BACK TO INDEX

Publications about 'evolution'
Articles in journal or book chapters
  1. K. Johnson, G. Howard, D. Morgan, E. Brenner, A. Gardner, R. Durrett, W. Mo, A. Al'Khafaji, E.D. Sontag, A. Jarrett, T. Yankeelov, and A. Brock. Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer. Physical Biology, 2020. Note: To appear. Keyword(s): oncology, cancer, chemoresistance, resistance, intratumor heterogeneity, population dynamics, DNA barcoding, evolution.
    Abstract:
    The development of resistance to chemotherapy is a major cause of treatment failure in cancer. Intratumoral heterogeneity and phenotypic plasticity play a significant role in therapeutic resistance. Individual cell measurements such as flow and mass cytometry and single cell RNA sequencing (scRNA-seq) have been used to capture and analyze this cell variability. In parallel, longitudinal treatment-response data is routinely employed in order to calibrate mechanistic mathematical models of heterogeneous subpopulations of cancer cells viewed as compartments with differential growth rates and drug sensitivities. This work combines both approaches: single cell clonally-resolved transcriptome datasets (scRNA-seq, tagging individual cells with unique barcodes that are integrated into the genome and expressed as sgRNA's) and longitudinal treatment response data, to fit a mechanistic mathematical model of drug resistance dynamics for a MDA-MB-231 breast cancer cell line. The explicit inclusion of the transcriptomic information in the parameter estimation is critical for identification of the model parameters and enables accurate prediction of new treatment regimens.


  2. J.M. Greene, J.L. Gevertz, and E. D. Sontag. A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment. JCO Clinical Cancer Informatics, DOI: 10.1200/CCI.18.00087:1-20, 2019. [PDF] Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics, oncology, cancer.
    Abstract:
    Resistance to chemotherapy is a major impediment to the successful treatment of cancer. Classically, resistance has been thought to arise primarily through random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that the progression to resistance need not occur randomly, but instead may be induced by the therapeutic agent itself.This process of resistance induction can be a result of genetic changes, or can occur through epigenetic alterations that cause otherwise drug-sensitive cancer cells to undergo ``phenotype switching''. This relatively novel notion of resistance further complicates the already challenging task of designing treatment protocols that minimize the risk of evolving resistance. In an effort to better understand treatment resistance, we have developed a mathematical modeling framework that incorporates both random and drug-induced resistance. Our model demonstrates that the ability (or lack thereof) of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. The importance of induced resistance in treatment response led us to ask if, in our model, one can determine the resistance induction rate of a drug for a given treatment protocol. Not only could we prove that the induction parameter in our model is theoretically identifiable, we have also proposed a possible in vitro experiment which could practically be used to determine a treatment's propensity to induce resistance.


  3. J. Barton and E.D. Sontag. The energy costs of insulators in biochemical networks. Biophysical Journal, 104:1390-1380, 2013. [PDF]
    Abstract:
    Complex networks of biochemical reactions, such as intracellular protein signaling pathways and genetic networks, are often conceptualized in terms of ``modules,'' semi-independent collections of components that perform a well-defined function and which may be incorporated in multiple pathways. However, due to sequestration of molecular messengers during interactions and other effects, collectively referred to as retroactivity, real biochemical systems do not exhibit perfect modularity. Biochemical signaling pathways can be insulated from impedance and competition effects, which inhibit modularity, through enzymatic ``futile cycles'' which consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption. We test this hypothesis through a combined theoretical and computational analysis of a simplified physical model of covalent cycles, using two innovative measures of insulation, as well as a new way to characterize optimal insulation through the balancing of these two measures in a Pareto sense. Our results indicate that indeed better insulation requires more energy. While insulation may facilitate evolution by enabling a modular ``plug and play'' interconnection architecture, allowing for the creation of new behaviors by adding targets to existing pathways, our work suggests that this potential benefit must be balanced against the metabolic costs of insulation necessarily incurred in not affecting the behavior of existing processes.


Conference articles
  1. J.M. Greene, C. Sanchez-Tapia, and E.D. Sontag. Control structures of drug resistance in cancer chemotherapy. In Proc. 2018 IEEE Conf. Decision and Control, pages 5195-5200, 2018. [PDF]
    Abstract:
    The primary factor limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. This work extends the work reported in "A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment" by introducing a time-optimal control problem that is analyzed utilizing differential-geometric techniques: we seek a treatment protocol which maximizes the time of treatment until a critical tumor size is reached. The general optimal control structure is determined as a combination of both bang-bang and path-constrained arcs. Numerical results are presented which demonstrate decreasing treatment efficacy as a function of the ability of the drug to induce resistance. Thus, drug-induced resistance may dramatically effect the outcome of chemotherapy, implying that factors besides cytotoxicity should be considered when designing treatment regimens.


Internal reports
  1. J.L. Gevertz, J.M. Greene, and E.D. Sontag. Validation of a mathematical model of cancer incorporating spontaneous and induced evolution to drug resistance. Technical report, Cold Spring Harbor Laboratory, 2019. Note: BioRxiv preprint 10.1101/2019.12.27.889444. Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics, optimal control theory, oncology, cancer.
    Abstract:
    This paper continues the study of a model which was introduced in earlier work by the authors to study spontaneous and induced evolution to drug resistance under chemotherapy. The model is fit to existing experimental data, and is then validated on additional data that had not been used when fitting. In addition, an optimal control problem is studied numerically.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Sep 24 12:35:48 2020
Author: sontag.


This document was translated from BibTEX by bibtex2html