BACK TO INDEX

Publications of Eduardo D. Sontag jointly with J. K. Kim
Articles in journal or book chapters
  1. H. Hong, J. Kim, M.A. Al-Radhawi, E.D. Sontag, and J. K. Kim. Derivation of stationary distributions of biochemical reaction networks via structure transformation. Communications Biology, 4:620-, 2021. [PDF] Keyword(s): stationary distribution, chemical reaction networks, network translation, biochemical reaction networks, chemical master equation, stochastic, probabilistic, systems biology.
    Abstract:
    Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity, and multimodality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives symbolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


  2. J. K. Kim and E.D. Sontag. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation. PLoS Computational Biology, 13:13(6): e1005571, 2017. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    Biochemical reaction networks in cells frequently consist of reactions with disparate timescales. Stochastic simulations of such multiscale BRNs are prohibitively slow due to the high computational cost incurred in the simulations of fast reactions. One way to resolve this problem is to replace fast species by their stationary conditional expectation values conditioned on slow species. While various approximations schemes for this quasi-steady state approximation have been developed, they often lead to considerable errors. This paper considers two classes of multiscale BRNs which can be reduced by through an exact QSS rather than approximations. Specifically, we assume that fast species constitute either a feedforward network or a complex balanced network. Exact reductions for various examples are derived, and the computational advantages of this approach are illustrated through simulations.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Apr 17 19:59:02 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html