BACK TO INDEX

Publications about 'measurement noise'
Articles in journal or book chapters
  1. S. Wang, M.A. Al-Radhawi, D.A. Lauffenburger, and E.D. Sontag. Recovering biomolecular network dynamics from single-cell omics data requires three time points.. Nature Systems Biology and Applications, 10:97-, 2024. [PDF] Keyword(s): machine learning, single-cell data, identifiability, network reconstruction, dynamical systems.
    Abstract:
    Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, which enables the data-driven study of highly complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as the time trajectories of cell states. These ``dynamical phenotypes'' are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high-dimensionality and lack of individual cell traces, three timepoints of single-cell omics data are theoretically necessary and sufficient in order to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more timepoints even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.


  2. E.D. Sontag. Clocks and insensitivity to small measurement errors. ESAIM Control Optim. Calc. Var., 4:537-557, 1999. [PDF] Keyword(s): nonlinear control, feedback stabilization, hybrid systems, discontinuous feedback, measurement noise.
    Abstract:
    This paper provides a precise result which shows that insensitivity to small measurement errors in closed-loop stabilization can be attained provided that the feedback controller ignores observations during small time intervals.


Conference articles
  1. L. Cui, Z.P. Jiang, and E. D. Sontag. Small-covariance noise-to-state stability of stochastic systems and its applications to stochastic gradient dynamics. In 2026 American Control Conference (ACC), 2026. Note: Submitted. Also arXiv:2509.24277. [PDF] [doi:https://doi.org/10.48550/arXiv.2509.24277] Keyword(s): noise to state stability, input to state stability, stochastic systems.
    Abstract:
    This paper studies gradient dynamics subject to additive stochastic noise, which may arise from sources such as stochastic gradient estimation, measurement noise, or stochastic sampling errors. To analyze the robustness of such stochastic gradient systems, the concept of small-covariance noise-to-state stability (NSS) is introduced, along with a Lyapunov-based characterization. Furthermore, the classical Polyak–Lojasiewicz (PL) condition on the objective function is generalized to the $\mathcal{K}$-PL condition via comparison functions, thereby extending its applicability to a broader class of optimization problems. It is shown that the stochastic gradient dynamics exhibit small-covariance NSS if the objective function satisfies the $\mathcal{K}$-PL condition and possesses a globally Lipschitz continuous gradient. This result implies that the trajectories of stochastic gradient dynamics converge to a neighborhood of the optimum with high probability, with the size of the neighborhood determined by the noise covariance. Moreover, if the $\mathcal{K}$-PL condition is strengthened to a $\mathcal{K}_\infty$-PL condition, the dynamics are NSS; whereas if it is weakened to a general positive-definite-PL condition, the dynamics exhibit integral NSS. The results further extend to objectives without globally Lipschitz gradients through appropriate step-size tuning. The proposed framework is further applied to the robustness analysis of policy optimization for the linear quadratic regulator (LQR) and logistic regression.


  2. Y.S. Ledyaev and E.D. Sontag. Stabilization under measurement noise: Lyapunov characterization. In Proc. American Control Conf., Philadelphia, June 1998, pages 1658-166, 1998.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Oct 23 10:40:04 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html