Publications by Eduardo D. Sontag in year 1979 |
Books and proceedings |
(This is a monograph based upon Eduardo Sontag's Ph.D. thesis. The contents are basically the same as the thesis, except for a very few revisions and extensions.) This work deals the realization theory of discrete-time systems (with inputs and outputs, in the sense of control theory) defined by polynomial update equations. It is based upon the premise that the natural tools for the study of the structural-algebraic properties (in particular, realization theory) of polynomial input/output maps are provided by algebraic geometry and commutative algebra, perhaps as much as linear algebra provides the natural tools for studying linear systems. Basic ideas from algebraic geometry are used throughout in system-theoretic applications (Hilbert's basis theorem to finite-time observability, dimension theory to minimal realizations, Zariski's Main Theorem to uniqueness of canonical realizations, etc). In order to keep the level elementary (in particular, not utilizing sheaf-theoretic concepts), certain ideas like nonaffine varieties are used only implicitly (eg., quasi-affine as open sets in affine varieties) or in technical parts of a few proofs, and the terminology is similarly simplified (e.g., "polynomial map" instead of "scheme morphism restricted to k-points", or "k-space" instead of "k-points of an affine k-scheme"). |
Articles in journal or book chapters |
This paper studies the problem of obtaining minimal realizations of linear input/output maps defined over rings. In particular, it is shown that, contrary to the case of systems over fields, it is in general impossible to obtain realizations whose dimiension equals the rank of the Hankel matrix. A characterization is given of those (Noetherian) rings over which realizations of such dimensions can he always obtained, and the result is applied to delay-differential systems. |
An abstract operator approach is introduced, permitting a unified study of discrete- and continuous-time linear control systems. As an application, an algorithm is given for deciding if a linear system can be built from any fixed set of linear components. Finally, a criterion is given for reachability of the abstract systems introduced, giving thus a unified proof of known reachability results for discrete-time, continuous-time, and delay-differential systems. |
Different notions of observability are compared for systems defined by polynomial difference equations. The main result states that, for systems having the standard property of (multiple-experiment initial-state) observability, the response to a generic input sequence is sufficient for final-state determination. Some remarks are made on results for nonpolynomial and/or continuous-time systems. An identifiability result is derived from the above. |
A state-space realization theory is presented for a wide class of discrete time input/output behaviors. Although In many ways restricted, this class does include as particular cases those treated in the literature (linear, multilinear, internally bilinear, homogeneous), as well ss certain nonanalytic nonlinearities. The theory is conceptually simple, and matrix-theoretic algorithms are straightforward. Finite-realizability of these behaviors by state-affine systems is shown to be equivalent both to the existence of high-order input/output equadons and to realizability by more general types of systems. |
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.
This document was translated from BibT_{E}X by bibtex2html