclusion (19) is strongly asymptotically sta-
ble. This result is then used in Section 3 in the proof of our main Theorem 1.
Section 4 contains an example illustrating how the robustness of feedback with re-
spect to measurement errors is essential for the existence of a smooth Lyapunov
function.
In what follows 〈·; ·〉 denotes inner product in Rn, | · | Euclidean norm, B the closed

unit ball, coS the closure of the convex hull of a set S, and ‖ · ‖∞ the norm in
L∞([0; T ];Rn). For any function g and any the set S, we use the notation

g(S) :=
⋃
x∈S
g(s):
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2. De�nitions and auxiliary results

We start with the de�nition of �-trajectory for the perturbed system (17), under a
possibly discontinuous feedback k and in the presence of disturbances d(·), measure-
ment errors e(·), and external disturbance w(·). For any given partition �= {ti}i≥0, the
�-trajectory of Eq. (17) starting from x0 is de�ned recursively on the intervals [ti; ti+1],
i=0; 1; : : : ; as the solution of the di�erential equation

ẋ(t)=f(x(t); ui; d(t))+w(t); a:a:t ∈ [ti; ti+1]; (21)

where ui := k(x(ti)+ e(ti)), x(0)= x0. Of course, x(·) may fail to exist on one of the
intervals [ti; ti+1]. This means that there exists a T ¡+∞ such that x(·) exists on
[0; T ) and limt↑T |x(t)|=+∞. Such trajectory is said to blow-up or to be a “blown-up”
trajectory.

De�nition 2.1. The feedback k is said to be robustly sampling–stabilizing (robustly
s-stabilizing, for brevity) if for any

0¡r¡R;

there exist positive T =T (r; R); �= �(r; R); �= �(r; R), and M (R) such that, for any
measurement errors e(·) (arbitrary bounded function e : [0;+∞)→Rn) and external dis-
turbances w(·) (measurable essentially bounded function w : [0;+∞)→Rn) for which

|e(t)| ≤ � ∀t≥ 0; ‖w(·)‖∞ ≤ � (22)

and any partition � with diam (�)≤�, every �-trajectory with |x(0)| ≤R does not
blow-up and satis�es the following relations:
1. (uniform attractivity)

|x(t)| ≤ r; ∀t≥T; (23)

2. (bounded overshoot)

|x(t)| ≤M (R) ∀t≥ 0; (24)

3. (Lyapunov stability)

lim
R↓0

M (R)= 0: (25)

This de�nition has natural physical meaning: Given any pair of positive r¡R, for
arbitrary su�ciently fast sampling, and small enough measurement errors and external
disturbances, all states in the ball of radius R are driven by a robust feedback into the
ball of radius r, and stay there after moment T .
The main Theorem 1 asserts that a robustly s-stabilizing feedback exists if and only

if there exists a smooth uniform control Lyapunov function. We discuss now some
results which are used in the proof of that theorem.
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2.1. Converse Lyapunov function theorem for di�erential inclusions

The �rst result concerns a converse Lyapunov function theorem for a strongly asymp-
totically stable di�erential inclusion (18). This theorem was obtained in [7] under rather
mild assumptions on the multifunction F in Eq. (18).

Hypothesis (H). The multifunction F is upper semicontinuous, namely, for any x∈Rn
and any �¿0, there is a �¿0 such that for any x′ ∈ x + �B,

F(x′)⊂F(x) + �B;
and F(x) is compact convex subset of Rn for each x∈Rn.

Remark 2.2. It is easy to prove that the di�erential inclusion (18) satis�es hypothesis
(H) (see e.g. [11; Example; 1:2]):

It is well known [4,11] that, under assumption (H), for any x0 there exists a solution
x(·) of Eq. (18) with x(0)= x0, which is de�ned on [0; T ) for some T¿0. If such a
solution satis�es the property limt↑T |x(t)|=+∞ for T¡+∞, then the solution x(·) is
said to be blown-up.
In the following notion of strong asymptotic stability of the di�erential inclusion

(18) (or, the multifunction F), the word “strong” is intended to emphasize that all (as
opposed to some) solutions are attracted to the origin in Rn in a (uniformly) stable
way.

De�nition 2.3. The di�erential inclusion (18) (or, the multifunction F) is strongly
asymptotically stable if it has no blown-up solutions and
1. (attractivity) for any solution x(·),

lim
t→+∞ x(t)= 0;

2. (strong Lyapunov stability) for any �¿0, there exists �¿0 such that every solution
of Eq. (18) with |x(0)|¡� satis�es

|x(t)|¡� ∀t≥ 0:
It was shown in [7] that strong asymptotic stability of Eq. (18) under Hypothesis (H)

is equivalent to the following uniform stability concept: there are no blown-up solutions
of the di�erential inclusion (18), and for any positive r¡R there exist T =T (r; R) and
M (R) such that any solution x(·) of Eq. (18) with |x(0)| ≤R satis�es Eqs. (23) and
(24), and Eq. (25) holds.
The smooth function V :Rn→R≥0 is said to be a smooth strong Lyapunov function

for the di�erential inclusion (18) if it is positive (3), proper (4) and satis�es the
following in�nitesimal decrease condition:

max
f∈F(x)

〈∇V (x); f〉≤ −W (x); (26)

where W is some positive continuous function. It is easy to show, by means of stan-
dard Lyapunov function techniques, that the existence of a smooth strong Lyapunov
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function implies strong asymptotic stability of F . The converse result, namely, that
for strongly asymptotically stable F under Hypothesis (H) there must exist a smooth
strong Lyapunov function, is less traditional. The following theorem was proved in [7].

Theorem 2. Under Hypothesis (H); the multifunction F is strongly asymptotically
stable if and only if there exists a smooth strong Lyapunov function for F.

Note that well-known concepts of generalized solutions of di�erential equations with
discontinuous right-hand side, such as Filippov or Krasovskii solutions [11, 13, 17], are
formulated in terms of solutions of appropriate di�erential inclusions with upper semi-
continuous right-hand side. Theorem 2 provides a Lyapunov function characterization
of asymptotic stability of these solutions. For instance, the solutions of the di�erential
inclusion (18) with F given by Eq. (19), are by de�nition the Krasovskii solutions
for the control system (16) driven by (possibly discontinuous) feedback k. The rela-
tion between robustly stabilizing feedback k and stability of Krasovskii solutions is
established in the following result.

Proposition 2.4. The feedback k is robustly s-stabilizing if and only if the di�erential
inclusion (18) and (19) is strongly asymptotically stable.

We postpone the proof of this proposition until the exposition of the following two
results:

2.2. Approximate weak invariance

The �rst result is connected with a well-known fact in the theory of di�erential
inclusions, which asserts that, for a Lipschitz multifunction F , any solution of the
relaxed di�erential inclusion

ẋ(t)∈ coF(x(t)) (27)

is uniformly approximated by solutions of the di�erential inclusion (18) on any �nite
interval [0; T ]. Namely, for any �¿0 there exists a solution x′(·) of Eq. (18) with
x′(0)= x(0) such that

|x(t)− x′(t)| ≤ � ∀t ∈ [0; T ]: (28)

When Eq. (28) holds, we say that x′(·) tracks x(·) with error �.
To some extent, an analogous approximation result was obtained in [5] in the in�nite-

dimensional case, for multifunctions F which are merely upper semicontinuous and for
which values of F are arbitrary bounded subsets of some Hilbert space. Of course, even
in �nite-dimensional spaces, an exact solution of the di�erential inclusion (18) with
such F can fail to exist. Nevertheless, it was shown that it is possible to approximate
solutions of the relaxed di�erential inclusion (27) by �-solutions x(·) of Eq. (18). An
absolutely continuous function x : [0; T ]→Rn is said to be an �-solution of Eq. (18) if
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it satis�es, for a.a. t ∈ [0; T ], the di�erential inclusion
ẋ(t)∈F�(x(t)); (29)

where

F�(x) :=F(x + �B):

Here we need a more re�ned �nite-dimensional version of this result, assuming only
that the multifunction F is bounded on bounded sets. Let x(·) satisfy the relaxed
di�erential inclusion (27). The next Lemma asserts that, for each �¿0, it is possible
to �nd some �-solution x′(·) of Eq. (18) tracking x(·) with error �. Moreover, such a
x′(·) can be de�ned as a �-trajectory for the di�erential equation with discontinuous
right-hand side (11), where g is some function satisfying

g(t; x)∈F(x + (|x − x(t)|+ �=2)B): (30)

(Observe that if x′(·) is a �-trajectory of Eq. (30), and if diam (�) is small enough,
then x′(·) is an �-solution of Eq. (18) approximating x(·).)

Lemma 2.5. Let the multifunction F be bounded on bounded sets and pick any �′¿0.
Let x(·) be any solution of the relaxed di�erential inclusion (27) de�ned on [0; T ];
and let �¿0. Then; there exists a function g satisfying Eq. (30) such that; for any
partition � of the interval [0; T ] with su�ciently small diameter; any �-trajectory
x′(·) of Eq. (11) with x′(0)= x(0) is an �-solution of Eq. (18) such that Eq. (28)
holds.

The proof of this result relies on the notion of approximately weakly invariant set
introduced in [5] and the technique of proximal aiming [8, 9].

De�nition 2.6. The set S ⊂Rn is said to be approximately weakly invariant with
respect to the di�erential inclusion (18) if for each x∈ S there exists a T¿0 such that
for any �¿0 there exists an �-solution x(·) of Eq. (18) with x(0)= x which is de�ned
on [0; T ] and satis�es

dS(x(t))≤ � t ∈ [0; T ]: (31)

This de�nition is di�erent from the one given in [5], since we do not assume here a
linear growth condition on F . To formulate the in�nitesimal conditions characterizing
approximate weak invariance of the set S, we need to appeal to the notion of proximal
normal to the set S at a point x. This concept plays an important role in nonsmooth
analysis [3, 4, 9]. Pick any point z =∈ S; then any point x∈ S which is closest to z is
said to be a projection of z onto S. Note that, in �nite-dimensional spaces, at least
one such projection always exists, for any z, if S is closed. Any positive multiple of
z − x is called a proximal normal to the set S at the point x. The cone consisting
of all proximal normals to S at x is called the proximal normal cone to S at x, and
is denoted as N PS (x). (We de�ne N

P
S (x):={0} if there is no point z such that x is
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a projection of z on S.) It follows directly from the de�nition of closest point that
�∈N PS (x) if and only if there exists some M¿0 such that

〈�; y − x〉≤M |y − x|2: (32)

for all y near x such that y∈M .
De�ne the lower Hamiltonian

hF(x; p) := inf
v∈F(x)

〈v; p〉:

Then we have the following su�cient conditions for approximate weak invariance of
closed sets S, which, in the case of upper semicontinuous compact convex valued mul-
tifunctions F , turns out to be a necessary and su�cient condition for weak invariance of
S, as shown in [8]. It was shown in [5] that, for di�erential inclusions in Hilbert space
with an upper semicontinuous multifunction F satisfying a linear growth condition, the
condition below is necessary and su�cient for approximate weak invariance.

Lemma 2.7. Let the multifunction F be bounded on bounded sets; S be a closed
subset of Rn; and

hF(x; �)≤ 0 ∀�∈N PS (x); x∈ S: (33)

Then S is approximately weakly invariant.

Proof. The proof follows the proximal aiming construction from [8, 9]. Choose for
any x∈Rn a closet point s(x) from S. Let us �x �¿0 and R¿0 and pick some point
x0 ∈ S. De�ne

m := sup{|v| : v∈F(x); |x − x0| ≤ 2R}; T :=R=m:

Because of Eq. (33), for every x there exists a g(x)∈F(s(x)) such that

〈x − s(x); g(x)〉≤ �2=16T:

We consider the partition � of [0; T ] and a �-trajectory of the di�erential equation (see
Remark 1.4)

ẋ= g(x); x(0)= x0:

It is clear that such x(·) exists on some interval [0; T ′]. De�ne T̃ as a supremum of
all T ′¿0 such that x(·) exists on [0; T ′] and satis�es

|s(x(t))− x0|¡2R ∀t ∈ [0; T ′]:

Note that x(·) is de�ned on the interval [0; T̃ ], and g(x(t)) is bounded by m for all
t ∈ [0; T̃ ]. This implies, in particular, that ẋ(t) is bounded by m, and that |x(t) −
x0| ≤mT ≤R on [0; T̃ ].
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By a straightforward calculation similar to one made in [8] we obtain that, for
t ∈ [ti; ti+1]⊂ [0; T̃ ],

d2S(x(t))≤ |x(ti) + (t − ti)g(x(ti))− s(x(ti))|2
≤ d2S(x(ti)) + 2(t − ti)〈g(x(ti)); x(ti))− s(x(ti))〉+ (t − ti)2|g(x(ti))|2:

We have, from the previous relations, that

d2S(x(t))≤ t(�2=8T + m2 diam(�)) ∀t ∈ [0; T̃ ]:

By choosing � with diam(�)¡min{�2=8m2T; �=2m}, we obtain that dS(x(t))¡�=2 on
[0; T̃ ]. This means that, for �¡R, we have

|s(x(t))− x0| ≤ |x(t)− x0|+dS(x(t))¡R+ �:

Due to the de�nition of T̃ , this implies that T̃ coincides with T , and hence Eq. (31)
holds. Since

|x(t)− s(x(ti))| ≤ �=2 + m diam(�)¡� t ∈ [ti; ti+1];

we obtain that x(·) is an �-solution of Eq. (18).

It is easy to derive necessary conditions for approximate invariance of a closed set S.
Recall that the multifunction F� was de�ned in (29).

Lemma 2.8. Let the multifunction F be bounded on bounded sets and the closed set S
be approximately weak invariant. Then; for any �¿0;

hF�(x; �)≤ 0 ∀�∈N PS (x); x∈ S: (34)

Proof. Let �∈N PS (x) for some x∈ S. Choose a sequence �j ↓ 0, let Tj :=√
�j, and �nd a

sequence of �j-solutions xj(·) with xj(0)= x such that xj(Tj)+zj ∈ S for some sequence
zj, |zj| ≤ �j. Such sequences exist due to the approximate weak invariance of S. Let
vj := (x(Tj)− x)=Tj. We substitute y in the characterization (32) of proximal normal by
x + Tjvj + zj to obtain

Tj〈�; vj〉 ≤ M |Tjvj + zj|2 + |�|T 2j : (35)

We show below that, for all j large enough,

vj ∈ coF�(x): (36)

Observe that coF�(x) is a convex compact set. Thus, we may assume that vj→ v for
some v∈ coF�(x). Dividing Eq. (35) by Tj, and taking limit as j goes to ∞, we obtain
that 〈�; v〉 ≤ 0, which implies that hco F�(x; �) ≤ 0). Since

hF� = hco F� ;
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Eq. (34) is valid. To �nish the proof of the Lemma, we need to prove Eq. (36). But
we have

vj =
1
Tj
(x(Tj)− x)∈ 1

Tj

∫ Tj

0
F(xj(t) + �jB) dt;

where the integral of the multifunction is understood as the Aumann integral, namely,
the set of all integrals of measurable selectors of the multifunction (see [4], Theorem
3.13). Since |xj(t)− x| ≤ mt for all t ∈ [0; Tj] and for some constant m, we obtain that∫ Tj

0
F(xj(s) + �jB) dt⊂

∫ Tj

0
F(x + (mTj + �j)B) dt⊂TjcoF(x + �B)

for all j large enough. We have used the fact that for any bounded set A⊂RN , and
any t; h¿ 0,∫ t+h

t
A ds⊂ h coA: (37)

Then, Eq. (36) follows from the two previous inclusions.

Proof of Lemma 2.5. Let x(·) be an absolutely continuous function satisfying the
relaxed di�erential inclusion (27) on [0; T ]. Let R denote the radius of an open ball
containing x(·), and let m denote the radius of an open ball containing F(x), for all
|x| ≤R. It is convenient to consider the extended space R×Rn with the scalar product
of vectors x̂=(t; x) and ŷ=(�; y) given by

〈x̂;ŷ〉 := t�+ 〈x; y〉:
De�ne

Ŝ := {x̂=(t; x): x= x(t); t ∈ [0; T ]}
and consider the multifunction

F̂(x̂) :=

{{1}×F(x); t ∈ [0; T ′); |x|¡R;

{0}×mB; otherwise:

It is obvious that the multifunction F̂ is bounded, and that the absolutely continuous
function x̂(·); x̂(t)= (t; x(t)), is a solution of the relaxed di�erential inclusion

˙̂x∈ co F̂(x̂)
on [0; T ]. This implies that the set Ŝ is approximately weakly invariant with respect
to solutions of this relaxed di�erential inclusion. In accordance with Lemma 2.8, and
due to the coincidence of hF and hco F , we obtain that for any �¿ 0,

h
F̂�=2
(x̂; �)= h

(co F̂)�=2
(x̂; �)≤ 0 ∀�∈N P

Ŝ
(x̂); x̂∈ Ŝ :
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We apply Lemma 2.7 to obtain that Ŝ is approximately weakly invariant for the multi-
function F̂�=2. It follows from the proof of this Lemma that there exists a function ĝ
so that

ĝ(x̂)∈ F̂�=2(ŝ(x̂)) ∀x̂
and such that for any partition � of [0; T ], diam(�) small enough, and any �-trajectory
x̂′(·); x̂′(t)= (t; x′(t)), of the di�erential equation

˙̂x= ĝ(x̂)

with x̂′(0)= (0; x(0)), the following holds:

d
Ŝ
(x̂′(t))¡�=4m ∀t ∈ [0; T ]:

Note that such x̂′(·) is de�ned on the entire interval [0; T ], due to the boundedness
of F̂ .
Since the function x(·) is Lipschitz with constant m, we have

|x′(t)− x(t)| ≤ min
�∈[0;T ]

(|x′(t)− x(�)|+ m|t − �|)≤
√
2m

Ŝ
(x̂′(t))

for t ∈ [0; T ]. The last two relations imply Eq. (28).
It is obvious that x′(·) is a �-trajectory of the di�erential equation (11), where the

function g(t; x) is the second component of ĝ(x̂). But for any x̂=(t; x),

|x̂ − ŝ(x̂)|=d
Ŝ
(x̂)≤ |x − x(t)|

which means that g satis�es Eq. (30) and x′(·) is an �-solution of Eq. (18).

The next Lemma establishes the relation between solutions of the di�erential inclu-
sion (18) and (19) and limits of �j-trajectories xj(·) of the perturbed system

ẋj =f(xj; k(xj + ej(t)); dj(t)) + wj(t)) (38)

with measurement error ej(·) and external disturbance wj(·) satisfying
|ej(t)| ≤ �j; t ∈ [0; T ]; |wj(t)| ≤ �j a:a: t ∈ [0; T ]: (39)

This Lemma generalizes the result by Dzhafarov [12] mentioned in the Introduction.

Lemma 2.9. The absolutely continuous function x : [0; T ]→Rn is a solution of the
di�erential inclusion (19) if and only if there exists a sequence of �j-trajectories xj(·)
of the perturbed system (38) with xj(0)= x(0); diam(�j) ↓ 0; �j ↓ 0; which converges
uniformly to x(·) on [0; T ].

Proof. Let xj(·) be a sequence of �j-trajectories as in the Lemma. It is obvious that
all xj(·); x(·) lie in a ball of some �xed radius R. We de�ne �j := diam(�j) and

m := sup{|f(x; k(x′); d)|+ 1: |x| ≤R+ 1; |x′| ≤R+ 1; d∈D}:
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It is clear that all xj(·) for j large enough, and consequently x(·), are Lipschitz on
[0; T ] with constant m. It follows immediately from the de�nition of �-trajectory and
Eq. (39) that xj(·) is a solution of the following di�erential inclusion:

ẋj(t)∈ cof(xj(t); k(xj(t) + (�j + m�j)B;D) + �jB:
Since xj(·) converges uniformly to x(·) on [0; T ], we obtain that for any �¿ 0 and for
all j large enough, xj(·) is a solution of the following di�erential inclusion on [0; T ]:

ẋj(t)∈ cof(x(t); k(x(t) + �B);D) + �B:
Let us choose arbitrary t ∈ [0; T ) and any h¿ 0 such that t+ h¡T . Then, integrating
the previous inclusion, we obtain

xj(t + h)− xj(t)
h

∈ 1
h

∫ t+h

t
cof(x(s); k(x(s) + �B);D) ds+ �B:

By taking a limit as j→∞, we have for all h small enough, (so that all s’s can be
replaced by t’s,)

x(t + h)− x(t)
h

∈ 1
h

∫ t+h

t
cof(x(t); k(x(t) + 2�B);D) ds+ 2�B:

Let t be a di�erentiability point of x(·). Then, taking a limit as h ↓ 0, and using
Eq. (37), we obtain that x(·) is a solution of the di�erential inclusion

ẋ(t)∈ cof(x(t); k(x(t) + 2�B);D) + 2�B:
Since � was arbitrary, the last relation implies that x(t) satis�es the inclusion (18) and
(19). This concludes the su�ciency part of the Lemma.
Conversely, let us assume that x(·) is a solution of the di�erential inclusion (18)

and (19). Then it follows from Eq. (19) that for any �¿ 0

ẋ(t)∈ cof(x(t); k(x(t) + �B);D):
Let us consider F(x) :=f(x; k(x + �B);D) and use Lemma 2.5 to obtain that there
exists a function g satisfying, due to Eq. (30),

g(t; x)∈f(x + 2�B; k(x + 3�B);D) ∀x∈ x(t) + �B
such that for any partition � of [0; T ] with small enough diameter, for the �-trajectory
x′(·) with x′(0)= x(0) of the di�erential equation (11), the relation (28) holds.
Note that we can assume that for any �¡ 1 any such �-trajectory lies in the same

open ball of radius  as x(·) does. This means that all such x′(·) can be taken to
be Lipschitz with the same constant m on [0; T ]. It follows from the de�nition of
�-trajectory and g that for any ti ∈ � there exists a vector e(ti)∈ 3�B such that

ẋ′(t)∈f(x′(ti) + 2�B; k(x′(ti) + e(ti));D) t ∈ [ti; ti+1]:
Let, in addition, diam(�)≤ �=m. Then, there exists an �(�)¿ 0 such that any �-trajectory
x′(·) satis�es

ẋ′(t)∈f(x′(t); k(x′(ti) + e(ti));D) + �(�)B a:a: t ∈ [ti; ti+1];
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where lim�↓0 �(�)= 0 because of uniform continuity of the function x→f(x; u; d) on
B× k(2B)×D. Thus, for any �¿ 0 there exists a partition � and a corresponding
x′(·) satisfying Eq. (28) as well as the previous relation.
Now, we choose a sequence �j ↓ 0, and for each �j �nd an �¿ 0 and a �-trajectory

x′(·) as above such that

3�¡�j; �(�)¡�j:

We denote this �-trajectory by xj(·). Then we have that

ẋj(t)∈f(xj(t); k(xj(ti) + ej(ti));D) + �jB a:a: t ∈ [ti; ti+1]

and ‖x(·)− xj(·)‖≤ �j. Using the measurable selector theorem in [4, Theorem 3.1.1],
this implies that there exists a measurable disturbance dj(·) with values in D, and
an external disturbance wj(·), such that xj(·) is a �j-trajectory of Eq. (38) for some
partition �j, measurement error ej(·), and external disturbance wj(·) satisfying Eq. (39),
and xj(·) converges uniformly to x(·).

Proof of Proposition 2.4. Let us suppose that k is a robustly s-stabilizing feedback and
show that the di�erential inclusion (18) and (19) is strongly asymptotically stable. Take
arbitrary positive r ¡R, pick r′¡r such that M (r′)¡r and de�ne T =T (r′; R) for the
functions M , T given in De�nition 2.1. Let x(·) be solution of the di�erential inclusion
(18) and (19) de�ned on some interval [0; T ′] with |x(0)| ≤R. Then by Lemma 2.9
there is a sequence of �j-trajectories xj(·) of the perturbed system (38) and (39), with
diam(�j) ↓ 0, �j ↓ 0, converging uniformly to x(·) on [0; T ′]. Since |xj(0)| ≤R, the xj(·)
satisfy relation (24), and we obtain that x(·) satis�es Eq. (24) on [0; T ′] too. This
implies that x(·) cannot blow-up at �nite time, is de�ned on the entire [0;+∞) and
is bounded by M (R). We have that |xj(T )| ≤ r′ which implies that |x(T )| ≤ r′. We
repeat the previous argument for the solution of the di�erential inclusion starting from
the point x(T ) and obtain that |x(t)| ≤M (r′) for all t≥T . Due to the choice of r′,
this implies that x(·) satis�es Eq. (23). This proves that Eq. (18) and (19) is strongly
asymptotically stable.
Conversely, we assume that Eqs. (18)–(19) is strongly asymptotically stable. This

means that there exist functions T (r; R) and M (R) such that any solution of Eqs. (18)
and (19) does not blow-up and satis�es Eqs. (23) and (24), and Eq. (25) holds.
For any positive r ¡R choose positive r′= r′(r) such that M (r′)¡r=2, and de�ne
T :=T (r′=2; R); M ′(R) := 2M (R). Let us show that there exist positive �= �̃(r; R)
and �=�̃(r; R) such that, for any �-trajectory x(·) of the perturbed system (17) with
|x(0)| ≤R, diam(�)≤ �, measurement error e(·), and external disturbance w(·) satisfy-
ing Eq. (22), the following holds:

|x(t)|¡M ′(R) ∀t ∈ [0; T ]; (40)

|x(T )| ≤ r′: (41)
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If Eq. (40) is not true, then there exist sequences �j ↓ 0 and Tj ≤T , and �j-trajectories
of Eq. (38) with |xj(0)| ≤R, diam(�j) ↓ 0, and measurement errors and external distur-
bances satisfying Eq. (22) with �= �j, such that

|xj(t)|¡ 2M (R) ∀t ∈ [0; Tj); |xj(Tj)|=2M (R):
Without loss of generality we may assume that Tj→ T̃ and xj(·)→ x(·) uniformly
on [0; T̃ ]. Then, by Lemma 2.9, we have that x(·) is a solution of the di�erential
inclusion (19) and |x(T̃ )|=2M (R). This contradicts Eq. (24). Now, let us assume that
for some sequences �j ↓ 0 and �j-trajectories of Eq. (38) with |xj(0)| ≤R, diam(�j) ↓ 0,
we have that |xj(T )|¿r′. As above, this implies that there exists a solution x(·) of
the di�erential inclusion (19) such that |x(T )| ≥ r′ but, in accordance with the choice
of T , we have |x(T )| ≤ r′=2.
Thus, Eqs. (40) and (41) are valid for any �-trajectory with diam(�)≤ �̃(r; R), and

having initial state |x(0)| ≤R, and any measurement error and external disturbance of
magnitude bounded by �̃(r; R). In particular, this means that such �-trajectories do not
blow-up, and are bounded by M ′(R) on the interval [0; T ].
De�ne the two functions

�(r; R) :=min{�̃( 12 r′; r′); �̃(r′; R)}; �(r; R) :=min{�̃( 12 r′; r′); �̃(r′; R); 1}:
It is clear that any �-trajectory of the perturbed system (17) with diam(�)≤
�(r; R); |x(0)| ≤R, measurement error e(·), and external disturbance w(·) bounded by
�(r; R), does not blow-up, and also satis�es Eq. (40) for all t ∈ [0; T ] and (41). Let
T ′ :=T ( 12 r

′; r). Then, because of Eq. (41) and de�nition of the functions �; �, we have
that x(·) does not blow-up on the interval [T; T + T ′], and

|x(t)| ≤M (r′)
on this interval. Since |x(T +T ′)| ≤ r′=2, we can apply the previous arguments, starting
from the initial point x(T+T ′). By repeating this argument for the consecutive intervals
[t+ jT ′; T +(j+1)T ′] we obtain that x(·) does not blow-up in �nite time, is bounded
by M ′(R), and satis�es the uniform attractivity condition (23) due to the choice of r′.
Thus, we obtain that the feedback k is robustly stabilizing. (Observe that, from the
de�nition of �̃(r; R), we have that |x(t)| ≤ 2M (R) on the interval [0; T ], and |x(T )| ≤ r.
So solutions remain bounded in between sampling times.)

3. Proof of the main theorem

Let us assume that there exists a smooth uniform control Lyapunov function V .
If the control set U is compact, then for every x∈Rn\{0}, the vector k(x) is de�ned
as an arbitrary vector from U satisfying Eq. (15), and k(0) can be chosen as an
arbitrary �xed vector from U. In case of non-compact U, we can modify this simply
by considering the partition Xj; j=0;±1; : : : of Rn\{0},

Xj := {x∈Rn: 2j ≤ |x|¡2j+1}:
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Then, in accordance with the de�nition of UCLF, for any j there exists a compact set
Uj ⊂U such that

min
u∈Uj

max
d∈D

〈∇V (x); f(x; u; d)〉≤ −W (x) x∈Xj:

Note that we may assume that Uj ⊂U0 for all j¡0. Then k(x) can be chosen as one
of the minimizing vectors u∈Uj for x∈Xj, and k(0) can be an arbitrary �xed vector
from U. This function k is bounded on bounded sets, and satis�es Eq. (15). To prove
that such a k is a robustly stabilizing feedback, we use the following Lemma.

Lemma 3.1. There exist continuous functions �̃ :Rn\{0}→R¿0 and �̃ :Rn\{0}→
R¿0 such that, for any partition � satisfying

ti+1− ti≤ �̃(x(ti)); i=0; 1; : : : ; (42)

and any disturbance d(·); as well as any measurement error and external disturbance
satisfying

|e(ti)| ≤ �̃(x(ti)); |w(t)| ≤ �̃(x(ti)); a:a: t ∈ [ti; ti+1]; i=0; 1; : : : ; (43)

every �-trajectory x(·) of Eq. (21) does not blow-up, and satis�es
dV (x(t))
dt

≤ −1
2
W (x(t)); a:a: t ∈ [ti; ti+1]; i=0; 1; : : : : (44)

Remark 3.2. The proof will show that, in the case of compact U; the functions �; �
can be chosen to be the same, independently of which particular feedback k is picked
satisfying Eq. (15). In the general case, these functions depend only on the growth
rate of the feedback k.

We proceed with the proof that k is a robustly stabilizing feedback and postpone
the proof of this lemma until the end of this proof.
Let us choose any positive r¡R, and de�ne

VR := max
|y|≤R

V (y); M (R) := max{|x|: V (x)≤VR}:

It is easy to see that VR ↓ 0 and M (R) ↓ 0 as R ↓ 0. Thus, M (R) satis�es Eq. (25).
To show that any �-trajectory of Eq. (17) with |x(0)| ≤R is bounded by M (R) if
the sampling rate is high, and the measurement errors and external disturbances are
small, we de�ne r′¿0 such that M (r′)¡r, and quantities T =T (r; R); �= �(r; R), and
�= �(r; R) as follows:

T (r; R)=VR=W0; �(r; R) := min
{

min
r′=2≤|x|≤ R

�̃(x); r′=2m′
}
;

�(r; R) := min
r′=2≤|x|≤ R

�̃(x);
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where

W0 := min
r′=2≤|x|≤ R

W (x)=2;

m′ := max{|f(x; k(x′); d)|+ �̃(x) : |x′ − x| ≤ �̃(x); |x| ≤ r}:

Let x(·), with |x(0)| ≤R, be a �-trajectory for the partition � with diam(�)≤ �, and
measurement error and external disturbance satisfying Eq. (22). Then it follows from
Lemma 3.1 and Eq. (44) that

V (x(t))≤V (x(0))−W0t¡VR t ∈ [0; tN ];

where N is de�ned as the least integer such that there exists a t′ ∈ (tN ; tN+1] satisfying

|x(t′)| ≤ r′=2: (45)

Due to this inequality, we obtain that |x(t)| is bounded by M (R) on the interval [0; TN ],
and tN¡T (otherwise, we would have V (x(T ))¡0, which would contradict the positive
de�niteness of V ).
Let t′ be the �rst moment in [ti; ti+1]; i≥N , such that inequality (45) holds. Then

we have

V (x(t))≤V (x(ti))−W0(t− ti); t ∈ [ti; t′]

and

|x(t)| ≤ |x(t′)|+m′�¡r′ t ∈ [ti; ti+1]:

This implies that |x(ti)|¡r′ (in particular, this is true for i=N ), |x(t)| is bounded
by M (r′) on the interval [ti; ti+1] and x(ti+1)¡r′. Repeating this argument for the
consecutive intervals [ti; ti+1], we obtain that |x(t)|¡M (r′) all t≥ tN . But due to the
choice of r′, this means that x(·) satis�es the uniform attractivity condition (23) and
overshoot boundedness condition (24). Thus, k is a robustly stabilizing feedback.

Proof of Lemma 3.1. Let x(·) be a �-trajectory

ẋ(t)=f(x(t); k(x(ti)+ e(ti)); d(t))+w(t) t ∈ [ti; ti+1]

for some partition �, disturbance d(·), and measurement error e(·), and suppose that
for some �¿0; �¿0,

ti+1− ti≤ �; |e(ti)| ≤ �; |w(t)| ≤ �; a:a: t ∈ [ti; ti+1]:

We show that the function V (x(t)) is decreasing on the �xed interval [ti; ti+1] if � and
� are small enough. Due to the properness of the function V , this will imply that x(·)
does not blow-up on [ti; ti+1] and exists on this entire interval.
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Indeed, denote x′ := x(ti)+ e(ti); then for a.a. t ∈ [ti; ti+1]
dV (x(t))
dt

= 〈∇V (x(t)); f(x(t); k(x′); d(t))+w(t)〉
= 〈∇V (x′); f(x′; k(x′); d(t))〉+〈∇V (x(t))−∇V (x′); f(x′; k(x′); d(t))〉
+ 〈∇V (x(t); f(x(t); k(x′); d(t))−f(x′; k(x′); d(t))〉+〈∇V (x(t)); w(t)〉:

This implies that

dV (x(t))
dt

≤ −W (x′)+ |∇V (x(t))−∇V (x′)‖f(x′; k(x′); d(t))|
+ |∇V (x(t))‖f(x(t); k(x′); d(t))−f(x′; k(x′); d(t))|+ |∇V (x(t))|�:

It is clear that by choosing � and � small enough we have vectors x′; x(ti); x(t) close
to each other which implies that Eq. (44) holds on [ti; ti+1]. We need some additional
notation to make this statement precise.
Let us choose some point in U, denote it by �0, and de�ne

U� := {u∈U: dist(�0; u)≤ �}:
Since k is bounded on bounded sets, there exists a continuous function � :R≥0→R¿0
such that

k(x)∈U�(|x|):
For any arbitrary continuous function g :Rn×U×D→Rl, we de�ne functions mg and
!g characterizing locally the magnitude of |g| and modulus of continuity of g, as
follows:

mg(x) := max{|g(y; u; d)|+1: |y− x| ≤ 1; u∈U�(|x|+1); d∈D}

!g(x; ) :=max{|g(x1; u; d)− g(x2; u; d)|:
|x1− x2| ≤ ; |xi− x| ≤ 1; i=1; 2; u∈U�(|x|+1); d∈D}:

It is easy to verify that these functions are upper semicontinuous at any point x and
(x; ); ¿0, respectively, as the maximum of continuous functions on compact sets
which depend continuously upon x and (x; ). Note that the function →!g(x; ) is
monotone increasing. Let �≤ 1; �≤ �0(x(ti)), where

�0(x) := 1=mf(x):

Then we have that

|x(t)− x(ti)| ≤ 1; |x(t)− x(ti)| ≤mf(x(ti))�
on [ti; ti+1]. From now on, we denote x(ti) as x. By using the previous estimates, we
obtain that

dV (x(t))
dt

≤− 1
2
W (x(t))+
(x; �; �)− 1

2
W (x);
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where 
(x; �; �) denotes the expression

mf(x)!∇V (x;mf(x)�+ �)+m∇V (x)!f(x;mf(x)�+ �)

+m∇V (x)�+!W (x; �)+ 1
2!W (x;mf(x)�):

Let us choose �= �=mf(x). Then it follows from the above relations that Eq. (44) holds
for all positive � satisfying the inequality


1(x; �)≤ 1
2W (x);

where


1(x; �) :=
(x; �=mf(x); �):

Let us de�ne the function �1(x) as the maximal value of �≤ 1 satisfying the previous
inequality. Now, we show that �1 is lower semicontinuous at any point x 6=0. Since 

is strictly monotone increasing, we have that for any �¿0


(x; �1(x)− �)¡ 1
2W (x):

Due to the upper semicontinuity of 
 and the continuity of W in x, we obtain that for
all y near x,


(y; �1(x)− �)¡ 1
2W (y):

This implies that �1(y)¿�1(x)− � for all y near x. Thus, the function �1 is lower
semicontinuous, and the function

�1(x) := min{�0(x); �1(x)=mf(x)}
is lower semicontinuous too. To �nish the proof of the Lemma, it is enough to show
that there exist continuous positive functions �̃≤ �1 and �̃≤ �1. It is obvious that the
following functions:

�̃(x) := inf
y∈Rn

(�1(y)+ |y− x|); �̃(x) := inf
y∈Rn

(�1(y)+ |y− x|)

satisfy these requirements.

Now, we can conclude the proof of the main theorem. Assume that there is a
robustly stabilizing feedback k. By Proposition 2.4 this implies that the di�erential
inclusion (19) is strongly asymptotically stable. Recall that this di�erential inclusion
satis�es assumption (H). It follows from Theorem 2 that there exists a smooth strong
Lyapunov function V which satis�es the in�nitesimal decrease condition (26). Note
that, for any d∈D,

f(x; k(x); d)∈
⋂
�¿0

cof(x; k(x+ �B);D);

which implies, due to Eq. (26), that

〈∇V (x); f(x; k(x); d)〉≤−W (x) ∀d∈D:
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Since k is bounded on bounded sets, this relation implies that V satis�es Eq. (14) and
is a robust Lyapunov function for the control system under disturbances (13).

4. Examples

We study now a simple example of a control system which has the following prop-
erty: there is no possible s-stabilizing feedback that is robust with respect to measure-
ment errors, but one can �nd an s-stabilizing feedback that is robust with respect to
external disturbances.
The system is given by the following equations:

ẋ1 = (x21 − x22)u;
ẋ2 = 2x1x2u: (46)

We show next that the particular feedback

k(x)=
{
+1; if x1≥ 0;
−1; if x1¡0

(47)

is s-stabilizing feedback and is robust with respect to external disturbances, but it is
not robustly s-stabilizing because it fails to be robust with respect to measurement
errors. Moreover, we show that no possible s-stabilizing feedback can be robust with
respect to such errors. (The nonexistence of robust feedback means, by Theorem 1,
that there is no smooth control Lyapunov function for this example, a fact which was
already known, cf. [1].)
It is easy to verify that the circles

x21 + (x2− a)2 = a2;
are integral manifolds for the trajectories of the unperturbed system (46) and, con-
sequently, for the �-trajectories of Eq. (46) under any feedback as well. Take, in
particular, the circle

C := {(x1; x2): x21 + (x2− 1)2 = 1}:
We consider the angle ’∈ [−�=2; 3�=2) between the x1-axis and the radius-vector from
(0,1) to (x1; x2). If (x1; x2) satis�es Eq. (46), then ’ satis�es the following di�erential
equation:

’̇=(1+ sin’)u:

It is clear that if u=−1 then the point x moves clockwise on C, and u=+1 then the
point moves counterclockwise on C. Let k be any s-stabilizing feedback, and express
the restriction of k to the circle C as a function k = k(’). This function cannot have
constant sign, nor can k(’) vanish for any ’ 6= −�=2, since otherwise k would not be
s-stabilizing. We �x any �∈ (−�=2; 3�=2) so that k(�)¿0, and de�ne

’1 := min{’≤ �: k(’′)¿0 for all ’′ ∈ [’; �]}:
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It is clear that ’1¿−�=2 and that in every neighborhood of ’1 there exist points where
k takes values of opposite signs.
Pick any initial point x(0)∈C whose coordinate in terms of ’ is ’1. Assume that

we measure x with error �. Then, for any partition � with diameter su�ciently small,
the fact that (’ − �; ’ + �) has points with k(’)¿0 as well as points with k(’¡0
means that there are �-trajectories of the perturbed system which stay in the interval
(’− �; ’+ �) forever, contradicting s-stabilization.
Next, we show that the feedback (47) does provide, at least, s-stabilization which is

robust with respect to external disturbances (w1; w2), i.e., for the system

ẋ1 = (x21 − x22)u+ w1;
ẋ2 = 2x1x2u+ w2:

(48)

It is convenient for this purpose to introduce polar coordinates (r; ’) centered at the
origin. In these coordinates, Eq. (48) takes the following form:

ṙ= ur2 cos’+ wr;

’̇= ur sin’+
1
r
w’;

(49)

where

wr =w1 cos’+ w2 sin’; w’= − w1 sin’+ w2 cos’:
Finally, we introduce

V := r(2− |cos’|):
We show that this is a nonsmooth CLF for the system, and the feedback k exhibits the
decrease of V . Indeed, the derivative of V along an arbitrary �-trajectory of the system
(49) is

V̇ = − r2[|cos’|(2− |cos’|) + sin2 ’] + (2− |cos’|)wr + sign(cos’)sin’w’:
Since |cos’|(2− |cos’|) + sin2 ’≥ |cos’|+ sin2≥ 1, we obtain that

V̇ ≤ − r2 + 4(|w1|+ |w2|)≤ − r2 + 8|w| ≤ − 1
4
V 2 + 8|w|:

It now follows from standard estimates with di�erential inequalities [24] that, under the
assumption that the external disturbance is bounded in sup norm, that is, ‖w‖∞¡+∞

r(t)≤max
{

8r(0)
4 + r(0)t

; 8
√
‖w‖∞

}
: (50)

(Just consider any t so that 18V
2(x(t))≥‖w‖∞; then V̇ ≤ − 1

8V
2 and therefore,

V (r(t); ’(t))≤ 8V (0)
8 + V (0)t

:

The moment T is de�ned as the �rst time so that V 2(x(T ))=8‖w‖∞, so V 2(x(t))≤
8‖w‖∞ for all t≥T . Then the estimate follows from the fact that r≤V (r; ’)≤ 2r:)
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To conclude the discussion, we only need to remark that the estimate (50) implies
practical semiglobal stability of the system in the presence of external disturbances but
the absence of measurement errors.
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