Publications of Eduardo D. Sontag jointly with W. Maass |
Articles in journal or book chapters |
It had previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate in this article the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise the resulting computational model can perform a large class of biologically relevant real-time computations that require a non-fading memory. |
We analyze computations on temporal patterns and spatio-temporal patterns in formal network models whose temporal dynamics arises from empirically established quantitative models for short term dynamics at biological synapses. We give a complete characterization of all linear and nonlinear filters that can be approximated by such dynamic network models: it is the class of all filters that can be approximated by Volterra series. This characterization is shown to be rather stable with regard to changes in the model. For example it is shown that synaptic facilitation and one layer of neurons suffices for approximating arbitrary filters from this class. Our results provide a new complexity hierarchy for all filters that are approximable by Volterra series, which appears to be closer related to the actual cost of implementing such filters in neural hardware than preceding complexity measures. Our results also provide a new parameterization for approximations to such filters in terms of parameters that are arguable related to those that are tunable in biological neural systems. |
We consider recurrent analog neural nets where the output of each gate is subject to Gaussian noise, or any other common noise distribution that is nonzero on a large set. We show that many regular languages cannot be recognized by networks of this type, and we give a precise characterization of those languages which can be recognized. This result implies severe constraints on possibilities for constructing recurrent analog neural nets that are robust against realistic types of analog noise. On the other hand we present a method for constructing feedforward analog neural nets that are robust with regard to analog noise of this type. |
We examine the power of constant depth circuits with sigmoid threshold gates for computing boolean functions. It is shown that, for depth 2, constant size circuits of this type are strictly more powerful than constant size boolean threshold circuits (i.e. circuits with linear threshold gates). On the other hand it turns out that, for any constant depth d, polynomial size sigmoid threshold circuits with polynomially bounded weights compute exactly the same boolean functions as the corresponding circuits with linear threshold gates. |
Conference articles |
Experimental data show that biological synapses are dynamic, i.e., their weight changes on a short time scale by several hundred percent in dependence of the past input to the synapse. In this article we explore the consequences that this synaptic dynamics entails for the computational power of feedforward neural networks. It turns out that even with just a single hidden layer such networks can approximate a surprisingly large large class of nonlinear filters: all filters that can be characterized by Volterra series. This result is robust with regard to various changes in the model for synaptic dynamics. Furthermore we show that simple gradient descent suffices to approximate a given quadratic filter by a rather small neural system with dynamic synapses. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html