BACK TO INDEX

Publications about 'Input-to-state stability (ISS)'
Articles in journal or book chapters
  1. L. Cui, Z.P. Jiang, E.D. Sontag, and R.D. Braatz. Perturbed gradient descent algorithms are small-disturbance input-to-state stable. Automatica, 2025. Note: Submitted. Also arXiv:2507.02131. [PDF] [doi:https://doi.org/10.48550/arXiv.2507.02131] Keyword(s): Input-to-state stability (ISS), gradient systems, policy optimization, linear quadratic regulator (LQR).
    Abstract:
    This article investigates the robustness of gradient descent algorithms under perturbations. The concept of small-disturbance input-to-state stability (ISS) for discrete-time nonlinear dynamical systems is introduced, along with its Lyapunov characterization. The conventional linear \emph{Polyak-\L{}ojasiewicz} (PL) condition is then extended to a nonlinear version, and it is shown that the gradient descent algorithm is small-disturbance ISS provided the objective function satisfies the generalized nonlinear PL condition. This small-disturbance ISS property guarantees that the gradient descent algorithm converges to a small neighborhood of the optimum under sufficiently small perturbations. As a direct application of the developed framework, we demonstrate that the LQR cost satisfies the generalized nonlinear PL condition, thereby establishing that the policy gradient algorithm for LQR is small-disturbance ISS. Additionally, other popular policy gradient algorithms, including natural policy gradient and Gauss-Newton method, are also proven to be small-disturbance ISS.


  2. D. Nesic, A.R. Teel, and E.D. Sontag. Formulas relating KL stability estimates of discrete-time and sampled-data nonlinear systems. Systems Control Lett., 38(1):49-60, 1999. [PDF] Keyword(s): input to state stability, sampled-data systems, discrete-time systems, sampling, ISS.
    Abstract:
    We provide an explicit KL stability or input-to-state stability (ISS) estimate for a sampled-data nonlinear system in terms of the KL estimate for the corresponding discrete-time system and a K function describing inter-sample growth. It is quite obvious that a uniform inter-sample growth condition, plus an ISS property for the exact discrete-time model of a closed-loop system, implies uniform ISS of the sampled-data nonlinear system; our results serve to quantify these facts by means of comparison functions. Our results can be used as an alternative to prove and extend results of Aeyels et al and extend some results by Chen et al to a class of nonlinear systems. Finally, the formulas we establish can be used as a tool for some other problems which we indicate.


  3. E.D. Sontag. Comments on integral variants of ISS. Systems Control Lett., 34(1-2):93-100, 1998. [PDF] [doi:http://dx.doi.org/10.1016/S0167-6911(98)00003-6] Keyword(s): input to state stability, integral input to state stability, iISS, ISS.
    Abstract:
    This note discusses two integral variants of the input-to-state stability (ISS) property, which represent nonlinear generalizations of L2 stability, in much the same way that ISS generalizes L-infinity stability. Both variants are equivalent to ISS for linear systems. For general nonlinear systems, it is shown that one of the new properties is strictly weaker than ISS, while the other one is equivalent to it. For bilinear systems, a complete characterization is provided of the weaker property. An interesting fact about functions of type KL is proved as well.


  4. E.D. Sontag and Y. Wang. Output-to-state stability and detectability of nonlinear systems. Systems Control Lett., 29(5):279-290, 1997. [PDF] [doi:http://dx.doi.org/10.1016/S0167-6911(97)90013-X] Keyword(s): input to state stability, integral input to state stability, iISS, ISS, detectability, output to state stability, detectability, input to state stability.
    Abstract:
    The notion of input-to-state stability (ISS) has proved to be useful in nonlinear systems analysis. This paper discusses a dual notion, output-to-state stability (OSS). A characterization is provided in terms of a dissipation inequality involving storage (Lyapunov) functions. Combining ISS and OSS there results the notion of input/output-to-state stability (IOSS), which is also studied and related to the notion of detectability, the existence of observers, and output injection.


Conference articles
  1. Z-P. Jiang, E.D. Sontag, and Y. Wang. Input-to-state stability for discrete-time nonlinear systems. In Proc. 14th IFAC World Congress, Vol E (Beijing), pages 277-282, 1999. [PDF] Keyword(s): input to state stability, input to state stability, ISS, discrete-time.
    Abstract:
    This paper studies the input-to-state stability (ISS) property for discrete-time nonlinear systems. We show that many standard ISS results may be extended to the discrete-time case. More precisely, we provide a Lyapunov-like sufficient condition for ISS, and we show the equivalence between the ISS property and various other properties, as well as provide a small gain theorem.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Oct 23 10:40:04 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html