BACK TO INDEX

Publications about 'melanoma'
Articles in journal or book chapters
  1. T. Chen, M. A. Al-Radhawi, H. Levine, and E. D. Sontag. The interaction between dynamic ligand signaling and epigenetics in Notch-induced cancer metastasis. 2025. Note: Submitted. Also biorxiv 10.1101/2025.05.19.654987. Keyword(s): metastasis, melanoma, Notch signaling, miR-222, epigenetics.
    Abstract:
    Metastatic melanoma presents a formidable challenge in oncology due to its high invasiveness and resistance to current treatments. Central to its ability to metastasize is the Notch signaling pathway, which, when activated through direct cell-cell interactions, propels cells into a metastatic state through mechanisms akin to the epithelial-mesenchymal transition (EMT). While the upregulation of miR-222 has been identified as a critical step in this metastatic progression, the mechanism through which this upregulation persists in the absence of active Notch signaling remains unclear. Here we introduce a dynamical system model that integrates miR-222 gene regulation with histone feedback mechanisms. Through computational analysis, we delineate the non-linear decision boundaries that govern melanoma cell fate transitions, taking into account the dynamics of Notch signaling and the role of epigenetic modifications. Our approach highlights the critical interplay between Notch signaling pathways and epigenetic regulation in dictating the fate of melanoma cells.


  2. E.V. Nikolaev, A. Zloza, and E.D. Sontag. Immunobiochemical reconstruction of influenza lung infection - melanoma skin cancer interactions. Frontiers in Immunology, 10:Article 4, 2019. [PDF] Keyword(s): oncology, cancer, infections, immunology, checkpoint inhibition, systems biology.
    Abstract:
    Recent experimental results from the Zloza lab combined a mouse model of influenza A virus (IAV) infection (A/H1N1/PR8) and a highly aggressive model of infection-unrelated cancer, B16-F10 skin melanoma. This paper showed that acute influenza infection of the lung promotes distal melanoma growth in the dermis of the flank and leads to decreased host survival. Here, we proceed to ground the experimental observations in a mechanistic immunobiochemical model that incorporates the T cell receptor signaling pathway, various transcription factors, and a gene regulatory network (GRN). A core component of our model is a biochemical motif, which we call a Triple Incoherent Feed-Forward Loop (TIFFL), and which reflects known interactions between IRF4, Blimp-1, and Bcl-6. The different activity levels of the TIFFL components, as a function of the cognate antigen levels and the given inflammation context, manifest themselves in phenotypically distinct outcomes. Specifically, both the TIFFL reconstruction and quantitative estimates obtained from the model allowed us to formulate a hypothesis that it is the loss of the fundamental TIFFL-induced adaptation of the expression of PD-1 receptors on anti-melanoma CD8+ T cells that constitutes the essence of the previously unrecognized immunologic factor that promotes the experimentally observed distal tumor growth in the presence of acute non-ocogenic infection. We therefore hope that this work can further highlight the importance of adaptive mechanisms by which immune functions contribute to the balance between self and non-self immune tolerance, adaptive resistance, and the strength of TCR-induced activation, thus contributing to the understanding of a broader complexity of fundamental interactions between pathogens and tumors.


  3. S. Barish, M.F. Ochs, E.D. Sontag, and J.L. Gevertz. Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc Natl Acad Sci USA, 114:E6277-E6286, 2017. [WWW] [PDF] [doi:10.1073/pnas.1703355114] Keyword(s): cancer, oncolytic therapy, immunotherapy, optimal therapy, identifiability, systems biology.
    Abstract:
    This paper proposes a technique that combines experimental data, mathematical modeling, and statistical analyses for identifying optimal treatment protocols that are robust with respect to individual variability. Experimental data from a small sample population is amplified using bootstrapping to obtain a large number of virtual populations that statistically match the expected heterogeneity. Alternative therapies chosen from among a set of clinically-realizable protocols are then compared and scored according to coverage. As proof of concept, the method is used to evaluate a treatment with oncolytic viruses and dendritic cell vaccines in a mouse model of melanoma. The analysis shows that while every scheduling variant of an experimentally-utilized treatment protocol is fragile (non-robust), there is an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Mon Jun 9 10:57:10 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html