BACK TO INDEX

Publications about 'chemical master equation'
Articles in journal or book chapters
  1. H. Hong, J. Kim, M.A. Al-Radhawi, E.D. Sontag, and J. K. Kim. Derivation of stationary distributions of biochemical reaction networks via structure transformation. Communications Biology, 4:620-, 2021. [PDF] Keyword(s): stationary distribution, chemical reaction networks, network translation, biochemical reaction networks, chemical master equation, stochastic, probabilistic, systems biology.
    Abstract:
    Long-term behaviors of biochemical reaction networks (BRNs) are described by steady states in deterministic models and stationary distributions in stochastic models. Unlike deterministic steady states, stationary distributions capturing inherent fluctuations of reactions are extremely difficult to derive analytically due to the curse of dimensionality. Here, we develop a method to derive analytic stationary distributions from deterministic steady states by transforming BRNs to have a special dynamic property, called complex balancing. Specifically, we merge nodes and edges of BRNs to match in- and out-flows of each node. This allows us to derive the stationary distributions of a large class of BRNs, including autophosphorylation networks of EGFR, PAK1, and Aurora B kinase and a genetic toggle switch. This reveals the unique properties of their stochastic dynamics such as robustness, sensitivity, and multimodality. Importantly, we provide a user-friendly computational package, CASTANET, that automatically derives symbolic expressions of the stationary distributions of BRNs to understand their long-term stochasticity.


  2. M. A. Al-Radhawi, D. Del Vecchio, and E. D. Sontag. Multi-modality in gene regulatory networks with slow gene binding. PLoS Computational Biology, 15:e1006784, 2019. [PDF] Keyword(s): multistability, gene networks, Markov Chains, Master Equation, cancer heterogeneity, phenotypic variation, nonlinear systems, stochastic systems, epigenetics, chemical master equations, systems biology.
    Abstract:
    In biological processes such as embryonic development, hematopoietic cell differentiation, and the arising of tumor heterogeneity and consequent resistance to therapy, mechanisms of gene activation and deactivation may play a role in the emergence of phenotypically heterogeneous yet genetically identical (clonal) cellular populations. Mathematically, the variability in phenotypes in the absence of genetic variation can be modeled through the existence of multiple metastable attractors in nonlinear systems subject with stochastic switching, each one of them associated to an alternative epigenetic state. An important theoretical and practical question is that of estimating the number and location of these states, as well as their relative probabilities of occurrence. This paper focuses on a rigorous analytic characterization of multiple modes under slow promoter kinetics, which is a feature of epigenetic regulation. It characterizes the stationary distributions of Chemical Master Equations for gene regulatory networks as a mixture of Poisson distributions. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations and a trans-differentiation network.


  3. E.D. Sontag. Examples of computation of exact moment dynamics for chemical reaction networks. In R. Tempo, S. Yurkovich, and P. Misra, editors, Emerging Applications of Control and Systems Theory, volume 473 of Lecture Notes in Control and Inform. Sci., pages 295-312. Springer-Verlag, Berlin, 2018. [PDF] Keyword(s): chemical master equations, stochastic systems, moments, chemical reaction networks, incoherent feedforward loop, feedforward, IFFL, systems biology.
    Abstract:
    The study of stochastic biomolecular networks is a key part of systems biology, as such networks play a central role in engineered synthetic biology constructs as well as in naturally occurring cells. This expository paper reviews in a unified way a pair of recent approaches to the finite computation of statistics for chemical reaction networks.


  4. J. K. Kim and E.D. Sontag. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation. PLoS Computational Biology, 13:13(6): e1005571, 2017. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    Biochemical reaction networks in cells frequently consist of reactions with disparate timescales. Stochastic simulations of such multiscale BRNs are prohibitively slow due to the high computational cost incurred in the simulations of fast reactions. One way to resolve this problem is to replace fast species by their stationary conditional expectation values conditioned on slow species. While various approximations schemes for this quasi-steady state approximation have been developed, they often lead to considerable errors. This paper considers two classes of multiscale BRNs which can be reduced by through an exact QSS rather than approximations. Specifically, we assume that fast species constitute either a feedforward network or a complex balanced network. Exact reductions for various examples are derived, and the computational advantages of this approach are illustrated through simulations.


  5. E.D. Sontag and A. Singh. Exact moment dynamics for feedforward nonlinear chemical reaction networks. IEEE Life Sciences Letters, 1:26-29, 2015. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks.
    Abstract:
    Chemical systems are inherently stochastic, as reactions depend on random (thermal) motion. This motivates the study of stochastic models, and specifically the Chemical Master Equation (CME), a discrete-space continuous-time Markov process that describes stochastic chemical kinetics. Exact studies using the CME are difficult, and several moment closure tools related to "mass fluctuation kinetics" and "fluctuation-dissipation" formulas can be used to obtain approximations of moments. This paper, in contrast, introduces a class of nonlinear chemical reaction networks for which exact computation is possible, by means of finite-dimensional linear differential equations. This class allows second and higher order reactions, but only under special assumptions on structure and/or conservation laws.


  6. E.D. Sontag and D. Zeilberger. A symbolic computation approach to a problem involving multivariate Poisson distributions. Advances in Applied Mathematics, 44:359-377, 2010. Note: There are a few typos in the published version. Please see this file for corrections: https://drive.google.com/file/d/0BzWFHczJF2INUlEtVkFJOUJiUFU/view. [PDF] Keyword(s): probability theory, stochastic systems, systems biology, biochemical networks, chemical master equation.
    Abstract:
    Multivariate Poisson random variables subject to linear integer constraints arise in several application areas, such as queuing and biomolecular networks. This note shows how to compute conditional statistics in this context, by employing WZ Theory and associated algorithms. A symbolic computation package has been developed and is made freely available. A discussion of motivating biomolecular problems is also provided.


Conference articles
  1. S. Bruno, M.A. Al-Radhawi, E.D. Sontag, and D. Del Vecchio. Stochastic analysis of genetic feedback controllers to reprogram a pluripotency gene regulatory network. In Proc. 2019 Automatic Control Conference, pages 5089-5096, 2019. [PDF] Keyword(s): multistability, biochemical networks, systems biology, stochastic systems, cell differentiation, multistationarity, chemical master equations.
    Abstract:
    Cellular reprogramming is traditionally accomplished through an open loop control approach, wherein key transcription factors are injected in cells to steer a gene regulatory network toward a pluripotent state. Recently, a closed loop feedback control strategy was proposed in order to achieve more accurate control. Previous analyses of the controller were based on deterministic models, ignoring the substantial stochasticity in these networks, Here we analyze the Chemical Master Equation for reaction models with and without the feedback controller. We computationally and analytically investigate the performance of the controller in biologically relevant parameter regimes where stochastic effects dictate system dynamics. Our results indicate that the feedback control approach still ensures reprogramming even when analyzed using a stochastic model.


  2. M.A. Al-Radhawi, N.S. Kumar, E.D. Sontag, and D. Del Vecchio. Stochastic multistationarity in a model of the hematopoietic stem cell differentiation network. In Proc. 2018 IEEE Conf. Decision and Control, pages 1886-1892, 2018. [PDF] Keyword(s): multistability, biochemical networks, systems biology, stochastic systems, cell differentiation, multistationarity, chemical master equations.
    Abstract:
    In the mathematical modeling of cell differentiation, it is common to think of internal states of cells (quanfitied by activation levels of certain genes) as determining different cell types. We study here the "PU.1/GATA-1 circuit" that controls the development of mature blood cells from hematopoietic stem cells (HSCs). We introduce a rigorous chemical reaction network model of the PU.1/GATA-1 circuit, which incorporates current biological knowledge and find that the resulting ODE model of these biomolecular reactions is incapable of exhibiting multistability, contradicting the fact that differentiation networks have, by definition, alternative stable steady states. When considering instead the stochastic version of this chemical network, we analytically construct the stationary distribution, and are able to show that this distribution is indeed capable of admitting a multiplicity of modes. Finally, we study how a judicious choice of system parameters serves to bias the probabilities towards different stationary states. We remark that certain changes in system parameters can be physically implemented by a biological feedback mechanism; tuning this feedback gives extra degrees of freedom that allow one to assign higher likelihood to some cell types over others.


Internal reports
  1. E.D. Sontag. Examples of computation of exact moment dynamics for chemical reaction networks. Technical report, arXiv:1612.02393, 2016. [PDF] Keyword(s): systems biology, biochemical networks, stochastic systems, chemical master equation, chemical reaction networks, moments, molecular networks, complex-balanced networks.
    Abstract:
    We review in a unified way results for two types of stochastic chemical reaction systems for which moments can be effectively computed: feedforward networks and complex-balanced networks.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Fri Sep 20 11:51:28 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html