Publications of Eduardo D. Sontag jointly with S.J. Rahi
Articles in journal or book chapters
  1. E.V. Nikolaev, S.J. Rahi, and E.D. Sontag. Chaos in simple periodically-forced biological models. Biophysical Journal, 114:1232-1240, 2018. [PDF] Keyword(s): chaos, entrainment, systems biology, periodic inputs, subharmonic responses, biochemical systems, forced oscillations.
    What complicated dynamics can arise in the simplest biochemical systems, in response to a periodic input? This paper discusses two models that commonly appear as components of larger sensing and signal transduction pathways in systems biology: a simple two-species negative feedback loop, and a prototype nonlinear integral feedback. These systems have globally attracting steady states when unforced, yet, when subject to a periodic excitation, subharmonic responses and strange attractors can arise via period-doubling cascades. These behaviors are similar to those exhibited by classical forced nonlinear oscillators such as those described by van der Pol or Duffing equations. The lack of entrainment to external oscillations, in even the simplest biochemical networks, represents a level of additional complexity in molecular biology.

  2. S. J. Rahi, J. Larsch, K. Pecani, N. Mansouri, A. Y. Katsov, K. Tsaneva-Atanasova, E. D. Sontag, and F. R. Cross. Oscillatory stimuli differentiate adapting circuit topologies. Nature Methods, 14:1010-1016, 2017. [PDF] Keyword(s): biochemical networks, periodic behaviors, monotone systems, entrainment, oscillations, incoherent feedforward loop, feedforward, IFFL, systems biology.
    Elucidating the structure of biological intracellular networks from experimental data remains a major challenge. This paper studies two types of ``response signatures'' to identify specific circuit motifs, from the observed response to periodic inputs. In particular, the objective is to distinguish negative feedback loops (NFLs) from incoherent feedforward loops (IFFLs), which are two types of circuits capable of producing exact adaptation. The theory of monotone systems with inputs is used to show that ``period skipping'' (non-harmonic responses) is ruled out in IFFL's, and a notion called ``refractory period stabilization'' is also analyzed. The approach is then applied to identify a circuit dominating cell cycle timing in yeast, and to uncover a calcium-mediated NFL circuit in \emph{C.elegans} olfactory sensory neurons.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Thu Jun 27 23:19:30 2024
Author: sontag.

This document was translated from BibTEX by bibtex2html