BACK TO INDEX

Publications about 'multistationarity'
Conference articles
  1. S. Bruno, M.A. Al-Radhawi, E.D. Sontag, and D. Del Vecchio. Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network. In Proc. 2019 Automatic Control Conference, 2019. Note: To appear.[PDF] Keyword(s): multistability, biochemical networks, systems biology, stochastic systems, cell differentiation, multistationarity.
    Abstract:
    Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model.


  2. M.A. Al-Radhawi, N.S. Kumar, E.D. Sontag, and D. Del Vecchio. Stochastic multistationarity in a model of the hematopoietic stem cell differentiation network. In Proc. 2018 IEEE Conf. Decision and Control, pages 1886-1892, 2018. [PDF] Keyword(s): multistability, biochemical networks, systems biology, stochastic systems, cell differentiation, multistationarity.
    Abstract:
    In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Jul 12 13:41:35 2019
Author: sontag.


This document was translated from BibTEX by bibtex2html