BACK TO INDEX

Publications of Eduardo D. Sontag jointly with V. Noireaux
Articles in journal or book chapters
  1. D.K. Agrawal, R. Marshall, V. Noireaux, and E.D. Sontag. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. 2019. Note: Submitted. Preprint here: https://www.biorxiv.org/content/10.1101/525279v1 .Keyword(s): tracking, synthetic biology, integral feedback, TX/TL, systems biology, dynamical systems, adaptation, internal model principle.
    Abstract:
    Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions.


Conference articles
  1. D. K. Agrawal, R. Marshall, M. Ali Al-Radhawi, V. Noireaux, and E. D. Sontag. Some remarks on robust gene regulation in a biomolecular integral controller. In Proc. 2019 IEEE Conf. Decision and Control, 2019. Note: To appear.Keyword(s): tracking, synthetic biology, integral feedback, TX/TL, systems biology, dynamical systems, adaptation, internal model principle.
    Abstract:
    Integral feedback can help achieve robust tracking independently of external disturbances. Motivated by this knowledge, biological engineers have proposed various designs of biomolecular integral feedback controllers to regulate biological processes. In this paper, we theoretically analyze the operation of a particular synthetic biomolecular integral controller, which we have recently proposed and implemented experimentally. Using a combination of methods, ranging from linearized analysis to sum-of-squares (SOS) Lyapunov functions, we demonstrate that, when the controller is operated in closed-loop, it is capable of providing integral corrections to the concentration of an output species in such a manner that the output tracks a reference signal linearly over a large dynamic range. We investigate the output dependency on the reaction parameters through sensitivity analysis, and quantify performance using control theory metrics to characterize response properties, thus providing clear selection guidelines for practical applications. We then demonstrate the stable operation of the closed-loop control system by constructing quartic Lyapunov functions using SOS optimization techniques, and establish global stability for a unique equilibrium. Our analysis suggests that by incorporating effective molecular sequestration, a biomolecular closed-loop integral controller that is capable of robustly regulating gene expression is feasible.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Aug 7 15:28:02 2019
Author: sontag.


This document was translated from BibTEX by bibtex2html