BACK TO INDEX

Publications about 'cell signaling'
Articles in journal or book chapters
  1. N. Trendel, P. Kruger, S. Gaglione, J. Nguyen, J. Pettmann, E.D. Sontag, and O. Dushek. Perfect adaptation of CD8+ T cell responses to constant antigen input over a wide range of affinity is overcome by costimulation. Science Signaling, 14:eaay9363, 2021. [PDF] Keyword(s): immunology, cell signaling, T cells, systems biology.
    Abstract:
    Maintaining and limiting T cell responses to constant antigen stimulation is critical to control pathogens and maintain self-tolerance, respectively. Antigen recognition by T cell receptors (TCRs) induces signalling that activates T cells to produce cytokines and also leads to the downregulation of surface TCRs. In other systems, receptor downregulation can induce perfect adaptation to constant stimulation by a mechanism known as state-dependent inactivation that requires complete downregulation of the receptor or the ligand. However, this is not the case for the TCR, and therefore, precisely how TCR downregulation maintains or limits T cell responses is controversial. Here, we observed that in vitro expanded primary human T cells exhibit perfect adaptation in cytokine production to constant antigen stimulation across a 100,000-fold variation in affinity with partial TCR downregulation. By directly fitting a mechanistic model to the data, we show that TCR downregulation produces imperfect adaptation, but when coupled to a switch produces perfect adaptation in cytokine production. A pre diction of the model is that pMHC-induced TCR signalling continues after adaptation and this is confirmed by showing that, while costimulation cannot prevent adaptation, CD28 and 4-1BB signalling reactivated adapted T cells to produce cytokines in a pMHC-dependent manner. We show that adaptation also applied to 1st generation chimeric antigen receptor (CAR)-T cells but is partially avoided in 2nd generation CARs. These findings highlight that even partial TCR downregulation can limit T cell responses by producing perfect adaptation rendering T cells dependent on costimulation for sustained responses.


  2. J.A. Ascensao, P. Datta, B. Hancioglu, E.D. Sontag, M.L. Gennaro, and O.A. Igoshin. Non-monotonic response dynamics of glyoxylate shunt genes in Mycobacterium tuberculosis. PLoS Computational Biology, 12:e1004741, 2016. [PDF] Keyword(s): cell signaling, monotone systems, monotone systems, systems biology.
    Abstract:
    Understanding how dynamical responses of biological networks are constrained by underlying network topology is one of the fundamental goals of systems biology. Here we employ monotone systems theory to formulate a theorem stating necessary conditions for non-monotonic time-response of a biochemical network to a monotonic stimulus. We apply this theorem to analyze the non-monotonic dynamics of the sigmaB-regulated glyoxylate shunt gene expression in Mycobacterium tuberculosis cells exposed to hypoxia. We first demonstrate that the known network structure is inconsistent with observed dynamics. To resolve this inconsistency we employ the formulated theorem, modeling simulations and optimization along with follow-up dynamic experimental measurements. We show a requirement for post-translational modulation of sigmaB activity in order to reconcile the network dynamics with its topology. The results of this analysis make testable experimental predictions and demonstrate wider applicability of the developed methodology to a wide class of biological systems.


  3. J. Barton and E.D. Sontag. The energy costs of insulators in biochemical networks. Biophysical Journal, 104:1390-1380, 2013. [PDF] Keyword(s): biochemical networks, futile cycles, enzymatic cycles, cell signaling, retroactivity, modularity, systems biology.
    Abstract:
    Complex networks of biochemical reactions, such as intracellular protein signaling pathways and genetic networks, are often conceptualized in terms of ``modules,'' semi-independent collections of components that perform a well-defined function and which may be incorporated in multiple pathways. However, due to sequestration of molecular messengers during interactions and other effects, collectively referred to as retroactivity, real biochemical systems do not exhibit perfect modularity. Biochemical signaling pathways can be insulated from impedance and competition effects, which inhibit modularity, through enzymatic ``futile cycles'' which consume energy, typically in the form of ATP. We hypothesize that better insulation necessarily requires higher energy consumption. We test this hypothesis through a combined theoretical and computational analysis of a simplified physical model of covalent cycles, using two innovative measures of insulation, as well as a new way to characterize optimal insulation through the balancing of these two measures in a Pareto sense. Our results indicate that indeed better insulation requires more energy. While insulation may facilitate evolution by enabling a modular ``plug and play'' interconnection architecture, allowing for the creation of new behaviors by adding targets to existing pathways, our work suggests that this potential benefit must be balanced against the metabolic costs of insulation necessarily incurred in not affecting the behavior of existing processes.


  4. L. Wang and E.D. Sontag. Singularly perturbed monotone systems and an application to double phosphorylation cycles. J. Nonlinear Science, 18:527-550, 2008. [PDF] Keyword(s): singular perturbations, futile cycles, MAPK cascades, systems biology, biochemical networks, nonlinear stability, nonlinear dynamics, multistability, monotone systems.
    Abstract:
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation "futile cycle" motif which plays a central role in eukaryotic cell signaling The workis heavily based on Fenichel-Jones geometric singular perturbation theory.


  5. D. Angeli, P. de Leenheer, and E.D. Sontag. A Petri net approach to the study of persistence in chemical reaction networks. Mathematical Biosciences, 210:598-618, 2007. Note: Please look at the paper ``A Petri net approach to persistence analysis in chemical reaction networks'' for additional results, not included in the journal paper due to lack of space. See also the preprint: arXiv q-bio.MN/068019v2, 10 Aug 2006. [PDF] Keyword(s): Petri nets, systems biology, biochemical networks, nonlinear stability, dynamical systems, futile cycles.
    Abstract:
    Persistency is the property, for differential equations in Rn, that solutions starting in the positive orthant do not approach the boundary. For chemical reactions and population models, this translates into the non-extinction property: provided that every species is present at the start of the reaction, no species will tend to be eliminated in the course of the reaction. This paper provides checkable conditions for persistence of chemical species in reaction networks, using concepts and tools from Petri net theory, and verifies these conditions on various systems which arise in the modeling of cell signaling pathways.


  6. D. Angeli, J. E. Ferrell, and E.D. Sontag. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems.. Proc Natl Acad Sci USA, 101(7):1822-1827, 2004. Note: A revision of Suppl. Fig. 7(b) is here: http://sontaglab.org/FTPDIR/nullclines-f-g-REV.jpg; and typos can be found here: http://sontaglab.org/FTPDIR/angeli-ferrell-sontag-pnas04-errata.txt. [WWW] [PDF] [doi:10.1073/pnas.0308265100] Keyword(s): MAPK cascades, multistability, systems biology, biochemical networks, nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Multistability is an important recurring theme in cell signaling, of particular relevance to biological systems that switch between discrete states, generate oscillatory responses, or "remember" transitory stimuli. Standard mathematical methods allow the detection of bistability in some very simple feedback systems (systems with one or two proteins or genes that either activate each other or inhibit each other), but realistic depictions of signal transduction networks are invariably much more complex than this. Here we show that for a class of feedback systems of arbitrary order, the stability properties of the system can be deduced mathematically from how the system behaves when feedback is blocked. Provided that this "open loop," feedback-blocked system is monotone and possesses a sigmoidal characteristic, the system is guaranteed to be bistable for some range of feedback strengths. We present a simple graphical method for deducing the stability behavior and bifurcation diagrams for such systems, and illustrate the method with two examples taken from recent experimental studies of bistable systems: a two-variable Cdc2/Wee1 system and a more complicated five-variable MAPK cascade.


Conference articles
  1. O. Shoval, U. Alon, and E.D. Sontag. Input symmetry invariance, and applications to biological systems. In Proc. IEEE Conf. Decision and Control, Orlando, Dec. 2011, pages TuA02.5, 2011. Keyword(s): adaptation, biological adaptation, perfect adaptation, adaptation, feedforward loops, integral feedback, scale invariance, systems biology, transient behavior, symmetries, fcd, fold-change detection, jump Markov processes.
    Abstract:
    This paper studies invariance with respect to symmetries in sensory fields, a particular case of which, scale invariance, has recently been found in certain eukaryotic as well as bacterial cell signaling systems. We describe a necessary and sufficient characterization of symmetry invariance in terms of equivariant transformations, show how this characterization helps find all possible symmetries in standard models of biological adaptation, and discuss symmetry-invariant searches.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Apr 17 19:59:02 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html