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Abstract—The ribosomal density along different parts of the coding regions of the mRNA molecule affects various fundamental

intracellular phenomena including: protein production rates, global ribosome allocation and organismal fitness, ribosomal drop off,

co-translational protein folding, mRNA degradation, and more. Thus, regulating translation in order to obtain a desired ribosomal profile

along the mRNA molecule is an important biological problem. We study this problem by using a dynamical model for mRNA translation,

called the ribosome flow model (RFM). In the RFM, the mRNA molecule is modeled as an ordered chain of n sites. The RFM includes n

state-variables describing the ribosomal density profile along the mRNAmolecule, and the transition rates from each site to the next are

controlled by nþ 1 positive constants. To study the problem of controlling the density profile, we consider some or all of the transition

rates as time-varying controls. We consider the following problem: given an initial and a desired ribosomal density profile in the RFM,

determine the time-varying values of the transition rates that steer the system to the desired density profile, if they exist. More

specifically, we consider two control problems. In the first, all transition rates can be regulated separately, and the goal is to steer the

ribosomal density profile and the protein production rate from a given initial value to a desired value. In the second problem, one or

more transition rates are jointly regulated by a single scalar control, and the goal is to steer the production rate to a desired value within

a certain set of feasible values. In the first case, we show that the system is controllable, i.e., the control is powerful enough to steer the

system to any desired value in finite time, and provide simple closed-form expressions for constant positive control functions (or

transition rates) that asymptotically steer the system to the desired value. In the second case, we show that the system is controllable,

and provide a simple algorithm for determining the constant positive control value that asymptotically steers the system to the desired

value. We discuss some of the biological implications of these results.

Index Terms—Systems biology, synthetic biology, gene translation, ribosomal density profile, controllability, asymptotic controllability,

accessibility, control-affine systems, Lie-algebra, control synthesis, ribosome flow model

Ç

1 INTRODUCTION

THE process in which the genetic information coded in
the DNA is transformed into functional proteins is

called gene expression. It consists of two major steps: tran-
scription of the DNA code into messenger RNA (mRNA)
by RNA polymerase, and translation of the mRNA into pro-
teins. During the translation step, complex macro-molecules
called ribosomes unidirectionally traverse the mRNA,
decoding it codon by codon into a corresponding chain of
amino-acids that is folded co-translationally and post-trans-
lationally to become a functional protein. The rate in which
proteins are produced during the translation step is called
the protein translation rate or protein production rate.

Translation takes place in all living organisms and all tis-
sues under almost all conditions. Thus, developing a better
understanding of how translation is regulated has impor-
tant implications to many scientific disciplines, including
medicine, evolutionary biology, and synthetic biology.
Developing and analyzing computational models of transla-
tion may provide important insights on this biological pro-
cess. Such models can also aid in integrating and analyzing
the rapidly increasing experimental findings related to
translation (see, e.g., [7], [9], [12], [46], [54], [62], [64]).

Controlling the expression of heterologous genes in a
host organism in order to synthesize new proteins, or to
improve certain aspects of the host fitness, is an essential
challenge in biotechnology and synthetic biology [3], [4],
[37], [50], [63]. Computational models of translation are par-
ticularly important in this context, as they allow simulating
and analyzing the effect of various manipulations of the
gene expression machinery and/or the genetic material,
and can thus save considerable time and effort by guiding
biologists towards promising experimental directions.

The ribosome flow along the mRNA is regulated by vari-
ous translation factors (e.g., initiation and elongation factors,
tRNA and Aminoacyl tRNA synthetase concentrations, and
amino-acid concentrations) in order to achieve both a suit-
able ribosomal density profile along the mRNA, and a
desired protein production rate. Indeed, it is known that the
ribosomal density profile and the induced ribosome speed
profile along the mRNA molecule can affect various
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fundamental intracellular phenomena. For example, it is
known that the folding of translated proteins may take place
co-translationally, and inaccurate translation speed can con-
tribute to protein mis-folding [15], [28], [70]. The ribosome
density profile also affects the degradation of mRNA, ribo-
somal collisions, abortion and allocation, transcription, and
more [15], [17], [28], [29], [45], [63], [70].

Thus, a natural question is whether it is possible, by con-
trolling the transition rates along the mRNA, to steer the
ribosome density along the mRNA molecule from any ini-
tial profile to any desired profile in finite time, and if so,
how. In the language of control theory, the question is
whether the system is controllable (see, e.g., [58]), and if so,
how to solve the control synthesis problem. We note that
controllability of networked systems is recently attracting
considerable interest (see e.g., [31]). Controllability of such
networks depends on the interplay between two factors:
(1) the network’s topology, and (2) the dynamical rules
describing the behavior at each network node. When study-
ing real-world networks, many of the parameter values in
the network are not known explicitly. The network is said
to be structurally stable if it will be controllable for almost
every random selection of parameter values [30], [36], [56],
[58]. An important problem in this context is to determine a
minimal set of “driver nodes” within the network such that
controlling these nodes makes the entire network controlla-
ble or structurally controllable (see e.g., [31], [39]).

Controllability of mRNA translation is also important in
synthetic biology, e.g., in order to design cis or trans intra-
cellular elements that yield a desired ribosome density pro-
file (or to determine if such a design is possible). Another
related question arises in evolutionary systems biology,
namely, determine if a certain translation-related phenotype
can be obtained by evolution.

The ribosome density profile is also related to cancer
evolution. Indeed, it is well-known that cancerous cells
undergo evolution that modulates their translation
regime. It has been suggested that various mutations
that accumulate during tumorigenesis may affect both
translation initiation [21], [32] and elongation [60], [65]
of genes related to cell proliferation, metabolism, and
invasion. Specifically, the results reported in [21] support
the conjecture that cancerous mutations can significantly
change the ribosome density profile on the mRNAs of
dozens of genes.

The standard mathematical model for ribosome flow is
the totally asymmetric simple exclusion process (TASEP) [55],
[71]. In this model, particles hop unidirectionally along an
ordered lattice ofL sites. Every site can be either free or occu-
pied by a particle, and a particle can only hop to a free site.
This simple exclusion principle models particles that have
“volume” and thus cannot overtake one other. The hops are
stochastic and the rate of hoping from site i to site iþ 1 is
denoted by gi. A particle can hop to [from] the first [last] site
of the lattice at a rate a [b]. The flow through the lattice con-
verges to a steady-state value that depends on L and the
parameters a; g1; . . . ; gL�1;b. In the context of translation, the
lattice models the mRNA molecule, the particles are ribo-
somes, and simple exclusion means that a ribosome cannot
overtake a ribosome in front of it. TASEP has become a fun-
damental model in non-equilibrium statistical mechanics,

and has been applied to model numerous natural and artifi-
cial processes [53].

The ribosome flow model (RFM) [49] is a deterministicmodel
for mRNA translation that can be derived via a dynamic
mean-field approximation of TASEP [53, section 4.9.7] [5, p.
R345]. In the RFM, mRNA molecules are coarse-grained
into n consecutive sites of codons (or groups of codons).
The state variable xiðtÞ : Rþ ! ½0; 1�, i ¼ 1; . . . ; n, describes
the normalized ribosomal occupancy level (or density) of
site i at time t, where xiðtÞ ¼ 1 [xiðtÞ ¼ 0] indicates that site i
is completely full [empty] at time t. Thus, the vector
x1ðtÞ . . .xnðtÞ½ �0 describes the complete ribosomal density pro-
file along the mRNA molecule at time t. A variable denoted
RðtÞ describes the protein production rate at time t. A non-
negative parameter �i, i ¼ 0; . . . ; n, controls the transition
rate from site i to site iþ 1, where �0 [�n] is the initiation
[exit] rate.

In order to better understand how translation is regu-
lated, we consider the RFM with some or all of the constant
transition rates replaced by time-varying control functions
that take non-negative values for all time t. The idea here is
that we can manipulate these functions as desired.

We consider two control problems. In the first, all the
nþ 1 �is are replaced by control functions and the problem
is to manipulate these functions such that both the ribo-
somal density profile and the production rate are steered
from a given initial value to a desired value. We use the
term “augmented profile” to indicate the combination of the
ribosomal density profile and the production rate.

In the second control problem, we assume that all the rates
belonging to some subset of the rates are jointly replaced by a
single, scalar control uðtÞ. We define a set of “relevant” possi-
ble production rates and the problem is to determine uðtÞ
such that the production rate is steered to a desired value in
this set. Note that in the first problem the ðnþ 1Þ-dimensional
vector describing the augmented profile is controlled using
nþ 1 control functions, and in the second problem one vari-
able is controlled using a scalar control.

We show that in both cases the resulting control system is
controllable, i.e., the control is always “powerful” enough to
steer the system from any initial state to any desired state in
some finite time T . We also show that there always exists a
control that steers the system as desired, and is the time con-
catenation of two controls

uðtÞ ¼ v; t 2 ½0; T � "Þ;
wðtÞ; t 2 ½T � "; T �;

�
(1)

with " > 0 and very small. The constant control v is given in
a simple and explicit expression that depends only on the
desired final state. It guarantees that this state becomes the
unique attracting steady-state ribosomal density and pro-
duction rate of the RFM dynamics. For example, in the prob-
lem of controlling the density profile and the production
rate to desired final values xf and Rf , respectively (“f” for
final), the solution of the controlled RFM for any initial con-
dition xð0Þ and Rð0Þ satisfies

lim
t!1

xðt; vÞ ¼ xf ;

lim
t!1

Rðt; vÞ ¼ Rf:
(2)
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This means that for all practical reasons, one may simply
apply the constant control uðtÞ � v for all t � 0. Note
that (2) means that the exact values of xð0Þ and Rð0Þ, i.e., the
initial values of the density profile and production rate, are
actually not needed. This is important, as accurately mea-
suring xð0Þ and Rð0Þ in practice may be difficult. The con-
trol wðtÞ in (1) is needed only to guarantee that xðT Þ ¼ xf

and RðT Þ ¼ Rf at the finite time T . The existence of such a
wðtÞ follows from Lie-algebraic accessibility arguments, but
wðtÞ is not given explicitly.

Different aspects of translation regulation, usually under
natural conditions, have been studied before (see, for exam-
ple, [22]). There are also several studies on experimental and
computational heuristics for mRNA translation engineering
and optimization (see, for example, [52], [59]), and studies
related to the way translation regulation is encoded in the
transcript (e.g., [42], [72]). However, to the best of our knowl-
edge, this is the first study on controllability and control syn-
thesis in a realistic dynamical model for translation. Also,
previous studies on translation optimization only considered
protein levels or production rate (e.g., [52]), but not the prob-
lem of controlling the entire profile of ribosome densities via
changing the codon decoding rates, as is done here.

The remainder of this paper is organized as follows. The
following section provides a brief overview of the RFM and
its generalizations into a control system. In order tomake this
paper accessible to a larger audience, Appendix A provides a
very brief review of controllability, while demonstrating
some of the concepts using the RFM. Section 3 presents our
main results on the controlled RFM. We also discuss the bio-
logical ramifications of our results. To streamline the presen-
tation, all the proofs are placed in Appendix B. We use
standard notation. Vectors [matrices] are denoted by small
[capital] letters. For a vector x 2 Rn, xi is the ith entry of x,
and x0 is the transpose of x. Rn

þ [Rn
þþ] is the set all n-tuples of

nonnegative [strictly positive] real numbers.

2 RIBOSOME FLOW MODEL

In this section, we quickly review the RFM and describe its
generalizations into a control system. The dynamics of the
RFMwith n sites is given by n nonlinear first-order ordinary
differential equations

_x1 ¼ �0ð1� x1Þ � �1x1ð1� x2Þ;
_x2 ¼ �1x1ð1� x2Þ � �2x2ð1� x3Þ;
_x3 ¼ �2x2ð1� x3Þ � �3x3ð1� x4Þ;
..
.

_xn�1 ¼ �n�2xn�2ð1� xn�1Þ � �n�1xn�1ð1� xnÞ;
_xn ¼ �n�1xn�1ð1� xnÞ � �nxn:

(3)

If we define x0ðtÞ :¼ 1 and xnþ1ðtÞ :¼ 0 then (3) can be writ-
ten more succinctly as

_xi ¼ �i�1xi�1ð1� xiÞ � �ixið1� xiþ1Þ; i ¼ 1; . . . ; n: (4)

Recall that the state variable xiðtÞ : Rþ ! ½0; 1� describes the
normalized ribosomal occupancy level (or density) at site i
at time t, where xiðtÞ ¼ 1 [xiðtÞ ¼ 0] indicates that site i is
completely full [empty] at time t. Eq. (4) can be explained as
follows. The flow of ribosomes from site i to site iþ 1 is
�ixiðtÞð1� xiþ1ðtÞÞ. This flow is proportional to xiðtÞ, i.e., it
increases with the occupancy level at site i, and to
ð1� xiþ1ðtÞÞ, i.e., it decreases as site iþ 1 becomes fuller.
This corresponds to a “soft” version of the simple exclusion
principle in TASEP. Note that the maximal possible flow
from site i to site iþ 1 is the transition rate �i. Eq. (4) thus
states that the time derivative of state-variable xi is the flow
entering site i from site i� 1, minus the flow exiting site i to
site iþ 1.

The ribosome exit rate from site n at time t is equal to the
protein production rate at time t, and is denoted by
RðtÞ :¼ �nxnðtÞ (see Fig. 1). Note that xi is dimensionless,
and every rate �i has units of 1=time.

A system where each state variable describes the amount
of “material” in some compartment, and the dynamics
describes the flow of material between the compartments
and also to/from the surrounding environment is called a
compartmental system [24]. Compartmental systems proved
to be useful models in various biological domains including
physiology, pharmacokinetics, population dynamics, and
epidemiology [6], [20], [23]. The RFM is thus a nonlinear
compartmental model, with xi denoting the normalized
amount of “material” in compartment i, and the flow fol-
lows a “soft” simple exclusion principle. The controllability
of linear compartmental systems has been addressed in sev-
eral papers [19], [25].

Let xðt; aÞ denote the solution of (3) at time t � 0 for the
initial condition xð0Þ ¼ a. Since the state-variables corre-
spond to normalized occupancy levels, we always assume
that a belongs to the closed n-dimensional unit cube

Cn :¼ fx 2 Rn : xi 2 ½0; 1�; i ¼ 1; . . . ; ng:
It has been shown in [34] that if a 2 Cn then xðt; aÞ 2 Cn for
all t � 0, that is, Cn is an invariant set of the dynamics. Let
intðCnÞ denote the interior of Cn, and let @Cn denote the
boundary ofCn. Ref. [34] has also shown that the RFM is a tri-
diagonal cooperative dynamical system [57], and that (3) admits
a unique steady-state point eð�0; . . . ; �nÞ 2 intðCnÞ that is
globally asymptotically stable, that is, limt!1 xðt; aÞ ¼ e for
all a 2 Cn (see also [33]). This means that the ribosome

Fig. 1. The RFMmodels a chain of n sites of codons (or groups of codons). The state variable xiðtÞ 2 ½0; 1� represents the normalized ribosome occu-
pancy at site i at time t. The elongation rate from site i to site iþ 1 is �i, with �0 [�n] denoting the initiation [exit] rate. The production rate at time t is
RðtÞ ¼ �nxnðtÞ.
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density profile always converges to a steady-state profile that
depends on the rates, but not on the initial condition. In par-
ticular, the production rate RðtÞ ¼ �nxnðtÞ converges to a
steady-state value

R :¼ �nen: (5)

At steady-state (i.e, for x ¼ e), the left-hand side of all the
equations in (3) is zero, so

�0ð1� e1Þ ¼ �1e1ð1� e2Þ
¼ �2e2ð1� e3Þ
..
.

¼ �n�1en�1ð1� enÞ
¼ �nen

¼ R:

(6)

This yields

R ¼ �ieið1� eiþ1Þ; i ¼ 0; . . . ; n; (7)

where e0 :¼ 1 and enþ1 :¼ 0.

Remark 1. One may view (6) as a mapping from the rates
�0; . . . ; �n½ �0 to the steady-state density profile and pro-
duction rate e1 . . . en R½ �0. For the purposes of this
paper, it is important to note that this mapping is invert-
ible. Indeed, Eq. (7) implies that given a desired density
profile and production rate e1 . . . en R½ �02 ð0; 1Þn �Rþþ
one can immediately determine the transition rates that
yield this profile at steady-state, namely,

�i ¼ R

eið1� eiþ1Þ ; i ¼ 0; . . . ; n: (8)

Note that (8) implies that �i increases with R and eiþ1,
and decreases with ei. This is intuitive, as a larger �i

implies a larger rate of ribosome flow from site i to site
iþ 1, as well as an increase in the steady-state production
rate [43]. Thus, given a desired profile with larger R and
eiþ1, and a smaller ei, the required transition rates
include a larger value for �i.

From a biophysical point of view, this means that if there
are no constraints on the transition rates then we can engi-
neer any desired density profile together with a desired pro-
duction rate. More importantly, this provides an explicit
expression for the needed rates. In addition to applications
in functional genomics and molecular evolution, the obser-
vation in Remark 1 is also related to problems in synthetic
biology where the goal is to re-engineer the mRNA mole-
cule so as to obtain a desired density profile and production
rate (see Fig. 2).

For more on the analysis of the RFM using tools from sys-
tems and control theory, see [35], [43], [44], [47], [68], [69].
The RFM models translation on a single isolated mRNA
molecule. A network of RFMs, interconnected through a
common pool of “free” ribosomes has been used to model
simultaneous translation of several mRNA molecules while
competing for the available ribosomes [48] (see also [1] for
some related ideas).

It is important to mention that it has been shown in [49]
that the correlation between the production rates based on
modeling using RFM and using TASEP over all S. cerevisiae
endogenous genes is 0.96, that the RFM agrees well with bio-
logical measurements of ribosome densities, and that the
RFM predictions correlate well (correlations up to 0.6) with
protein levels in various organisms (e.g., E. coli, S. pombe, S.
cerevisiae). More recent results [16] show that a certain ver-
sion of the RFM predicts well the density of RNA polymer-
ases (RNAPs) during transcription. Given the high levels of
bias related to the state of the art measurements of gene
expression and the inherent noise in intracellular biological
processes (see e.g., [13], [26]), these are very high correlations
that demonstrate the relevance of the RFM in this context.

In this paper, we analyze the regulation of translation
using the RFM. To do this, we first introduce two general-
izations of the RFM into a control system.

2.1 The Controlled RFM

2.1.1 State- and Output-Controllability

Assume that every �i can be controlled independently.
Thus, we replace every �i in the RFM by a function
uiðtÞ : Rþ ! Rþ. The set of admissible controls U includes
all the functions that are measurable, bounded, and take
non-negative values for all t � 0. In the context of transla-
tion, manipulating the uiðtÞs corresponds to dynamically
varying translation factors that regulate the initiation, elon-
gation, and exit rates along the mRNA molecule. Note that
we may view this as a networked control system: each state-
variable represents an agent, the graph describing the
agents interaction is a simple directed path, and the uis con-
trol the strength of the graph edges. However, the dynamics
of each agent is nonlinear.

The problem we consider is whether it is possible, using
the nþ 1 control functions, to steer x and R from any initial

Fig. 2. Upper part: Previous studies considered the direct problem: given
the RFM parameters, i.e., the set of transition rates �is, analyze the
dynamics of the RFM ribosome densities xis, and the production rate R.
Lower part: Here we consider the inverse problem: Given a desired pro-
file of ribosomal densities xi, i ¼ 1; . . . ; n, and a desired production
rate R, find the rates that steer the dynamics to this profile.
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condition to any desired conditions xf 2 intðCnÞ and
Rf 2 Rþþ in finite time, and if so, to determine appropriate
controls.

Of course, independently controlling all the transition
rates may be difficult to do in practice, so we also consider
another controlled version of the RFM.

2.1.2 Output-Controllability

Assume that a subset of m rates �j1 ; . . . ; �jm , with
1 � m � nþ 1, can be jointly controlled, i.e., all these rates
can be replaced by a common, scalar, non-negative control
function uðtÞ. This models the case where a single factor
jointly controls one or more transition rates.

For example in an RFM with length n ¼ 3, assume that
the rates �1 and �2 can be replaced by a common, scalar,
non-negative control function uðtÞ. The resulting model is

_x1 ¼ �0ð1� x1Þ � ux1ð1� x2Þ;
_x2 ¼ ux1ð1� x2Þ � ux2ð1� x3Þ;
_x3 ¼ ux2ð1� x3Þ � �3x3:

This scenario is biologically relevant since the exact same
codon may appear in multiple places along the transcript,
and since the same tRNA species may moreover be involved
in the decoding of more than a single codon through wobble
pairing. Thus, regulating the abundance of a single tRNA
molecule would typically have a simultaneous effect on tran-
sition rates at multiple positions along the mRNA transcript.
In the context of this problem, we are interested in using uðtÞ
to steer only the production rate R to a desired value Rf in
finite time. Specifically, the problem that we consider is
whether it is possible to use u to steer R from any initial con-
dition to any feasible value and, if so, to determine a suitable
control u. Of course, the set of feasible values is determined
by the other, nþ 1�m fixed transition rates.

We show that both control problems described above are
controllable. In other words, the control authority is always
powerful enough to obtain any feasible desired density pro-
file and/or production rate. This is a primarily theoretical
result. However, we also show that there exist positive and
constant controls that asymptotically steer the controlled
RFM to the desired densities/production rate. In the prob-
lem of controlling all the rates, these constant values are
given in a simple and closed-form expression. In the second
control problem, this constant value can be easily found
numerically using a simple line search algorithm.

We now discuss the biological relevance of these control
problems. Understanding and manipulating the mRNA
translation rate is related to numerous biomedical disci-
plines including human health, evolution, genetics, biotech-
nology, and more [2], [3], [4], [27], [29], [37], [50], [63], [66].
Controlling the entire ribosomal density profile, and not
only the translation rate, by manipulating the transition
rates is also a fundamental problem as it is known that the
density profile along the mRNA molecule is important for
various intracellular phenomena. For example, it was
shown that the density and induced speed of ribosome flow
along the mRNA affect co-translational folding of the
protein. If the density and the induced flow speed of the
ribosomes is inappropriate then the protein may misfold

leading to a nonfunctional protein (see, for example, [27],
[29], [40], [70]). In addition, it was suggested that the den-
sity of ribosomes affects mRNA degradation: a higher ribo-
some density is related to lower efficiency of mRNA
degradation and longer half life [11], [14], [17], [41]. Fur-
thermore, ribosome density is directly related to ribosomal
collisions and translation abortion [2], [18], [61], [63], [73]:
a higher density increases the probability of collisions and
may lead to abortions and thus the production of truncated
and potentially deleterious proteins. Finally, ribosome den-
sity is strongly correlated with ribosome allocation: a
higher density of ribosomes on the mRNA decreases the
pool of free ribosomes, the initiation rate in other mRNA
molecules, and thus the organism growth rate and fit-
ness [2], [18], [61], [63], [73].

Our results suggest that these important issues can be
addressed using a combination of mathematical, computa-
tional, and experimental approaches. Our results also pro-
vide an initial but explicit solution to the problem of
controlling the augmented profile. While the model and
problems are relatively simple, they may still provide a rea-
sonable approximation to the biological solution in some
cases. They may also be used as a starting point for address-
ing and solving similar problems in more comprehensive
models of translation.

The next section describes our main results. Readers who
are not familiar with controllability analysis may consult
Appendix A for a quick review of this topic.

3 MAIN RESULTS

As noted above, we consider two control problems for the
RFM. We now detail their exact mathematical formulation,
and then present our main results.

3.1 Controlling the State and the Output

Let V :¼ Cn �Rþ. Assume first that all the nþ 1 transition
rates can be controlled. The control is then uðtÞ ¼
u0ðtÞ; . . . ; unðtÞ½ �0 and the dynamics of the controlled RFM
with output RðtÞ is described by

_xiðtÞ ¼ ui�1ðtÞxi�1ðtÞð1� xiðtÞÞ � uiðtÞxiðtÞð1� xiþ1ðtÞÞ;
i ¼ 1; . . . ; n;

RðtÞ ¼ unðtÞxnðtÞ:
(9)

We define the admissible set U as the set of measurable and
bounded controls taking values in Rnþ1

þ for all time t.

Problem 1. Given arbitrary xs; xf 2 intðCnÞ and Rs;Rf 2
Rþþ, does there always exist a time T � 0 and a control u 2 U

such that xðT; u; xsÞ ¼ xf and RðT; u;RsÞ ¼ Rf? If so, deter-
mine such a control.

We can now state our first main result. Recall that all the
proofs are placed in Appendix B.

Theorem 1. The controlled RFM (9) is state- and output-
controllable on intðVÞ. Furthermore, for any xf ¼
xf
1 . . .x

f
n

� �02 intðCnÞ and Rf 2 Rþþ, define v 2 Rnþ1
þþ by

vi :¼ Rf

xf
i ð1� xfiþ1Þ

; i ¼ 0; . . . ; n; (10)
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where xf
0 :¼ 1 and xf

nþ1 :¼ 0. Then for any xs 2 Cn and any
Rs 2 Rþ applying the constant control uðtÞ � v in (10) yields

lim
t!1

xðt; u; xsÞ ¼ xf ; lim
t!1

Rðt; u; RsÞ ¼ Rf: (11)

This means that the control is “powerful” enough to
steer the system, in finite time, from any initial augmented
profile to any desired final augmented profile. It also pro-
vides a simple closed-form solution for a control that
asymptotically steers the system to xf and Rf from any ini-
tial condition. In other words, it practically solves the
control synthesis problem.

An important property of v is that it does not depend on
the initial values xs and Rs, but only on the desired aug-
mented profile ðxf ; RfÞ. This is important as measuring xs,
that is, the initial ribosomal profile along the mRNA, may
be difficult due to the current limitations in measuring ribo-
some densities (see, for example, [8], [10], [13]).

Example 1. Consider the controlled RFM with dimension
n ¼ 5. Suppose that we would like to steer the ribosomal
density profile along the mRNA molecule to
0:8 0:1 0:1 0:1 0:1½ �0, and the production rate to 1.5.
The profile here is motivated by the fact that low ribo-
some abundance at the beginning of the ORF reduces
ribosome “traffic jams” that may lead to ribosome drop
off. Setting xf ¼ 0:8 0:1 0:1 0:1 0:1½ �0, Rf ¼ 1:5, and
applying (10) yields

v ¼ 15=2 25=12 50=3 50=3 50=3 15½ �0:
Fig. 3 depicts the error jxðt; u; xsÞ � xf j1 þ jRðt; u; RsÞ �
Rf j1 (where jzj1 denotes the L1 norm of the vector z) for
the initial conditions xs ¼ 0:5 0:5 0:5 0:5 0:5½ �0,
Rs ¼ 0:5, and the control uðtÞ � v. It may be observed
that the error decays at an exponential rate to zero. Thus,
this control steers the system arbitrarily close to the
desired final density profile xf and production rate Rf .

Example 1 suggests that the explicit constant control in
Theorem 1 provides a good practical solution to Problem 1.

3.2 Controlling the Output

Pick an arbitrary set of indexes Q 	 f0; . . . ; ng, and let
m :¼ jQj. Replace every �i, i 2 Q, in the RFM by a common,
scalar control uðtÞ. Pick c > 0, and assume that uðtÞ 2 ½0; c�,
for all t � 0, i.e., the set of admissible controls U is the set of
measurable scalar functions taking values in ½0; c� for all
t � 0. As noted above, this formulation represents a biologi-
cally relevant scenario, as we assume that several transla-
tion rates are controlled by the same control, and also that
the allowed control action is bounded by the value c.

Our goal is to use the scalar control to regulate the pro-
duction rate RðtÞ, i.e., the output. Of course, not every value
of RðtÞ is possible, because of the non-regulated, fixed tran-
sition rates. One can in principle define the reachable set of
RðtÞ based on the fact that the state trajectories evolve on
Cn. For example, if n =2 Q then RðtÞ ¼ �nxnðtÞ implies that
one can define the reachable set as ½0; �n�. However, this def-
inition is not really relevant. Indeed, assume that some rate
�k, with k =2 Q, is much smaller than all the other rates and
also much smaller than c. Then regardless of the specific
control used it is clear that after some time RðtÞ will also be
small, as �k will be the limiting factor, and so after some
time it will become impossible to steer the production rate
to every desired value in the set ½0; �n�.

We define a more meaningful reachable set for the pro-
duction rate as follows. Let �� 2 Rnþ1�m

þþ denote the set of
fixed transition rates. For every time T � 0 and every initial
condition x0 2 Cn, let Vð��;Q; c; T; x0Þ 
 Rþ denote the set of
production rates that can be attained at some time t � T
with xð0Þ ¼ x0. Define the large-time reachable set of R as

Vð��;Q; c; x0Þ :¼ \T�0Vð ��;Q; c; T; x0Þ:

Although the RFM is a nonlinear model, this set can be char-
acterized explicitly. To derive this characterization, we
introduce more notation. First, define a vector q 2 Rnþ1 by

qi :¼ c; i 2 Q;
�i; otherwise:

�

For example, for Q ¼ f1; 2; ng, q ¼ �0; c; c; �3; . . . ; �n�1; c½ �0.
Also, for ‘0; . . . ; ‘n > 0 define a ðnþ 2Þ � ðnþ 2Þ sym-

metric, tridiagonal, and componentwise nonnegative matrix
A ¼ Að‘0; . . . ; ‘nÞ by

A :¼

0 ‘
�1=2
0 0 0 . . . 0 0

‘
�1=2
0 0 ‘

�1=2
1 0 . . . 0 0

0 ‘
�1=2
1 0 ‘

�1=2
2 . . . 0 0

..

.

0 0 0 . . . ‘
�1=2
n�1 0 ‘�1=2

n

0 0 0 . . . 0 ‘�1=2
n 0

2
666666664

3
777777775
;

(12)

and let zMAXðAÞ denote the maximal eigenvalue of A.1 The
next result uses the linear-algebraic representation of the
steady-state production rate in the RFM derived in [43].

Fig. 3. The error jxðtÞ � xf j1 þ jRðtÞ �Rf j1 as a function of t in
Example 1.

1. It is clear that the eigenvalues are real as A is symmetric. Since A
is also nonnegative and irreducible the eigenvalues are distinct.
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Proposition 1. For any x0 2 Cn,

Vð ��;Q; cÞ ¼ ½0;M�; (13)

whereM :¼ ðzMAXðAðq0; . . . ; qnÞÞÞ�2.

Note that (13) implies that Vð��;Q; cÞ does not depend on
x0, but only on the vector q.

Remark 2. Denote the indexes in Q by j1; . . . ; jm. Consider
the case c ! 1. Then c�1=2 ! 0, so the largest eigenvalue
of the matrix Aðq0; . . . ; qnÞ tends to

maxfzMAXðQ0Þ; . . . ; zMAXðQmÞg;
where

Q0 :¼ Að�0; . . . ; �j1�1Þ;
Qk :¼ Að�jkþ1; . . . ; �jkþ1�1Þ; k ¼ 1; . . . ;m� 1;

Qm :¼ Að�jmþ1; . . . ; �nÞ;
(14)

with zMAXðBÞ :¼ 0 if B is an empty matrix. Thus, in this
case

M ¼ minfðzMAXðQ0ÞÞ�2; . . . ; ðzMAXðQmÞÞ�2g; (15)

where 0�2 is defined as 1. In other words, when the
maximal control value of the controlled transition rates
goes to infinity, the maximal possible steady-state pro-
duction rate will be the minimum of the steady-state pro-
duction rates of several RFMs: the first with rates
�0; . . . ; �j1�1, the second with rates �j1þ1; . . . ; �j2�1, and
so on, with the last RFM with rates �jmþ1; . . . ; �n. This
demonstrates how in this case the other, fixed rates,
being the limiting factors, determine the feasible set for
the production rate.

From the biological point of view this means that if the
transition rates along some regions of the mRNA are very
high (and thus not rate limiting) the production rate will
depend only on the transition rates before and after this
region, as these include the rate limiting factor. Also, the

large-time reachable set for the production rate will be con-
strained by the rate limiting transition rates.

Example 2. Consider a controlled RFM with length n ¼ 5,
Q ¼ f2; 4g, and fixed rates

�0 ¼ 1; �1 ¼ 1=2; �3 ¼ 3; �5 ¼ 1=2: (16)

In other words, �2 and �4 are both replaced by the scalar
control uðtÞ. Suppose that the admissible set U is the set of
functions taking values in ½0; c�, with c ¼ 15. Fig. 4 depicts
ðzMAXðAð1; 1=2; v; 3; v; 1=2ÞÞÞ�2 for v 2 ½0; 15�. It may be
seen that this is a strictly increasing function of v. A calcula-
tion yields (all numbers are to four digit accuracy)

ðzMAXðAð1; 1=2; 15; 3; 15; 1=2ÞÞÞ�2 ¼ 0:3278;

so V ¼ ½0; 0:3278�.
Note that if we take c ! 1 then (14) yields

Q0 ¼
0 1 0

1 0 ð1=2Þ�1=2

0 ð1=2Þ�1=2 0

2
64

3
75;

Q1 ¼ 0 3�1=2

3�1=2 0

" #
;

Q2 ¼ 0 ð1=2Þ�1=2

ð1=2Þ�1=2 0

" #
;

and so (15) yields

minfðzMAXðQ0ÞÞ�2; ðzMAXðQ1ÞÞ�2; ðzMAXðQ2ÞÞ�2g
¼ minf1=3; 3; 1=2g
¼ 1=3:

The next result considers controlling the output to a
desired value in Vð��;Q; cÞ.
Proposition 2. The controlled RFM with one or more rates

replaced by a common scalar control function uðtÞ is output-
controllable in intðVð��;Q; cÞÞ. Furthermore, for any Rf 2
intðVð��;Q; cÞÞ there exists a value v 2 ½0; c� such that the con-
stant control uðtÞ � v yields limt!1 RðtÞ ¼ Rf .

This means that jointly regulating one or more transition
rates with a common scalar control function uðtÞ is still
“powerful” enough to steer the production rate from any
initial value to any desired final value Rf 2 intðVÞ in finite
time. Furthermore, the controlled RFM is asymptotically
controllable in V, even when U is restricted to constant con-
trols only. Since zMAXðAð‘0; . . . ; ‘nÞÞ is a strictly decreasing
function of every ‘i, finding the constant value v that
asymptotically steers the system to a desired value Rf 2
intðVÞ can be easily solved numerically using a simple line
search. The next example demonstrates this.

Example 3. Consider again the controlled RFM in Exam-
ple 2. Recall that the admissible set U is the set of func-
tions taking values in ½0; c�, with c ¼ 15. We already know
that in this case V ¼ ½0; 0:3278�. Assume that our goal is to
asymptotically steer the production rate to, say, Rf ¼ 0:3.
A simple line search shows that the corresponding con-
stant control value is v ¼ 2:4534 (see also Fig. 4).

Fig. 4. Maximal steady-state production rate ðzMAXðAð1; 1=2; v; 3; v;
1=2ÞÞÞ�2 for v 2 ½0; 15�.
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3.3 Sensitivity Analysis

In practice, the applied controls are never exactly equal to the
desired values and therefore it is important to understand
the effect of small perturbations in the control values on the
desired augmented profile. Since we are basically consider-
ing constant controls, it is enough to study the sensitivity of
the steady-state density profile of the RFM to small changes
in the �is. (The sensitivity of the steady-state production rate
Rwith respect to the �is has been studied in [44].)

Proposition 3. Consider the RFM with dimension n, and let
e :¼ e1 . . . en½ �0 denote the corresponding steady-state point in
intðCnÞ. Pick an index i 2 f0; . . . ; ng. Then @

@�i
ek exists for all

k, and

@

@�i
ek < 0; for all k � i;

@

@�i
ek > 0; for all k > i:

(17)

Thus, increasing �i decreases [increases] the steady-state
densities in sites 1; . . . ; i [sites iþ 1; . . . ; n]. This is reason-
able, as increasing �i increases the transition rate from site i
to site iþ 1 (see also [48] for some related considerations).

Example 4. Recall from Example 1 that for the RFM with
n ¼ 5 the control

uðtÞ � 15=2 25=12 50=3 50=3 50=3 15½ �0;
yields the steady-state augmented profile

e R½ �0¼ 0:8 0:1 0:1 0:1 0:1 1:5½ �0: (18)

Let ~uðtÞ � 15=2 25=12 ð50=3Þ þ " 50=3 50=3 15½ �0,
with " :¼ 0:2 i.e., the same transition rates as before, but
with " added to �2. Using (6) shows that ~u yields the
steady-state augmented profile

~e ~R
� �0¼ 0:7998 0:0989 0:1001 0:1001 0:1001 1:5013½ �0;

(all numbers are to four digit accuracy). Comparing this
to (18) shows that the steady-state values at sites 1,2
decreased, and those at sites 3,4,5 increased.

4 DISCUSSION

Regulating the ribosomal density profile along the mRNA
molecule, and not only the protein production rate, is an
important problem in evolutionary biology, biotechnology,
and synthetic biology because this density profile affects var-
ious fundamental intracellular processes including mRNA
degradation, protein folding, ribosomal allocation and abor-
tion, and more (see, for example, [17], [27], [29], [40], [63],
[70]). It seems that there are still considerable gaps in our
understanding of how the density profile is regulated, and
how it can be re-engineered. In this paper, we addressed this
issue by analyzing a mathematical model for ribosome flow,
the RFM, using tools from nonlinear control theory.

Our results indicate that if we are able to control all the
transition rates along the different parts of the mRNA then
we can steer the system to any desired ribosomal density
profile, and we provide a closed-form expression for a con-
stant control vector that achieves this asymptotically.

Also, jointly controlling one or more transition rates
using a common scalar control allows to steer the protein
production rate to any desired value within a feasible range
that is determined by the other, fixed transition rates. A sim-
ple line search algorithm can be used to derive a constant
control value that achieves this asymptotically. This case
models scenarios where for example the abundance of a
specific loaded tRNA molecule is regulated. Indeed, regu-
lating the abundance of a certain tRNA molecule should
simultaneously affect the translation rate at all the positions
along the mRNA with corresponding codons. Typically, a
certain codon may repeat at dozens, or even hundreds of
locations along one mRNAmolecule.

Our results are based on the RFM that, as any mathe-
matical model, is a simplification of (the biological) real-
ity. For example, the RFM does not encapsulate some of
the complex interactions between the transcript features
and translation (see, e.g., [51], [62], [63]). Nevertheless,
using the RFM allows one to pose the controllability and
control synthesis problems in a well-structured way, and
study them rigorously using tools from systems and con-
trol theory.

We believe that our analytical results may lead to new
biological insights and suggest novel and interesting bio-
logical experiments. For example, it has been suggested
that a higher ribosome density contributes to a higher
mRNA half life in S. cerevisiae [17]. However, it is difficult
to determine if the correlation is due to a larger abundance
of ribosomes along the entire coding region or maybe only
the ribosome density at the 5’end of the coding region is
relevant. It is also possible that this relation is due to a
higher number of pre-initiation complexes at the 5’UTR
(that contribute to a higher initiation rate). Specifically, it is
possible that only higher pre-initiation density or ribosome
density at the 5’end is important since in some cases the
degradation starts from this region. Both factors are
expected to correlate with higher ribosome density along
the entire coding region, and a natural question is how can
we design an experiment that can separate between the
two possible explanations?

The results reported here suggest thatwe can design a syn-
thetic library (that can be studied in-vitro and/or in-vivo)
with different strains that have different initiation rates, but
identical ribosome densities along the coding regions, or
strains with different levels of ribosome densities at the first
codons (or any other segment) of the coding regions, but sim-
ilar ribosome densities in the rest of the coding region. Using
such libraries may help in understanding exactly which fac-
tor contributes to the highermRNAhalf life.

Regulating transition rates can also affect the folding of
the protein. Indeed, it was suggest in [38] that synonymous
codons substitutions, that change the corresponding transi-
tion rates, may switch some protein domains between post-
translationally and co-translationally folding.

We believe that the results reported in this study may
also contribute towards a better understanding of the
molecular evolution of translation. Since usually a change
in a transition rate is related to a mutation/change in the
mRNA codons composition, obtaining a desired ribosomal
density profile and production rate involves introducing
changes in the nucleotide composition of the transcript.
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Thus, an important future study should combine controlla-
bility analysis with models of molecular evolution.

Other topics for further research include the following.
First, from the biological point of view a relevant scenario is
when some of the transition rates can be controlled, but
each rate can take values in a discrete set of possible values
only. Indeed, the admissible rates are limited by factors
such as the concentrations of initiation and elongation fac-
tors, and the biophysical properties of the ribosome,
mRNA, and translation factors. In this case, it is clear that
we cannot obtain any desired density profile, and an inter-
esting problem may be to determine the rate values that
yield the “best” approximation for a given desired profile.
This requires a biologically relevant definition of this best
approximation, i.e., a measure of distance between two den-
sity profiles that is biologically relevant.

Second, as noted above, the RFM is a mean-field approxi-
mation of TASEP. Our results naturally raise the question of
whether TASEP is controllable (in some stochastic sense). It
is also interesting to examine if the analytical results
obtained for the RFM can be used to synthesize suitable
hopping rates for the stochastic TASEP model. In other
words, suppose that we are given a desired profile P for
the RFM, and determine the corresponding constant rates
vis using (10). Does using these rates (perhaps after some
normalization) as the TASEP hopping rates yield the
steady-state profile P in TASEP as well?

Finally, TASEP has been used to model and analyze
many other applications, for example, traffic flow. The RFM
can also be used to study these applications, and controlla-
bility and control synthesis may be important here as well.
For example, a natural question is can the density along a
traffic lane be steered to any arbitrary profile by regulating
speed signs along different sections of the lane?

APPENDIX

APPENDIX A: REVIEW OF CONTROLLABILITY

Controllability is a fundamental property of control systems,
but it is not necessarily well-known outside of the systems
and control community. For the sake of completeness, we
briefly review this topic here. Formore details, see e.g., [58].

Consider the control system

_x ¼ fðx; uÞ;
y ¼ hðx; uÞ; (19)

where x : Rþ ! Rn is the state vector, u : Rþ ! Rm is the
control, and y : Rþ ! Rk is the output. Let U denote the set
of admissible controls. Assume that the trajectories of this
system evolve on a state space V 	 Rn. Given an initial con-
dition a 2 V and a desired final condition b 2 V, a natural
control problem is: find a time T � 0, and an admissible
control u : ½0; T � ! Rm such that

xðT; u; aÞ ¼ b:

In other words, u steers the system from a to b in time T . Of
course, such a control may not always exist. This leads to
the following definition.

Definition A.1. The system (19) is said to be state-controllable
on V if for any a; b 2 V there exist a time T � 0, and a control
u 2 U such that xðT; u; aÞ ¼ b:

Sometimes it is enough to steer only the output to a
desired condition. This leads to the following definition.

Definition A.2. The system (21) is said to be output-controlla-
ble on some set C 	 Rk if for any p; q 2 C there exist a time
T � 0, and a control u 2 U that steers the output from
yð0Þ ¼ p to yðT Þ ¼ q.

Controllability is thus a theoretical property, but it is
important in many applications, as it implies that the
problem of determining a suitable control, i.e., the control
synthesis problem, always admits a solution. From here on
we focus on state-controllability. The notions for output-
controlability are analogous.

Another useful notion, that is weaker than controllability,
is called asymptotic controllability.

Definition A.3. System (19) is said to be asymptotically state-
controllable on V if for any a; b 2 V there exists a control
u 2 U such that

lim
t!1xðt; u; aÞ ¼ b:

Note that this implies that for any neighborhood V of b,
there exists a time Ts � 0, and a control us 2 U such that
xðTs; us; aÞ 2 V .

For nonlinear control systems, analyzing controllability
or asymptotic controllability is not trivial. There exists a
weaker theoretical notion that can be analyzed effectively
using Lie-algebraic techniques. For a 2 V, define the reach-
able set from a by

RSðaÞ :¼ fxðt; u; aÞ : t � 0; u 2 Ug:

In other words, RSðaÞ is the set of all states that can be
reached at some time t � 0 starting from xð0Þ ¼ a. The sys-
tem (19) is said to be accessible from a if the set RSðaÞ has a
non empty interior. In other words, the control is powerful
enough to allow steering the trajectories emanating from a
to a “full set” of directions.

Example A.1. Consider the scalar system _x ¼ u, with
V ¼ R. Let U be the set of measurable functions taking
non-negative values for all time t. Pick a 2 V. Then
RSðaÞ ¼ ½a;1Þ, so the systen is accessible from a. How-
ever, the system is not controllable on V, as there does
not exist any control u 2 U that steers a to a point b with
b < a.

Our results for the controlled RFM are based on proving
that it is asymptotically state-controllable, using constant
controls, and combining this with a Lie-algebraic sufficient
condition for accessibility to deduce state-controllability.

To describe a sufficient condition for accessibility, con-
sider the control affine system

_x ¼ fðxÞ þ
Xm
i¼1

giðxÞui; (20)
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and assume that 0 2 U. For two vector fields f; g : Rn ! Rn,
let ½f; g� :¼ @g

@x f � @f
@x g. This is another vector field called the

Lie-bracket of f and g. For example, if fðxÞ ¼ Ax and
gðxÞ ¼ Bx then ½f; g�ðxÞ ¼ ðBA�ABÞx. It is useful to intro-
duce a notation for iterated Lie brackets. These can be
defined inductively by letting ad0fg :¼ g, ad1fg :¼ ½f; g�, and
adkfg :¼ ½f; adk�1

f g� for any integer k � 1.
The Lie algebra ALA associated with (20) is the linear sub-

space that is generated by ff; g1; . . . ; gmg and is closed under
the Lie bracket operation. Let

ALAðx0Þ :¼ fpðx0Þ : p 2 ALAg:

Roughly speaking, it can be shown that if small-time solu-
tions of (22) emanating from a point x0 and corresponding
to piecewise constant controls “cover” a k-dimensional set,
with k � n, then ALAðx0Þ ¼ Rk. This yields the following
sufficient condition for accessibility.

Theorem A.1. If ALAðx0Þ ¼ Rn at some point x0 then (20) is
accessible from x0.

The next result applies Theorem A.1 to analyze accessi-
bility in the RFM when either the entry rate or exit rate is
replaced by a control.

Fact A.1. Consider the n-dimensional RFM with a single rate �i

replaced by a scalar control uðtÞ. If i ¼ 0 or i ¼ n then the con-
trol system is accessible from any point x 2 intðCnÞ.

Proof of Fact A.1. Consider the controlled RFM obtained
by replacing �0 by uðtÞ, leaving the other rates as strictly
positive constants. Let z0ðxÞ :¼ �0ð1� x1Þ, zjðxÞ :¼
�jxjð1� xjþ1Þ, for j ¼ 1; . . . ; n� 1, and znðxÞ :¼ �nxn. The
controlled RFM satisfies

_x ¼ fðxÞ þ gðxÞu; (21)

where f :¼ �z1 z1 � z2 z2 � z3 . . . zn�1 � zn½ �0, and g :¼
1� x1 0 . . . 0½ �0. Let pkðxÞ :¼ ðadkfgÞðxÞ. A calculation
shows that for all k 2 f0; . . . ; n� 1g,

pk ¼ pk1 . . . p
k
k pkkþ1 0 . . . 0

� �0
;

with pkkþ1 ¼ ð�1Þk Qkþ1
j¼1 ð1� xjÞ

Qk
‘¼1 �‘. Note that pkkþ1 6¼

0 for all x 2 intðCnÞ, so the n vector fields p0; . . . ; pn�1 are

linearly independent, and thus span Rn. Thus, the con-

trolled RFM is accessible from any x 2 intðCnÞ.
Now consider the case where �n is replaced by a con-

trol uðtÞ. For j ¼ 1; . . . ; n, let qjðtÞ :¼ 1� xnþ1�jðtÞ. Then

_q1 ¼ ð1� q1Þu� �n�1q1ð1� q2Þ;
_q2 ¼ �n�1q1ð1� q2Þ � �n�2q2ð1� q3Þ;
..
.

_qn ¼ �1qn�1ð1� qnÞ � �0qn:

This is a controlled RFM with the initiation rate replaced
by a control uðtÞ. It follows from the analysis above that
this control system is accessible in intðCnÞ, and this com-
pletes the proof. tu

Another sufficient condition for accessibility is based on
linearizing the control system around an equilibrium point.
For our purposes, it is enough to state this condition for the
control affine system (20) withm ¼ 1, i.e., the system

_x ¼ fðxÞ þ gðxÞu: (22)

Theorem A.2 [58, Ch. 3]. Suppose that fðeÞ ¼ 0 and that
0 2 intðUÞ. Consider the linear control system

_z ¼ Azþ ub;

where A :¼ @f
@x ðeÞ and b :¼ gðeÞ. If the n� n matrix

b Ab . . .An�1b
� �

is invertible then (22) is accessible from
some neighborhood of e.2

Example A.2. Consider the RFM with n ¼ 2, i.e.,

_x1 ¼ �0ð1� x1Þ � �1x1ð1� x2Þ;
_x2 ¼ �1x1ð1� x2Þ � �2x2;

(23)

with �i > 0. The steady-state point e of this system satis-
fies �0ð1� e1Þ ¼ �1e1ð1� e2Þ ¼ �2e2. Suppose now that
we can control the transition rate from site 1 to site 2. To
study state-controllability in the neighborhood of e, con-
sider the control system

_x1 ¼ �0ð1� x1Þ � ð�1 þ uÞx1ð1� x2Þ;
_x2 ¼ ð�1 þ uÞx1ð1� x2Þ � �2x2;

(24)

where U is the set of measurable functions taking values
in ½�"; "� for some sufficiently small " > 0. This system is
in the form (22) with fðxÞ ¼ �0ð1� x1Þ � �1x1ð1�½
x2Þ�1x1ð1� x2Þ � �2x2�0, and gðxÞ ¼ x1ð1� x2Þ �1 1½ �0.
Note that fðeÞ ¼ 0. To apply Theorem A.2, calculate

A ¼ ��0 � �1ð1� e2Þ �1e1
�1ð1� e2Þ ��1e1 � �2

� �
, b ¼ e1ð1� e2Þ �1 1½ �0,

and

b Ab½ � ¼ e1ð1� e2Þ �1 �0 þ �1ð1� e2Þ þ �1e1
1 ��1ð1� e2Þ � �1e1 � �2

� �
:

Note that det b Ab½ �ð Þ ¼ e21ð1� e2Þ2ð�2 � �0Þ. Since

e 2 intðC2Þ, Theorem A.2 implies that if �0 6¼ �2 then (24)

is accessible in a neighborhood of e.
Now consider (24) with �0 ¼ �2. Then z :¼ x1 þ x2

satisfies

_z ¼ �0ð1� zÞ:
Thus, any trajectory with x1ð0Þ þ x2ð0Þ ¼ 1 satisfies
x1ðtÞ þ x2ðtÞ � 1 for any control u, and this implies that
in this case (24) is not accessible and not state-controlla-
ble on C2.

Summarizing, in this case the condition in Theorem A.2
allows us to completely analyze the accessibility of (24).

This example may suggest that accessibility is lost when
one of the internal (or elongation) rates �i, i 2 f1; . . . ; n� 1g,

2. In fact, the condition above guarantees a stronger property, called
first-order local controllability, but for our purposes the more restricted
statement in Theorem A.2 is enough.
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is replaced by a control, at least for some values of the other
rates. However, the next example shows that is not neces-
sarily true.

Example A.3. Consider the RFM with n ¼ 3, i.e.,

_x1 ¼ �0ð1� x1Þ � �1x1ð1� x2Þ;
_x2 ¼ �1x1ð1� x2Þ � �2x2ð1� x3Þ;
_x3 ¼ �2x2ð1� x3Þ � �3x3;

with �i > 0. Suppose that we can control the transition
rate from sites 1 to 2, so we consider the control system

_x1 ¼ �0ð1� x1Þ � x1ð1� x2Þu;
_x2 ¼ x1ð1� x2Þu� �2x2ð1� x3Þ;
_x3 ¼ �2x2ð1� x3Þ � �3x3:

(25)

We may ignore the term x1ð1� x2Þ multiplying u, as it is
strictly positive for all x 2 intðC3Þ. Thus, the control system
is in the form (22) with fðxÞ ¼ �0ð1� x1Þ � �2x2½
ð1� x3Þ �2x2ð1� x3Þ � �3x3�0, and gðxÞ ¼ �1 1 0½ �0.
A calculation yields

v1 :¼ ½f; g� ¼ ��0 �2ð1� x3Þ ��2ð1� x3Þ½ �0;

v2 :¼ ½½f; ½f; g��; ½f; g��
¼ 0 �2

2ð�3ð2� x3Þ � �2ð1� x3Þ2Þ �2
2ð�2ð1� x3Þ2 � �3Þ

� �0
;

v3 :¼ ½v2; v1�
¼ 0 �3

2ð�3x3 þ �2ð1� x3Þ2Þ ��3
2ð�2ð1� x3Þ2 þ �3Þ

� �0
;

and

det v1 v2 v3
� �� � ¼ 2�0�

5
2�

2
3ð1� x3Þ:

Since this is different from zero for all x 2 intðC3Þ, we
conclude that (25) is accessible from every x 2 intðC3Þ.

APPENDIX B: PROOFS

Proof of Theorem 1. The proof of (11) follows immediately
from Remark 1. Indeed, using the constant control
uðtÞ � v amounts to setting the desired density profile xf

as the steady-state densities of the dynamics, and Rf as
the steady-state production rate. Since this steady-state is
globally asymptotically stable on intðVÞ, this implies (11).

We now turn to prove that the system is state- and out-
put-controllable, that is, that we can steer the system to
the desired augmented profile xf 2 intðCnÞ; Rf 2 Rþþ in
finite time. We begin by defining a new control system
obtained by replacing �i, i 2 f0; . . . ; n� 1g, in the RFM (3)
by a control function uiðtÞ : Rþ ! Rþ (but leaving �n as a
constant rate). This yields

_x ¼ g0ðxÞ þ
Xn
i¼1

ui�1giðxÞ; (26)

where g0ðxÞ :¼ 0 . . . 0 ��nxn½ �0, g1ðxÞ :¼ 1� x1½
0 . . . 0�0, and for any j � 2, gjðxÞ contains the value
�xj�1ð1� xjÞ in its ðj� 1Þ’th coordinate, the value
xj�1ð1� xjÞ in its j’th coordinate, and the value 0 other-
wise. For example, for n ¼ 4

g0ðxÞ ¼ 0 0 0 ��4x4½ �0;
g1ðxÞ ¼ 1� x1 0 0 0½ �0;
g2ðxÞ ¼ �x1ð1� x2Þ x1ð1� x2Þ 0 0½ �0;
g3ðxÞ ¼ 0 �x2ð1� x3Þ x2ð1� x3Þ 0½ �0;
g4ðxÞ ¼ 0 0 �x3ð1� x4Þ x3ð1� x4Þ½ �0:

Pick z 2 Rn. Then it is straightforward to show that

z ¼
Xn
i¼1

aigiðxfÞ;

where

ai :¼
Pn

k¼i zk

xf
i�1ð1� xf

i Þ
;

with xf
0 :¼ 1. Since xf 2 intðCnÞ, ai is well-defined for all

i ¼ 1; . . . ; n. We conclude that the vector fields
g1ðxfÞ; . . . ; gnðxfÞ span Rn. This implies, by known acces-
sibility results (see, e.g., [58, Ch. 4]), that there exists a set
V ¼ V ðxfÞ 	 intðCnÞ, that has a nonempty interior in Rn,
and such that every p 2 V can be steered to xf in finite
time. Fix arbitrary q 2 intðV Þ and xs 2 Cn. We already
know that there exist constant controls u0; . . . ; un such
that limt!1 xðt; u; xsÞ ¼ q, limt!1 Rðt; u; xsÞ ¼ Rf . There-
fore there exists a time t > 0 such that xðt; u; xsÞ 2 V .
We also know that we can keep un at this constant value,
and find a time-varying control wðtÞ ¼ w0ðtÞ; . . . ;½
wn�1ðtÞ; wnðtÞ�, t 2 ½t; T �, with wnðtÞ � un, such that the
time-concatenated control steers xs to xf at time T . In
particular, this control steers xnð0Þ ¼ xs

n to xnðT Þ ¼ xf
n.

Since un is the constant control value such that
Rf ¼ unx

f
n, this yields RðT Þ ¼ unðT ÞxnðT Þ ¼ Rf , and this

completes the proof. tu
Remark 3. Note that the construction above may lead to a

production rate RðtÞ that is discontinuous at t ¼ 0. This

can be easily overcome using any control unðtÞ, t 2 ½0; "�,
that smoothly interpolates between the value Rs

xsn
at t ¼ 0,

and the value un :¼ Rf

x
f
n

at t ¼ ". For example, unðtÞ could
be picked linear in t 2 ½0; "�. We can then apply the con-

stant controls u0; . . . ; un�1 at t ¼ ", and continue with the
argument above, while noting that now we require t > ".

Proof of Proposition 1. Consider the RFM with rates
�0; . . . ; �n. It was shown in [43, Proposition 1] that R is a
strictly increasing function of every �i. This means that in
order to analyze V in the controlled RFM with u 2 U it is
enough to consider the reachable set for the controls
uðtÞ � 0 and uðtÞ � c. It has been shown in [43] that for
the rates �0; . . . ; �n, the steady state production rate is
R ¼ ðzMAXðAð�0; . . . ; �nÞÞÞ�2. Thus for the two controls
above RðtÞ in the controlled RFM converges to 0 and to
M :¼ ðzMAXðAðq0; . . . ; qnÞÞÞ�2. We conclude that
VðQÞ ¼ ½0;M�. tu

Proof of Proposition 2. Pick Rf 2 intðVÞ. Our goal is to
show that there exist a finite time T � 0 and a control u 2 U

that steersRðtÞ toRf in time T .We consider two cases.
Case 1. Suppose that n =2 Q. Since Rf 2 intðVÞ, there

exists " > 0 such that ðRf � "Þ 2 V and ðRf þ "Þ 2 V.
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Therefore, there exist v�; vþ 2 ½0; c� such that for the con-
trol u�ðtÞ � v� [uþðtÞ � vþ] the production rate con-
verges to Rf � " [Rf þ "] for any x0. Applying u� for a
sufficiently long time T1 yields RðT1Þ < Rf . Now apply-

ing uþ for a sufficiently long time T2 yields RðT1 þ T2Þ >

Rf . Since RðtÞ is continuous, this implies that there exists

T 2 ½T1; T1 þ T2� such that RðT Þ ¼ Rf .
Case 2. Suppose that n 2 Q, i.e., RðtÞ ¼ uðtÞxnðtÞ. The

argument used in Case 1 does not hold as is because now
a discontinuity in u yields a discontinuity in RðtÞ. How-
ever, it is clear that we can design a control u by
concatenating uðtÞ � v� for t 2 ½0; T1�, then a function of
time satisfying uðT1Þ ¼ v� and uðT1 þ tÞ ¼ vþ, with
t > 0, and finally uðtÞ � vþ for t � T1 þ t, and that this
will steer RðtÞ to Rf at some final time T . tu

Proof of Proposition 3. It has been shown in [43] that @R
@�i

exists and is strictly positive for all i 2 f0; . . . ; ng. Com-
bining this with (6) implies that @ek

@�i
exists for all k 2

f1; . . . ; ng and all i 2 f0; . . . ; ng. Pick i 2 f1; . . . ; n� 2g.
Differentiating (6) with respect to �i yields

��0e
0
1 ¼ �1e

0
1ð1� e2Þ � �1e1e

0
2

¼ �2e
0
2ð1� e3Þ � �2e2e

0
3

..

.

¼ �i�1e
0
i�1ð1� eiÞ � �i�1ei�1e

0
i

¼ eið1� eiþ1Þ þ �ie
0
ið1� eiþ1Þ � �ieie

0
iþ1

¼ �iþ1e
0
iþ1ð1� eiþ2Þ � �iþ1eiþ1e

0
iþ2

..

.

¼ �n�1e
0
n�1ð1� enÞ � �n�1en�1e

0
n

¼ �ne
0
n

¼ R0;

(27)

where we use the notation f 0 :¼ @f
@�i
. Since R0 > 0, we

conclude that e01 < 0. Now the equation �1e
0
1ð1� e2Þ�

�1e1e
0
2 ¼ R0, and the fact that e 2 ð0; 1Þn yield e02 < 0.

Continuing in this fashion yields e0j < 0 for all j � i.

The last equality in (27) yields �ne
0
n > 0, so e0n > 0.

Now the equality �n�1e
0
n�1ð1� enÞ � �n�1en�1e

0
n ¼ R0

yields e0n�1 > 0, and continuing in this fashion yields

e0j > 0 for all j > i. This completes the proof for the

case i 2 f1; . . . ; n� 2g. The proof when i 2 f0; n� 1; ng
is similar. tu
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