BACK TO INDEX

Publications about 'partial differential equations'
Articles in journal or book chapters
  1. Z. Aminzare and E.D. Sontag. Some remarks on spatial uniformity of solutions of reaction-diffusion PDEs. Nonlinear Analysis, 147:125-144, 2016. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, synchronization, consensus, reaction-diffusion PDEs, partial differential equations.
    Abstract:
    This paper presents a condition which guarantees spatial uniformity for the asymptotic behavior of the solutions of a reaction diffusion partial differential equation (PDE) with Neumann boundary conditions in one dimension, using the Jacobian matrix of the reaction term and the first Dirichlet eigenvalue of the Laplacian operator on the given spatial domain. The estimates are based on logarithmic norms in non-Hilbert spaces, which allow, in particular for a class of examples of interest in biology, tighter estimates than other previously proposed methods.


  2. Z. Aminzare, Y. Shafi, M. Arcak, and E.D. Sontag. Guaranteeing spatial uniformity in reaction-diffusion systems using weighted $L_2$-norm contractions. In V. Kulkarni, G.-B. Stan, and K. Raman, editors, A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, pages 73-101. Springer-Verlag, 2014. [PDF] Keyword(s): contractions, contractive systems, Turing instabilities, diffusion, partial differential equations, synchronization.
    Abstract:
    This paper gives conditions that guarantee spatial uniformity of the solutions of reaction-diffusion partial differential equations, stated in terms of the Jacobian matrix and Neumann eigenvalues of elliptic operators on the given spatial domain, and similar conditions for diffusively-coupled networks of ordinary differential equations. Also derived are numerical tests making use of linear matrix inequalities that are useful in certifying these conditions.


  3. Z. Aminzare and E.D. Sontag. Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear Analysis: Theory, Methods & Applications, 83:31-49, 2013. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, Turing instabilities, diffusion, partial differential equations, synchronization.
    Abstract:
    This paper proves that ordinary differential equation systems that are contractive with respect to $L^p$ norms remain so when diffusion is added. Thus, diffusive instabilities, in the sense of the Turing phenomenon, cannot arise for such systems, and in fact any two solutions converge exponentially to each other. The key tools are semi-inner products and logarithmic Lipschitz constants in Banach spaces. An example from biochemistry is discussed, which shows the necessity of considering non-Hilbert spaces. An analogous result for graph-defined interconnections of systems defined by ordinary differential equations is given as well.


  4. M.R. Jovanovic, M. Arcak, and E.D. Sontag. A passivity-based approach to stability of spatially distributed systems with a cyclic interconnection structure. IEEE Transactions on Circuits and Systems, Special Issue on Systems Biology, 55:75-86, 2008. Note: Preprint: also arXiv math.OC/0701622, 22 January 2007.[PDF] Keyword(s): MAPK cascades, systems biology, biochemical networks, nonlinear stability, nonlinear dynamics, diffusion, secant condition, cyclic feedback systems.
    Abstract:
    A class of distributed systems with a cyclic interconnection structure is considered. These systems arise in several biochemical applications and they can undergo diffusion driven instability which leads to a formation of spatially heterogeneous patterns. In this paper, a class of cyclic systems in which addition of diffusion does not have a destabilizing effect is identified. For these systems global stability results hold if the "secant" criterion is satisfied. In the linear case, it is shown that the secant condition is necessary and sufficient for the existence of a decoupled quadratic Lyapunov function, which extends a recent diagonal stability result to partial differential equations. For reaction-diffusion equations with nondecreasing coupling nonlinearities global asymptotic stability of the origin is established. All of the derived results remain true for both linear and nonlinear positive diffusion terms. Similar results are shown for compartmental systems.


  5. G.A. Enciso, H.L. Smith, and E.D. Sontag. Non-monotone systems decomposable into monotone systems with negative feedback. J. of Differential Equations, 224:205-227, 2006. [PDF] Keyword(s): nonlinear stability, dynamical systems, monotone systems.
    Abstract:
    Motivated by the theory of monotone i/o systems, this paper shows that certain finite and infinite dimensional semi-dynamical systems with negative feedback can be decomposed into a monotone open loop system with inputs and a decreasing output function. The original system is reconstituted by plugging the output into the input. By embedding the system into a larger symmetric monotone system, this paper obtains finer information on the asymptotic behavior of solutions, including existence of positively invariant sets and global convergence. An important new result is the extension of the "small gain theorem" of monotone i/o theory to reaction-diffusion partial differential equations: adding diffusion preserves the global attraction of the ODE equilibrium.


Conference articles
  1. Z. Aminzare and E.D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In Proc. IEEE Conf. Decision and Control, Los Angeles, Dec. 2014, pages 3835-3847, 2014. [PDF] Keyword(s): contractions, contractive systems, stability, reaction-diffusion PDE's, synchronization, contractive systems, stability.
    Abstract:
    Contraction theory provides an elegant way to analyze the behaviors of certain nonlinear dynamical systems. Under sometimes easy to check hypotheses, systems can be shown to have the incremental stability property that trajectories converge to each other. The present paper provides a self-contained introduction to some of the basic concepts and results in contraction theory, discusses applications to synchronization and to reaction-diffusion partial differential equations, and poses several open questions.


  2. Y. Shafi, Z. Aminzare, M. Arcak, and E.D. Sontag. Spatial uniformity in diffusively-coupled systems using weighted L2 norm contractions. In Proc. American Control Conference, pages 5639-5644, 2013. [PDF] Keyword(s): contractions, contractive systems, matrix measures, logarithmic norms, Turing instabilities, diffusion, partial differential equations, synchronization.
    Abstract:
    We present conditions that guarantee spatial uniformity in diffusively-coupled systems. Diffusive coupling is a ubiquitous form of local interaction, arising in diverse areas including multiagent coordination and pattern formation in biochemical networks. The conditions we derive make use of the Jacobian matrix and Neumann eigenvalues of elliptic operators, and generalize and unify existing theory about asymptotic convergence of trajectories of reaction-diffusion partial differential equations as well as compartmental ordinary differential equations. We present numerical tests making use of linear matrix inequalities that may be used to certify these conditions. We discuss an example pertaining to electromechanical oscillators. The paper's main contributions are unified verifiable relaxed conditions that guarantee synchrony.



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.




Last modified: Wed Oct 30 12:09:15 2024
Author: sontag.


This document was translated from BibTEX by bibtex2html