BACK TO INDEX

Publications about 'noise to state stability'
Articles in journal or book chapters
  1. A. Rufino Ferreira, M. Arcak, and E.D. Sontag. Stability certification of large scale stochastic systems using dissipativity of subsystems. Automatica, 48:2956-2964, 2012. [PDF] Keyword(s): stochastic systems, passivity, noise-to-state stability, ISS, input to state stability.
    Abstract:
    This paper deals with the stability of interconnections of nonlinear stochastic systems, using concepts of passivity and noise-to-state stability.


Conference articles
  1. L. Cui, Z.P. Jiang, and E. D. Sontag. Small-covariance noise-to-state stability of stochastic systems and its applications to stochastic gradient dynamics. In 2026 American Control Conference (ACC), 2026. Note: Submitted. Also arXiv:2509.24277. [PDF] [doi:https://doi.org/10.48550/arXiv.2509.24277] Keyword(s): noise to state stability, input to state stability, stochastic systems.
    Abstract:
    This paper studies gradient dynamics subject to additive stochastic noise, which may arise from sources such as stochastic gradient estimation, measurement noise, or stochastic sampling errors. To analyze the robustness of such stochastic gradient systems, the concept of small-covariance noise-to-state stability (NSS) is introduced, along with a Lyapunov-based characterization. Furthermore, the classical Polyak–Lojasiewicz (PL) condition on the objective function is generalized to the $\mathcal{K}$-PL condition via comparison functions, thereby extending its applicability to a broader class of optimization problems. It is shown that the stochastic gradient dynamics exhibit small-covariance NSS if the objective function satisfies the $\mathcal{K}$-PL condition and possesses a globally Lipschitz continuous gradient. This result implies that the trajectories of stochastic gradient dynamics converge to a neighborhood of the optimum with high probability, with the size of the neighborhood determined by the noise covariance. Moreover, if the $\mathcal{K}$-PL condition is strengthened to a $\mathcal{K}_\infty$-PL condition, the dynamics are NSS; whereas if it is weakened to a general positive-definite-PL condition, the dynamics exhibit integral NSS. The results further extend to objectives without globally Lipschitz gradients through appropriate step-size tuning. The proposed framework is further applied to the robustness analysis of policy optimization for the linear quadratic regulator (LQR) and logistic regression.


  2. A. Rufino Ferreira, M. Arcak, and E.D. Sontag. A decomposition-based approach to stability analysis of large-scale stochastic systems. In Proceedings of the 2012 American Control Conference, Montreal, June 2012, pages Paper FrC10.4, 2012. Keyword(s): stochastic systems, passivity, noise-to-state stability.
    Abstract:
    Conference version of ``Stability certification of large scale stochastic systems using dissipativity of subsystems''.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Thu Oct 23 10:40:04 2025
Author: sontag.


This document was translated from BibTEX by bibtex2html