Publications of Eduardo D. Sontag jointly with A.C.B de Olivera |
Conference articles |
Recent research in neural networks and machine learning suggests that using many more parameters than strictly required by the initial complexity of a regression problem can result in more accurate or faster-converging models -- contrary to classical statistical belief. This phenomenon, sometimes known as ``benign overfitting'', raises questions regarding in what other ways might overparameterization affect the properties of a learning problem. In this work, we investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation. This uncertainty arises naturally if the gradient is estimated from noisy data or directly measured. Our object of study is a linear neural network with a single, arbitrarily wide, hidden layer and an arbitrary number of inputs and outputs. In this paper we solve the problem for the case where the input and output of our neural-network are one-dimensional, deriving sufficient conditions for robustness of our system based on necessary and sufficient conditions for convergence in the undisturbed case. We then show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized, and discuss directions of future work that might extend our current results for more general formulations. |
In this paper, we investigate the problem of finding a sparse sensor and actuator (S/A) schedule that minimizes the approximation error between the input-output behavior of a fully sensed/actuated bilinear system and the system with the scheduling. The quality of this approximation is measuredby an H2-like metric, which is defined for a bilinear (time-varying) system with S/A scheduling based on the discrete Laplace transform of its Volterra kernels. First, we discuss the difficulties of designing S/A schedules for bilinear systems, which prevented us from finding a polynomial time algorithmfor solving the problem. We then propose a polynomial-time S/A scheduling heuristic that selects a fraction of sensors and node actuators at each time step while maintaining a small approximation error between the input-output behavior of thefully sensed/actuated system and the one with S/A scheduling in this H2-based sense. Numerical experiments illustrate the good approximation quality of our proposed methods. |
In large-scale networks, agents and links are often vulnerable to attacks. This paper focuses on continuous-time bilinear networks, where additive disturbances model attacks or uncertainties on agents/states (node disturbances), and multiplicative disturbances model attacks or uncertainties on couplings between agents/states (link disturbances). It investigates network robustness notion in terms of the underlying digraph of the network, and structure of exogenous uncertainties and attacks. Specifically, it defines a robustness measure using the $\mathcal H_2$-norm of the network and calculates it in terms of the reachability Gramian of the bilinear system. The main result is that under certain conditions, the measure is supermodular over the set of all possible attacked links. The supermodular property facilitates the efficient solution finding of the optimization problem. Examples illustrate how different structures can make the system more or less vulnerable to malicious attacks on links. |
When measuring importance of nodes in a network, the interconnections and dynamics are often supposed to be perfectly known. In this paper, we consider networks of agents with both uncertain couplings and dynamics. Network uncertainty is modeled by structured additive stochastic disturbances on each agent's update dynamics and coupling weights. We then study how these uncertainties change the network's centralities. Disturbances on the couplings between agents resul in bilinear dynamics, and classical centrality indices from linear network theory need to be redefined. To do that, we first show that, similarly to its linear counterpart, the squared H2 norm of bilinear systems measures the trace of the steady-state error covariance matrix subject to stochastic disturbances. This makes the H2 norm a natural candidate for a performance metric of the system. We propose a centrality index for the agents based on the H2 norm, and show how it depends on the network topology and the noise structure. Finally, we simulate a few graphs to illustrate how uncertainties on different couplings affect the agents' centrality rankings compared to a linearized model of the same system. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibTEX by bibtex2html