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and then one views the pair (F(o) ,  G(a) )  as a 
system over the ring Rio] (e.g., [1], [8]). Alterna- 
tively, one may introduce the operator zx(t).'= 
x(t  + h) and express the ' t ransfer  matrix'  of (1) as 
a proper ratio of two matrices 

N 

Q(s, z) := szUI-  ~ F~z u- '  
i~O 

and 
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1. I n t r o d u c t i o n  

This note deals with retarded delay-differential 
systems (with one commensurable delay) of the 
type: 

N N 

~ x ( t )  = Y~ Fix(t -- ih) + Z G u ( t -  ih). (1) 
~At g i = 0  i = 0  

There are two ways in which one may 'algebraize'  
this equation. The first is based on the use of the 
formal delay operator ox(t):= x(t  - h) (from here 
on, h is an arbitrary but fixed positive real num- 
ber that specifies the unit length of the delay). 
Here one introduces the matrices 

N N 
F(o)  := E F,o'  and G(o):= E Go', 

i = o  i = 0  
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N 

P ( S ,  Z ) : =  E GzN- i "  

i~O 

This second approach is more convenient when 
studying various issues in realization theory and 
control. In particular, it is easier then to construct 
function space models (such as M 2 = (R x 
L 2 [ - h ,  0])U(e.g., [2])) and to study function space 
reachability, stabilizability, and other properties 
[10,11]. Among the latter is the notion of ap- 
proximate left coprimeness. The pair (Q, P )  is 
said to be approximately left coprime if there exist 
sequences of matrices ( R~ } and ( S  n } with entries 
in a suitable space of Schwartz distributions such 
that, with the topology of distributions, 

* R , + P  * S , ~ 6 I ,  (2) 

where () and /~ denote the respective inverse 
Laplace transforms, * denotes convolution, and B 
is the delta function (see [10] for details and also 
[6] for a similar approach). 

When this condition is satisfied, the natural 
observable function space model introduced in 
[10] turns out to be quasi-reachable (or approxi- 
mately reachable in a more popular  terminology), 
and it plays a certain crucial role in studying 
reachability questions of infinite-dimensional sys- 
tems [11]. The approximate coprimeness condition 
clearly reduces to the standard coprimeness condi- 
tion (see, e.g., [3]) for finite-dimensional systems. 
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Since de lay-d i f fe ren t i a l  systems are of ten 
specif ied in terms of the first representa t ion,  using 
matr ices  F(o), G(o), and since such matr ices  are 
more  di rect ly  associa ted  with various a lgebraic  
a lgor i thms (e.g., rea l iza t ion a lgor i thms that  use 
Hanke l  matrices) ,  it is impor t an t  to relate the two. 
The  re la t ionship  between these two approaches  is 
not  comple te ly  s t ra ightforward.  As an i l lustrat ion,  
take the system 

2 ( t ) = x ( t - h ) + u ( t ) ,  

),(t) =x( t -h) .  
The t ransfer  funct ion of this system is l / ( s z  - 1), 
or equivalent ly  o / ( s -  o) using the opera to r  o. 
Whi le  the first f ract ional  representa t ion  is clearly 
copr ime,  the second is not,  because there is a 
c o m m o n  zero s = o = 0 between the numera to r  
and  denomina tor .  

The  main  object ive of this note  is to p rov ide  an 
easy- to-check cr i ter ion for the existence of  an 
approx ima te ly  copr ime  factor izat ion stated in 
terms of the matrices obtained by the ring-theoretic 
approach. To achieve this, we first establ ish some 
re la t ionships  between the usual copr imeness  no- 
t ions in bo th  formalisms.  

be a p × n matr ix  over the r ing R[s ,  o]. Wr i t e  its 
rows explici t ly,  

[;J 
The row degrees of V (with respect  to o )  are the 
integers 

deg o v 1 . . . . .  dego vp. 

Its highest order coefficient matrix [VIo is def ined  
to be the matr ix  over N[s] consis t ing  of the row- 
wise h ighes t -order  coefficients  of odego" ' , . . . ,  
o aego'','. Thus, for example ,  for 

v = ( S - O  o 1 )  
0 2  " so  L s + o  

The matr ix  V is said to be rowproper in o, if [V]o 
is of full rank  over the field R ( s )  of ra t ional  
funct ions in s. (Fo r  instance,  the above  example  is 
row proper . )  

2. Preliminaries: Coprimeness conditions 

Notation 

R[x ,  y]  is the r ing of po lynomia l s  in two varia-  
bles x, y. 

R ( x ,  y )  is the field of ra t ional  funct ions in two 
var iables  x, y. 

( ' ( R - )  is the convolu t ion  a lgebra  consis t ing of 
Schwartz  d i s t r ibu t ions  having compac t  suppor t  
con ta ined  in ( - oe, 0] (see [10]). Wi th  the in terpre-  
ta t ion zx(t):= x(t  + h), the opera to r  z may  be 
ident i f ied  with  the left-shift  convolu t ion  opera to r  
6 h (the Di rac  del ta  funct ion p laced  at po in t  
- h ) ,  and  in this way we shall regard  R[s,  z] as a 
suba lgebra  of  d~'(R ). Similarly,  the opera to r  
ox(t) := x ( t -  h) may  be ident i f ied  with ~h; note  
careful ly  that  wi th  this ident i f ica t ion  the r ing 
R[s ,  o] is not a suba lgebra  of  ~ ' ( R  - ) ,  though it is 
an a lgebra  of d is t r ibut ions .  

F o r  every row vector  v(s ,  o )  over R[s ,  o], the 
degree 

deg o v(s, o) 

is the highest  degree in o of its entries. Now let V 

Let W(s, o) := ( w s )  be the p × m t ransfer  ma-  
trix of a r e t a rded  de lay-d i f fe rent ia l  system with 
commensurab le  po in t  delays.  By this we mean  
that  W can be wri t ten in the form 

N1 

w(s, o)= k=°N  (3) 

k ~ 0  

where gk(s )  is a scalar  po lynomia l  of degree  less 
than n, and  H k ( s )  is a mat r ix  of  size p × m with 
po lynomia l  entries of  degree at most  n - 1. G iven  
such a W, we may  also view it as a ma t r ix  of  
ra t ional  funct ions  in (s, z), where z = 0 -1. 

Thus it is poss ib le  to cons ider  two dif ferent  
types of factor izat ions ,  one over  the r ing R[s ,  z], 
and  the o ther  over R[s,  o]. We  now in t roduce  two 
different  not ions  of copr imeness  for such factor i-  
zations.  As  men t ioned  earlier,  the first is re la ted  to 
the funct ion space reachabi l i ty  and  the so lu t ion  of 
cont ro l  p rob lems ,  while the second arises in the 
r ing- theoret ic  app roach  to such systems. 
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Definition 2.1. The pair (Q, P), Q ~ R[s, z] pxp, 
P ~ R[s,  z] pxm is said to be an approximately left 
coprime factorization of W if Q is invertible over 
R(s, z) and the pair satisfy 

(a) W = Q-~P when W is written as a function 
of (s, z); 

(b) there exists sequences X. and Y. of matrices 
over o~'(R-)  such that 

(~ * X. + /~  * Y. ---, 81 (4) 

where Q and /~ denote the inverse Laplace trans- 
forms, • denotes convolution, and the conver- 
gence is with respect to the topology of d~'(R-). 

Definition 2.2. The pair (D, N), D ~ R[s, o] p×p, 
N ~ R[s,  a] p×m is said to be a left Bezoutfactori-  
zation of W if D is invertible over R(s, o) and 
the pair satisfy 

(a) W = D - 1 N  when W is written as a function 
of (s, o); 

(b) there exist matrices X, Y over R[s, a] such 
that 

N X +  D Y =  I.  (5) 

In order to discuss the relationship between the 
above two notions of coprimeness, we first need to 
relate a left factorization over R[s, a] to a left 
factorization over R[s, z]. 

Let Q a(s, o ) P ( s ,  o) be any left factorization 
of Wover  R[s, a], i.e., 

W = Q - ' ( s , a ) P ( s , a ) ,  

Q ~ R [ s , o ]  "xp,  P ~ a [ s , o ]  p×m. 

Substituting o = z -~ and clearing denominators, 
we obtain of course a factorization over R[s, z]. 
More precisely, we proceed as follows: Let 
r] . . . . .  rp be the row degrees of the composite 
matrix 

[O(s, o) p ( s ,  o)] 

with respect to the variable o. Then the pair of 
matrices 

. [ Q ( s ,  z - i )  P ( s ,  z - I ) ]  (6) 

give a left factorization over the ring R[s, z]. We 
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call this factorization the left factorization associ- 
ated to the pair (Q, P). 

As noted in the Introduction, if there exists an 
approximately left coprime factorization of W, 
then the canonical realization can be constructed 
with an M2-1ike function state space [10,11]; to be 
more precise, the Fuhrmann-type standard ob- 
servable realization 2; Q (the notation is as in [10]) 
turns out to be quasi-reachable. Then, how can we 
check the existence of  such a factorization? This will 
be the theme of the next section. 

3. Existence of an approximately left coprime fac- 
torization 

For the existence of a left Bezout factorization 
over R[s, o], the following criterion in terms of 
the Hankel matrix is known: 

Theorem 3.1 [9,4,5]. Let  W be a transfer matr ix  
given by (3). Expand  W in negative powers of  s as 
fo l lows:  

oo 

w= E wk(o)s -k (7) 
k = l  

where each p × m matrix  W k is a polynomial matr ix  
in a. With ( W k }, form the Hanke l  matrix  

~ : =  

w, w2 w3 . . .  

w2 w3 w .  . . .  

w~ w4 w~ . . .  

Let k be the rank of  ~ over the f ie ld R ( a )  of  
rational functions in a. Then W admits a left Bezout 
factorization i f  and only i f  all k × k minors of  
have no common zero a ~ C. 

See [7] for related material. Note also that the 
condition above is equivalent to saying that the 
rank of . ~  is independent of a. 

Though we may obtain a left Bezout factoriza- 
tion of W from this result, the associated pair 
need not be approximately left coprime. The rea- 
son is that there can be a 'cancellation at o = oo' 
between the obtained matrices Q(s ,  o)  and 
P(s ,  a). 
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To avoid this, we need the following lemma: 

Lemma 3.2. The pair (Q(s, z), P(s, z)), Q, P E 
R[s, z], is approximately left coprime if (and only 
if) 

(i) rank[Q(s, e h') P(s, eh')] = p  for all s ~ C; 
and 

(ii) rank[Q(s, O) P(s, 0)] = p for some s ~ C. 

Proof. Let 0 ,  /3 be the inverse Laplace transforms 
of Q and P, respectively. According to Corollary 
4.10 of [11], (Q, P)  is approximately leftvcoprime 
if and only if condition (i) holds and [Q P] gener- 
ates a full rank matrix at the origin (considered 
over the field of fractions of d°'(R-)).  Since each 
entry of [Q P] is of the form 

4, , (s)z ' ,  z = e 
i = 0  

the or ion  (0} is an isolated point of the support 
of [Q P], and it generates an atomic distribution 
[Qo Po] at {0}. Clearly [Qo Po] is precisely the 
inverse Laplace transform of the coefficient ma- 
trix of z ° in [Q(s, z) P(s, z)], which is 

[Q(s,  O) P(s ,  O)]. 

Thus [Q0 Po] generates a full rank distribution if 
and only if [Q(s, O) P(s, 0)] has a minor which is 
not identically zero, and hence the lemma is 
proved. [] 

We are now ready to give the following theo- 
rem: 

Therefore, by Lemma 3.2 above, the pair 
(~)(s, z), P(s, z)) is approximately left coprime. 
[] 

Remark 3.4. By [10], [11], condition (i) in Lemma 
3.2 means that the standard observable realization 
,~Q (see Section 2) associated to the factorization 
Q-1p is spectrally reachable, i.e., every element in 
any generalized eigenspace is reachable. Also, rank 
Q(s, 0) = full is equivalent to the state space to be 
eigenfunction complete [11, Corollary 3.13], and 
condition (ii) in Lemma above then means that 
the system can be made eigenfunction complete 
by suitable feedback (which does not change 
reachability) [11, Theorem 4.1]. It is interesting to 
observe that we have obtained: 

1. this standard realization (associated with 
Q - l p )  is eigenfunction complete if and only if 
Q(s, o) is row proper; 

2. it can be made eigenfunction complete by 
feedback if and only if (Q, P)  is row proper. 

If (Q, P)  is not row proper, there is still a 
possibility to convert the pair to a new one where 
the theorem may apply: 

Lemma 3.5. Suppose the pair (Q(s, o), P(s, o)) 
is not row proper, but 

[Q(s,  o) P(s ,  o)]o 

is a constant matrix. Then (Q(s, o), P(s, o)) can 
be reduced to a new Bezout factorization 
(Q~(s, o), Pl(s, a)) which has less row degrees in 
O. 

Theorem 3.3. Assume that the the Hankel matrix Jd 
satisfies the conditions of Theorem 3.1. Let W =  
Q-1p be a Bezout factorization over R[s, o], whose 
existence is guaranteed by Theorem 3.1. Suppose 
that the pair ( Q, P)  is row proper with respect to o. 
Then the pair (Q(s, z), P(s, z)), associated with 
( Q, P)  gives an approximately left coprime factori- 
zation of W. 

Proof. In view of o = z  -1 and by the way 
((~(s, z), /3(s, z)) is defined by (6), the coeffi- 
cient matrix of z ° of (~)(s, z), /3(s, z)) is given 
by the highest order coefficient matrix of [Q(s, o) 
P(s, o)], i.e., 

I v ( s ,  o )  P(s, o)1° .  

Proof. Precisely in the same way as in the finite- 
dimensional case (e.g., [3]), we can reduce the row 
degrees of [Q(s, o) P(s, o)] by premultiplying a 
suitable unimodular matrix in o. Clearly this pro- 
cedure does not change the Bezout property. [] 

Thus, we may apply Theorem 3.3 to the new 
pair (Q1, P1). Since many retarded systems are 
specified in the form 

Q(s,  , , )=  s l -  F ( o ) ,  

P(s,o)=a(o), 

this condition is often satisfied, although there is 
a retarded delay-differential system whose [Q(s, o) 
P(s, o)] o depends on s. See Example 4.2. 
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Another important difference between the pre- 
sent situation and the finite-dimensional case is 
that the reduced pair (Q1, P1) need not be brought 
to a row proper one by repeating the procedure 
above, because the highest order coefficient matrix 
of the new factorization may well involve terms 
depending on s. See Example 4.3 for a more 
detailed discussion. 

There is another way in which the above results 
can be understood. This is as follows. 

Definition 3.6. The pair (D ,N) ,  D ~ R[s, O] p×p, 

N ~ R[s, o] p×m is said to be a strong left Bezout 
factorization of W if it is a left Bezout factoriza- 
tion and in addition it holds that (Q, P )  is row 
proper with respect to o. 

In informal terms, the above says that a strong 
factorization is one which is Bezout even at infin- 
ity. Then Theorem 3.3 says simply: I f  W admits a 
strong left Bezout factorization then it also admits 
an approximately left coprime factorization. 

We do not as yet have an elegant characteriza- 
tion of when strong Bezout factorizations exist. 
But since any two Bezout factorizations differ at 
most by multiplication by a unimodular matrix, 
the following is a partial result in that direction. 

Theorem 3.7. Assume that the the Hankel matrix Jt ° 
satisfies the conditions of Theorem 3.1. Let (Q, P)  
be any Bezout factorization, whose existence is 
guaranteed by the Theorem. Then, W admits a 
strong left Bezout factorization if  and only if there 
exists a p × p unimodular matrix A(s,  o) such that 

Its Hankel matrix ~ is 

(i 0 1 o .. .  
~ O" 0 2 . . . 

o 0 + 0  2 . . .  

(11) 

so that the 2 by 2 minors of W have no common 
zeros. Hence there exists a Bezout factorization. 
Indeed, the pair 

S - - O  , 

gives a Bezout factorization. However, the pair is 
not row proper because 

(00 - 1  O) (13) [Q P ] ° =  - 1  ' 

and hence its associated pair is not approximately 
left coprime. 

But the condition of Lemma 3.5 is satisfied, 
and we can obtain a row proper pair by multiply- 
ing 

(10 -1)1 (14) 

from the left. This leads to an approximately 
coprime pair 

- s  1) .  (15) Q' -- (s  +zl- sz - -  1 ) '  " 1 = ( 0  

The following example gives a retarded system 
whose highest order coefficient matrix depends on 
S. 

A (s ,  o)[Q P] (8) 

is row proper. 

Example 4.2. Consider 

1 
W(s ,  a) = s ( s ) o  ~ ' +  (16) 

4. Examples  

Example 4.1. Consider the impulse response ma- 
trix 

1 (SlO) (9)  
W ~ -  s2 s a  _ 0 

which admits the power series expansion 

In this example, the delay-differential equation 
representing W( s, o) is 

This appears to be of neutral type, but it is indeed 
represented by 

= x 2 ( t ) ,  

22(t  ) = - x 2 ( t -  h) + u ( t ) ,  

which is retarded type. The matrix [s 2 + so, 1], is 
Is, 0], so that it is not a constant matrix. 
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Example 4.3. Now consider the pair 

S --  0 2 O 2 ) 

Q =  s 2 + o 3 +  1 ( l _ o ) s _ o . ~ + l  , (lVa) 

P = ( l o ) .  (17b) 

Then [Q P ] ,  is 

so that the pair (Q, P )  is not row proper. We can 
reduce the row degree (three) of  the second row by 
premultiplying 

This gives 

s 2 + s o + l  - s o + s + l  0 ' 

whose highest order  coefficient matrix 

, 0) ,2,,  
S - -S  0 " 

depends on s, even though (18) does not, and we 
cannot  reduce the row degrees any further in this 
example, because the row degree of the first row is 
one higher than that of  the second row. 

Although the system is not of retarded type, 
there seems to be no characterization of  retarded 
systems known at present, which can be used to 
exclude such a situation. 

5. Concluding remarks 

Some relationships between coprimeness condi- 
tions in the distribution approach and the ring 
approach  have been established. In short, copri- 
meness is preserved along with row-properness,  
but it is not  necessarily so if the latter condit ion is 
not satisfied. One can regard row-properness as a 
coprimeness condit ion at infinity; i f  we consider a 
stronger notion of coprimeness on the Riemann 
sphere, i.e., no common zeros including infinity, 
then coprimeness in this sense is always preserved. 

We did not give a result on the converse of  
Theorem 3.3. This is because coprimeness in the 
(s, z ) -domain is in the approximate sense (note 
that [Q, P ] ,  may vanish for some s). Of course, if 
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a left factorization Q(s, z) ~P(s, z) satisfies a 
Bezout identity over •[s, z], and if the highest 
order coefficient matrix [Q(s, z) P(s,  z)]z has 
full rank for every s, then an analogous result as 
Theorem 3.3 holds, since factorization over R[s,  z] 
and IlR[s, o] are related essentially by z ~ o  1 
However, in this case, no concise characterization 
on the existence of a Bezout factorization over 
R[s, z] as Theorem 3.1 seems to be known at 
present. 
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