Abstract:
Solutions of optimization problems, including policy optimization in reinforcement learning, typically rely upon some variant of gradient descent. There has been much recent work in the machine learning, control, and optimization communities applying the Polyak-Ćojasiewicz Inequality (PLI) to such problems in order to establish an exponential rate of convergence (a.k.a. ``linear convergence'' in the local-iteration language of numerical analysis) of loss functions to their minima under the gradient flow. Often, as is the case of policy iteration for the continuous-time LQR problem, this rate vanishes for large initial conditions, resulting in a mixed globally linear / locally exponential behavior. This is in sharp contrast with the discrete-time LQR problem, where there is global exponential convergence. That gap between CT and DT behaviors motivates the search for various generalized PLI-like conditions, and this paper addresses that topic. Moreover, these generalizations are key to understanding the transient and asymptotic effects of errors in the estimation of the gradient, errors which might arise from adversarial attacks, wrong evaluation by an oracle, early stopping of a simulation, inaccurate and very approximate digital twins, stochastic computations (algorithm ``reproducibility''), or learning by sampling from limited data. We describe an ``input to state stability'' (ISS) analysis of this issue. We also discuss convergence and PLI-like properties of ``linear feedforward neural networks'' in feedback control. Much of the work described here was done in collaboration with Arthur Castello B. de Oliveira, Leilei Cui, Zhong-Ping Jiang, and Milad Siami. This is a short paper summarizing the slides presented at my keynote at the 2025 L4DC (Learning for Dynamics \& Control Conference) in Ann Arbor, Michigan, 05 June 2025. A partial bibliography has been added. |