BACK TO INDEX

Publications about 'virtual populations'
Articles in journal or book chapters
  1. J.L. Gevertz, H.V. Jain, I. Kareva, K.P. Wilkie, J. Brown, Y.P. Huang, E.D. Sontag, V. Vinogradov, and M. Davies. Delaying cancer progression by integrating toxicity constraints in a model of adaptive therapy. 2025. Note: Submitted.Keyword(s): toxicity, adaptive anti-cancer therapy, virtual populations, cancer treatment resistance, mathematical model, mathematical oncology.
    Abstract:
    Cancer therapies often fail when intolerable toxicity or drug-resistant cancer cells undermine otherwise effective treatment strategies. Over the past decade, adaptive therapy has emerged as a promising approach to postpone emergence of resistance by altering dose timing based on tumor burden thresholds. Despite encouraging results, these protocols often overlook the crucial role of toxicity-induced treatment breaks, which may permit tumor regrowth. Herein, we explore the following question: would toxicity feedback improve or hinder the efficacy of adaptive therapy? To address this question, we propose a mathematical framework for incorporating toxic feedback into treatment design. We find that the degree of competition between sensitive and resistant populations, along with the growth rate of resistant cells, critically modulates the impact of toxicity feedback on time to progression. Further, our model identifies circumstances where strategic treatment breaks, which may be based on either tumor size or toxicity, can mitigate overtreatment and extend time to progression, both at the baseline parameterization and across a heterogeneous virtual population. Taken together, these findings highlight the importance of integrating toxicity considerations into the design of adaptive therapy.


  2. S. Barish, M.F. Ochs, E.D. Sontag, and J.L. Gevertz. Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc Natl Acad Sci USA, 114:E6277-E6286, 2017. [WWW] [PDF] [doi:10.1073/pnas.1703355114] Keyword(s): cancer, oncolytic therapy, immunotherapy, optimal therapy, identifiability, systems biology.
    Abstract:
    This paper proposes a technique that combines experimental data, mathematical modeling, and statistical analyses for identifying optimal treatment protocols that are robust with respect to individual variability. Experimental data from a small sample population is amplified using bootstrapping to obtain a large number of virtual populations that statistically match the expected heterogeneity. Alternative therapies chosen from among a set of clinically-realizable protocols are then compared and scored according to coverage. As proof of concept, the method is used to evaluate a treatment with oncolytic viruses and dendritic cell vaccines in a mouse model of melanoma. The analysis shows that while every scheduling variant of an experimentally-utilized treatment protocol is fragile (non-robust), there is an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Jun 18 11:30:02 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html