Publications about 'COVID'
Articles in journal or book chapters
  1. M.A. Al-Radhawi, M. Sadeghi, and E.D. Sontag. Long-term regulation of prolonged epidemic outbreaks in large populations via adaptive control: a singular perturbation approach. IEEE Control Systems Letters, 6:578-583, 2022. [PDF] Keyword(s): epidemiology, COVID-19, COVID, systems biology.
    In order to control highly-contagious and prolonged outbreaks, public health authorities intervene to institute social distancing, lock-down policies, and other Non-Pharmaceutical Interventions (NPIs). Given the high social, educational, psychological, and economic costs of NPIs, authorities tune them, alternatively tightening up or relaxing rules, with the result that, in effect, a relatively flat infection rate results. For example, during the summer of 2020 in parts of the United States, daily COVID-19 infection numbers dropped to a plateau. This paper approaches NPI tuning as a control-theoretic problem, starting from a simple dynamic model for social distancing based on the classical SIR epidemics model. Using a singular-perturbation approach, the plateau becomes a Quasi-Steady-State (QSS) of a reduced two-dimensional SIR model regulated by adaptive dynamic feedback. It is shown that the QSS can be assigned and it is globally asymptotically stable. Interestingly, the dynamic model for social distancing can be interpreted as a nonlinear integral controller. Problems of data fitting and parameter identifiability are also studied for this model. This letter also discusses how this simple model allows for a meaningful study of the effect of population size, vaccinations, and the emergence of second waves.

  2. M. Sadeghi, J.M. Greene, and E.D. Sontag. Universal features of epidemic models under social distancing guidelines. Annual Reviews in Control, 51:426-440, 2021. Note: Also in bioRxiv, 2020,[WWW] [PDF] [doi:] Keyword(s): epidemiology, COVID-19, COVID, systems biology.
    Different epidemiological models, from the classical SIR system to more sophisticated ones involving population compartments for socially distanced, quarantined, infection aware, asymptomatic infected, and other individuals, share some remarkable dynamic characteristics when contact rates are subject to periodic or one-shot changes. In simple pulsed isolation policies, a linear relationship is found among optimal start time and duration for reduction of the infected peak. If a single interval social distancing starts too early or too late it will be ineffective with respect to decreasing the peak of infection. On the other hand, the nonlinearity of epidemic models leads to non-monotone behavior of the peak of infected population under periodic relaxation policies. This observation led us to hypothesize that an additional single interval social distancing at a proper time can significantly decrease the infected peak of periodic policies, and we verified this improvement.

  3. E.D. Sontag. An explicit formula for minimizing the infected peak in an SIR epidemic model when using a fixed number of complete lockdowns. International Journal of Robust and Nonlinear Control, Special Issue on Control-Theoretic Approaches for Systems in the Life Sciences, pp 1-24, 2021. [PDF] Keyword(s): epidemiology, COVID-19, COVID, systems biology.
    Careful timing of NPIs (non-pharmaceutical interventions) such as social distancing may avoid high ``second waves'' of infections of COVID-19. This paper asks what should be the timing of a set of K complete-lockdowns of prespecified lengths (such as two weeks) so as to minimize the peak of the infective compartment. Perhaps surprisingly, it is possible to give an explicit and easily computable rule for when each lockdown should commence. Simulations are used to show that the rule remains fairly accurate even if lockdowns are not perfect.

  4. J.L. Gevertz, J.M. Greene, C Hixahuary Sanchez Tapia, and E D Sontag. A novel COVID-19 epidemiological model with explicit susceptible and asymptomatic isolation compartments reveals unexpected consequences of timing social distancing. Journal of Theoretical Biology, 510:110539, 2020. [WWW] [PDF] Keyword(s): epidemiology, COVID-19, COVID, systems biology.
    Motivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which separate compartments are used for susceptible and asymptomatic "socially distant" populations. Distancing directives are represented by rates of flow into these compartments, as well as by a reduction in contacts that lessens disease transmission. The dynamical behavior of this system is analyzed, under various different rate control strategies, and the sensitivity of the basic reproduction number to various parameters is studied. One of the striking features of this model is the existence of a critical implementation delay in issuing separation mandates: while a delay of about four weeks does not have an appreciable effect, issuing mandates after this critical time results in a far greater incidence of infection. In other words, there is a nontrivial but tight "window of opportunity" for commencing social distancing. Different relaxation strategies are also simulated, with surprising results. Periodic relaxation policies suggest a schedule which may significantly inhibit peak infective load, but that this schedule is very sensitive to parameter values and the schedule's frequency. Further, we considered the impact of steadily reducing social distancing measures over time. We find that a too-sudden reopening of society may negate the progress achieved under initial distancing guidelines, if not carefully designed.

  5. E.A. Hernandez-Vargas, G. Giordano, E. D. Sontag, J. G. Chase, H. Chang, and A. Astolfi. First special section on systems and control research efforts against COVID-19 and future pandemics. Annual Reviews in Control, 50:343-344, 2020. [WWW] [doi:] Keyword(s): SARS-CoV-2, COVID-19, Modelling, Control, Pandemics.

Conference articles
  1. J M Greene and E D Sontag. Minimizing the infected peak utilizing a single lockdown: a technical result regarding equal peaks. In Proc. 2022 Automatic Control Conference, pages 3640-3647, 2022.
    Due to the usage of social distancing as a means to control the spread of the novel coronavirus disease COVID-19, there has been a large amount of research into the dynamics of epidemiological models with time-varying transmission rates. Such studies attempt to capture population responses to differing levels of social distancing, and are used for designing policies which both inhibit disease spread but also allow for limited economic activity. One common criterion utilized for the recent pandemic is the peak of the infected population, a measure of the strain placed upon the health care system; protocols which reduce this peak are commonly said to "flatten the curve". In this work, we consider a very specialized distancing mandate, which consists of one period of fixed length of distancing, and addresses the question of optimal initiation time. We prove rigorously that this time is characterized by an equal peaks phenomenon: the optimal protocol will experience a rebound in the infected peak after distancing is relaxed, which is equal in size to the peak when distancing is commenced. In the case of a non-perfect lockdown (i.e. disease transmission is not completely suppressed), explicit formulas for the initiation time cannot be computed, but implicit relations are provided which can be pre-computed given the current state of the epidemic. Expected extensions to more general distancing policies are also hypothesized, which suggest designs for the optimal timing of non-overlapping lockdowns.



This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

Last modified: Mon Nov 7 18:17:06 2022
Author: sontag.

This document was translated from BibTEX by bibtex2html