Publications about 'robustness measures'
Conference articles
  1. A.C.B de Olivera, M. Siami, and E.D. Sontag. Bilinear dynamical networks under malicious attack: an efficient edge protection method. In Proc. 2021 Automatic Control Conference, pages 1210-1216, 2021. [PDF] Keyword(s): Bilinear systems, adversarial attacks, robustness measures, supermodular optimization.
    In large-scale networks, agents and links are often vulnerable to attacks. This paper focuses on continuous-time bilinear networks, where additive disturbances model attacks or uncertainties on agents/states (node disturbances), and multiplicative disturbances model attacks or uncertainties on couplings between agents/states (link disturbances). It investigates network robustness notion in terms of the underlying digraph of the network, and structure of exogenous uncertainties and attacks. Specifically, it defines a robustness measure using the $\mathcal H_2$-norm of the network and calculates it in terms of the reachability Gramian of the bilinear system. The main result is that under certain conditions, the measure is supermodular over the set of all possible attacked links. The supermodular property facilitates the efficient solution finding of the optimization problem. Examples illustrate how different structures can make the system more or less vulnerable to malicious attacks on links.

  2. A.C.B de Olivera, M. Siami, and E.D. Sontag. Eminence in noisy bilinear networks. In Proc. 2021 60th IEEE Conference on Decision and Control (CDC), pages 4835-4840, 2021. [PDF] Keyword(s): Bilinear systems, H2 norm, centrality, adversarial attacks, robustness measures.
    When measuring importance of nodes in a network, the interconnections and dynamics are often supposed to be perfectly known. In this paper, we consider networks of agents with both uncertain couplings and dynamics. Network uncertainty is modeled by structured additive stochastic disturbances on each agent's update dynamics and coupling weights. We then study how these uncertainties change the network's centralities. Disturbances on the couplings between agents resul in bilinear dynamics, and classical centrality indices from linear network theory need to be redefined. To do that, we first show that, similarly to its linear counterpart, the squared H2 norm of bilinear systems measures the trace of the steady-state error covariance matrix subject to stochastic disturbances. This makes the H2 norm a natural candidate for a performance metric of the system. We propose a centrality index for the agents based on the H2 norm, and show how it depends on the network topology and the noise structure. Finally, we simulate a few graphs to illustrate how uncertainties on different couplings affect the agents' centrality rankings compared to a linearized model of the same system.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Sat Dec 2 22:29:20 2023
Author: sontag.

This document was translated from BibTEX by bibtex2html