BACK TO INDEX

 Publications of Eduardo D. Sontag jointly with C. Sanchez-Tapia
 Articles in journal or book chapters
1. J. M. Greene, C. Sanchez-Tapia, and E.D. Sontag. Mathematical details on a cancer resistance model. Frontiers in Bioengineering and Biotechnology, 8:501: 1-27, 2020. [PDF] [doi:10.3389/fbioe.2020.00501] Keyword(s): resistance, chemotherapy, phenotype, optimal control, singular controls, cancer, oncology, systems biology.
Abstract:
 One of the most important factors limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. We have recently introduced a framework for quantifying the effects of induced and non-induced resistance to cancer chemotherapy. In this work, we expound on the details relating to an optimal control problem outlined in our previous paper (Greene et al., 2018). The control structure is precisely characterized as a concatenation of bang-bang and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie algebraic techniques. A structural identifiability analysis is also presented, demonstrating that patient-specific parameters may be measured and thus utilized in the design of optimal therapies prior to the commencement of therapy. For completeness, a detailed analysis of existence results is also included.

 Conference articles
1. J.M. Greene, C. Sanchez-Tapia, and E.D. Sontag. Control structures of drug resistance in cancer chemotherapy. In Proc. 2018 IEEE Conf. Decision and Control, pages 5195-5200, 2018. [PDF]
Abstract:
 The primary factor limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. This work extends the work reported in "A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment" by introducing a time-optimal control problem that is analyzed utilizing differential-geometric techniques: we seek a treatment protocol which maximizes the time of treatment until a critical tumor size is reached. The general optimal control structure is determined as a combination of both bang-bang and path-constrained arcs. Numerical results are presented which demonstrate decreasing treatment efficacy as a function of the ability of the drug to induce resistance. Thus, drug-induced resistance may dramatically effect the outcome of chemotherapy, implying that factors besides cytotoxicity should be considered when designing treatment regimens.

 Internal reports
1. J.M. Greene, C. Sanchez-Tapia, and E.D. Sontag. Mathematical details on a cancer resistance model. Technical report, bioRxiv 2018/475533, 2018. [PDF] Keyword(s): identifiability, drug resistance, chemotherapy, optimal control theory, singular controls, oncology, cancer.
Abstract:
 The primary factor limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. We have recently introduced a framework for quantifying the effects of induced and non-induced resistance to cancer chemotherapy . In this work, the control structure is precisely characterized as a concatenation of bang-bang and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie techniques. A structural identfiability analysis is also presented, demonstrating that patient-specfic parameters may be measured and thus utilized in the design of optimal therapies prior to the commencement of therapy.

BACK TO INDEX

Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.