BACK TO INDEX

Publications by Eduardo D. Sontag in year 2019
Articles in journal or book chapters
  1. D.K. Agrawal, S.D. Khare, and E.D. Sontag. Mathematical models of protease-based enzymatic biosensors. 2019. Note: Submitted. Preprint here: https://www.biorxiv.org/content/10.1101/525279v1.Keyword(s): synthetic biology, protease-based circuits, enzymatic circuits, systems biology, Boolean circuits.
    Abstract:
    An important goal of synthetic biology is to build biosensors and circuits with well-defined input-output relationships that operate at speeds found in natural biological systems. However, for molecular computation, most commonly used genetic circuit elements typically involve several steps from input detection to output signal production: transcription, translation, and post-translational modifications. These multiple steps together require up to several hours to respond to a single stimulus, and this limits the overall speed and complexity of genetic circuits. To address this gap, molecular frameworks that rely exclusively on post-translational steps to realize reaction networks that can process inputs at a timescale of seconds to minutes have been proposed. Here, we build mathematical models of fast biosensors capable of producing Boolean logic functionality. We employ protease-based chemical and light-induced switches, investigate their operation, and provide selection guidelines for their use as on-off switches. We then use these switches as elementary blocks, developing models for biosensors that can perform OR and XOR Boolean logic computation while using reaction conditions as tuning parameters. We use sensitivity analysis to determine the time-dependent sensitivity of the output to proteolytic and protein-protein binding reaction parameters. These fast protease-based biosensors can be used to implement complex molecular circuits with a capability of processing multiple inputs controllably and algorithmically. Our framework for evaluating and optimizing circuit performance can be applied to other molecular logic circuits.


  2. D.K. Agrawal, R. Marshall, V. Noireaux, and E.D. Sontag. In vitro implementation of robust gene regulation in a synthetic biomolecular integral controller. 2019. Note: Submitted. Preprint here: https://www.biorxiv.org/content/10.1101/525279v1 .Keyword(s): tracking, synthetic biology, integral feedback, TX/TL, systems biology, dynamical systems, adaptation, internal model principle.
    Abstract:
    Cells respond to biochemical and physical internal as well as external signals. These signals can be broadly classified into two categories: (a) ``actionable'' or ``reference'' inputs that should elicit appropriate biological or physical responses such as gene expression or motility, and (b) ``disturbances'' or ``perturbations'' that should be ignored or actively filtered-out. These disturbances might be exogenous, such as binding of nonspecific ligands, or endogenous, such as variations in enzyme concentrations or gene copy numbers. In this context, the term robustness describes the capability to produce appropriate responses to reference inputs while at the same time being insensitive to disturbances. These two objectives often conflict with each other and require delicate design trade-offs. Indeed, natural biological systems use complicated and still poorly understood control strategies in order to finely balance the goals of responsiveness and robustness. A better understanding of such natural strategies remains an important scientific goal in itself and will play a role in the construction of synthetic circuits for therapeutic and biosensing applications. A prototype problem in robustly responding to inputs is that of ``robust tracking'', defined by the requirement that some designated internal quantity (for example, the level of expression of a reporter protein) should faithfully follow an input signal while being insensitive to an appropriate class of perturbations. Control theory predicts that a certain type of motif, called integral feedback, will help achieve this goal, and this motif is, in fact, a necessary feature of any system that exhibits robust tracking. Indeed, integral feedback has always been a key component of electrical and mechanical control systems, at least since the 18th century when James Watt employed the centrifugal governor to regulate steam engines. Motivated by this knowledge, biological engineers have proposed various designs for biomolecular integral feedback control mechanisms. However, practical and quantitatively predictable implementations have proved challenging, in part due to the difficulty in obtaining accurate models of transcription, translation, and resource competition in living cells, and the stochasticity inherent in cellular reactions. These challenges prevent first-principles rational design and parameter optimization. In this work, we exploit the versatility of an Escherichia coli cell-free transcription-translation (TXTL) to accurately design, model and then build, a synthetic biomolecular integral controller that precisely controls the expression of a target gene. To our knowledge, this is the first design of a functioning gene network that achieves the goal of making gene expression track an externally imposed reference level, achieves this goal even in the presence of disturbances, and whose performance quantitatively agrees with mathematical predictions.


  3. M.A. Al-Radhawi, D. Angeli, and E.D. Sontag. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks. 2019. Note: Submitted. Preprint here: https://www.biorxiv.org/content/10.1101/696716v1. Keyword(s): Lyapunov functions, stability, chemical networks, chemixal rection networks, systems biology.
    Abstract:
    This paper deals with the analysis of the dynamics of chemical reaction networks, developing a theoretical framework based only on graphical knowledge and applying regardless of the particular form of kinetics. It paper introduces a class of networks that are "structurally (mono) attractive", by which we mean that they are incapable of exhibiting multiple steady states, oscillation, or chaos by the virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function which we call a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. We study basic motifs, three-body binding, and transcriptional networks. We focus on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, ERK signaling, and the Ribosome Flow Model.


  4. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. PLoS Computational Biology, 15:e1006784, 2019. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic models, epigenetics.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  5. J.M. Greene, J.L. Gevertz, and E. D. Sontag. A mathematical approach to distinguish spontaneous from induced evolution of drug resistance during cancer treatment. JCO Clinical Cancer Informatics, DOI: 10.1200/CCI.18.00087:1-20, 2019. [PDF] Keyword(s): cancer heterogeneity, phenotypic variation, nonlinear systems, epigenetics.
    Abstract:
    Resistance to chemotherapy is a major impediment to the successful treatment of cancer. Classically, resistance has been thought to arise primarily through random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that the progression to resistance need not occur randomly, but instead may be induced by the therapeutic agent itself.This process of resistance induction can be a result of genetic changes, or can occur through epigenetic alterations that cause otherwise drug-sensitive cancer cells to undergo ``phenotype switching''. This relatively novel notion of resistance further complicates the already challenging task of designing treatment protocols that minimize the risk of evolving resistance. In an effort to better understand treatment resistance, we have developed a mathematical modeling framework that incorporates both random and drug-induced resistance. Our model demonstrates that the ability (or lack thereof) of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. The importance of induced resistance in treatment response led us to ask if, in our model, one can determine the resistance induction rate of a drug for a given treatment protocol. Not only could we prove that the induction parameter in our model is theoretically identifiable, we have also proposed a possible in vitro experiment which could practically be used to determine a treatment's propensity to induce resistance.


  6. M. Margaliot and E.D. Sontag. Revisiting totally positive differential systems: A tutorial and new results. Automatica, 101:1-14, 2019. [PDF] Keyword(s): tridiagonal systems, cooperative systems, monotone systems.
    Abstract:
    A matrix is totally nonnegative (resp., totally positive) if all its minors are nonnegative (resp., positive). This paper draws connections between B. Schwarz's 1970 work on TN and TP matrices to Smillie's 1984 and Smith's 1991 work on stability of nonlinear tridiagonal cooperative systems, simplifying proofs in the later paper and suggesting new research questions.


  7. E.V. Nikolaev, A. Zloza, and E.D. Sontag. Immunobiochemical reconstruction of influenza lung infection - melanoma skin cancer interactions. Frontiers in Immunology, 10:Article 4, 2019. [PDF] Keyword(s): cancer, tumors, infections, immunology, checkpoint inhibition, systems biology.
    Abstract:
    Recent experimental results from the Zloza lab combined a mouse model of influenza A virus (IAV) infection (A/H1N1/PR8) and a highly aggressive model of infection-unrelated cancer, B16-F10 skin melanoma. This paper showed that acute influenza infection of the lung promotes distal melanoma growth in the dermis of the flank and leads to decreased host survival. Here, we proceed to ground the experimental observations in a mechanistic immunobiochemical model that incorporates the T cell receptor signaling pathway, various transcription factors, and a gene regulatory network (GRN). A core component of our model is a biochemical motif, which we call a Triple Incoherent Feed-Forward Loop (TIFFL), and which reflects known interactions between IRF4, Blimp-1, and Bcl-6. The different activity levels of the TIFFL components, as a function of the cognate antigen levels and the given inflammation context, manifest themselves in phenotypically distinct outcomes. Specifically, both the TIFFL reconstruction and quantitative estimates obtained from the model allowed us to formulate a hypothesis that it is the loss of the fundamental TIFFL-induced adaptation of the expression of PD-1 receptors on anti-melanoma CD8+ T cells that constitutes the essence of the previously unrecognized immunologic factor that promotes the experimentally observed distal tumor growth in the presence of acute non-ocogenic infection. We therefore hope that this work can further highlight the importance of adaptive mechanisms by which immune functions contribute to the balance between self and non-self immune tolerance, adaptive resistance, and the strength of TCR-induced activation, thus contributing to the understanding of a broader complexity of fundamental interactions between pathogens and tumors.


  8. M. Sadeghi, M.A. Al-Radhawi, M. Margaliot, and E.D. Sontag. No switching policy is optimal for a positive linear system with a bottleneck entrance. IEEE Control Systems Letters, 3:889-894, 2019. Note: (Also in Proc. 2018 IEEE Conf. Decision and Control.). [PDF] Keyword(s): entrainment, switched systems, ribosome flow model, traffic systems, nonlinear systems, nonlinear control.
    Abstract:
    We consider a nonlinear SISO system that is a cascade of a scalar "bottleneck entrance" with a stable positive linear system. In response to any periodic inflow, all solutions converge to a unique periodic solution with the same period. We study the problem of maximizing the averaged throughput via controlled switching. We compare two strategies: 1) switching between a high and low value, and 2 ~using a constant inflow equal to the prescribed mean value. We show that no possible switching policy can outperform a constant inflow rate, though it can approach it asymptotically. We describe several potential applications of this problem in traffic systems, ribosome flow models, and scheduling at security checks.


Conference articles
  1. S. Bruno, M.A. Al-Radhawi, E.D. Sontag, and D. Del Vecchio. Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network. In Proc. 2019 Automatic Control Conference, 2019. Note: To appear.[PDF] Keyword(s): multistability, biochemical networks, systems biology, stochastic systems, cell differentiation, multistationarity.
    Abstract:
    Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Jul 12 13:41:34 2019
Author: sontag.


This document was translated from BibTEX by bibtex2html